
UMFPACK Quick Start Guide

Timothy A. Davis
DrTimothyAldenDavis@gmail.com, http://www.suitesparse.com

VERSION 6.3.3, Mar 22, 2024

Abstract

UMFPACK is a set of routines for solving unsymmetric sparse linear systems, Ax = b, using
the Unsymmetric-pattern MultiFrontal method and direct sparse LU factorization. It is written
in ANSI/ISO C, with a MATLAB interface. UMFPACK relies on the Level-3 Basic Linear
Algebra Subprograms (dense matrix multiply) for its performance. This is a “quick start” guide
for Unix/Linux users of the C interface.

UMFPACK, Copyright©2005-2023, Timothy A. Davis, All Rights Reserved.
SPDX-License-Identifier: GPL-2.0+
See http://www.suitesparse.com for the code and full documentation.

1 Overview

UMFPACK is a set of routines for solving systems of linear equations, Ax = b, when A is sparse
and unsymmetric. The sparse matrix A can be square or rectangular, singular or non-singular,
and real or complex (or any combination). Only square matrices A can be used to solve Ax = b
or related systems. Rectangular matrices can only be factorized.

UMFPACK is a built-in routine in MATLAB used by the forward and backslash operator, and
the lu routine. The following is a short introduction to Unix users of the C interface of UMFPACK.

The C-callable UMFPACK library consists of 32 user-callable routines and one include file.
Twenty-eight of the routines come in four versions, with different sizes of integers and for real
or complex floating-point numbers. This Quick Start Guide assumes you are working with real
matrices (not complex) and with int’s as integers (not long’s). Refer to the User Guide for
information about the complex and long integer versions. The include file umfpack.h must be
included in any C program that uses UMFPACK.

For more details, see: A column pre-ordering strategy for the unsymmetric-pattern multifrontal
method, Davis, T. A., ACM Trans. Math. Software, vol 30. no 2, 2004, pp. 165-195, and Algorithm
832: UMFPACK, an unsymmetric-pattern multifrontal method, same issue, pp. 196-199.

2 Primary routines, and a simple example

Five primary UMFPACK routines are required to factorize A or solve Ax = b. An overview
of the primary features of the routines is given in Section 5. Additional routines are available
for passing a different column ordering to UMFPACK, changing default parameters, manipulating

1

sparse matrices, getting the LU factors, save and loading the LU factors from a file, computing the
determinant, and reporting results. See the User Guide for more information.

� umfpack di symbolic:

Pre-orders the columns of A to reduce fill-in and performs a symbolic analysis. Returns an
opaque Symbolic object as a void * pointer. The object contains the symbolic analysis and
is needed for the numerical factorization.

� umfpack di numeric:

Numerically scales and then factorizes a sparse matrix PAQ, PRAQ, or PR−1AQ into the
product LU, where P and Q are permutation matrices, R is a diagonal matrix of scale factors,
L is lower triangular with unit diagonal, and U is upper triangular. Requires the symbolic
ordering and analysis computed by umfpack di symbolic. Returns an opaque Numeric ob-
ject as a void * pointer. The object contains the numerical factorization and is used by
umfpack di solve.

� umfpack di solve:

Solves a sparse linear system (Ax = b, ATx = b, or systems involving just L or U), using
the numeric factorization computed by umfpack di numeric.

� umfpack di free symbolic:

Frees the Symbolic object created by umfpack di symbolic.

� umfpack di free numeric:

Frees the Numeric object created by umfpack di numeric.

The matrix A is represented in compressed column form, which is identical to the sparse matrix
representation used by MATLAB. It consists of three arrays, where the matrix is m-by-n, with nz

entries:

int32_t Ap [n+1] ;

int32_t Ai [nz] ;

double Ax [nz] ;

All nonzeros are entries, but an entry may be numerically zero. The row indices of entries in
column j are stored in Ai[Ap[j] ... Ap[j+1]-1]. The corresponding numerical values are stored
in Ax[Ap[j] ... Ap[j+1]-1].

No duplicate row indices may be present, and the row indices in any given column must be
sorted in ascending order. The first entry Ap[0] must be zero. The total number of entries in the
matrix is thus nz = Ap[n]. Except for the fact that extra zero entries can be included, there is
thus a unique compressed column representation of any given matrix A.

Here is a simple main program, umfpack simple.c, that illustrates the basic usage of UMF-
PACK.

#include <stdio.h>

#include "umfpack.h"

2

int32_t n = 5 ;

int32_t Ap [] = {0, 2, 5, 9, 10, 12} ;

int32_t Ai [] = { 0, 1, 0, 2, 4, 1, 2, 3, 4, 2, 1, 4} ;

double Ax [] = {2., 3., 3., -1., 4., 4., -3., 1., 2., 2., 6., 1.} ;

double b [] = {8., 45., -3., 3., 19.} ;

double x [5] ;

int main (void)

{

double *null = (double *) NULL ;

int i ;

void *Symbolic, *Numeric ;

(void) umfpack_di_symbolic (n, n, Ap, Ai, Ax, &Symbolic, null, null) ;

(void) umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, null, null) ;

umfpack_di_free_symbolic (&Symbolic) ;

(void) umfpack_di_solve (UMFPACK_A, Ap, Ai, Ax, x, b, Numeric, null, null) ;

umfpack_di_free_numeric (&Numeric) ;

for (i = 0 ; i < n ; i++) printf ("x [%d] = %g\n", i, x [i]) ;

return (0) ;

}

The Ap, Ai, and Ax arrays represent the matrix

A =

2 3 0 0 0
3 0 4 0 6
0 −1 −3 2 0
0 0 1 0 0
0 4 2 0 1

 .

and the solution is x = [1 2 3 4 5]T. The program uses default control settings and does not return
any statistics about the ordering, factorization, or solution (Control and Info are both (double

*) NULL).
For routines to manipulate a simpler “triplet-form” data structure for your sparse matrix A,

refer to the UMFPACK User Guide.

3 Synopsis of primary C-callable routines

The matrix A is m-by-n with nz entries. The optional umfpack di defaults routine loads the
default control parameters into the Control array. The settings can then be modified before
passing the array to the other routines. Refer to the description of each function in umfpack.h.

#include "umfpack.h"

int status, sys ; int32_t n, m, nz, Ap [n+1], Ai [nz] ;

double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], Ax [nz], X [n], B [n] ;

void *Symbolic, *Numeric ;

umfpack_di_defaults (Control) ;

status = umfpack_di_symbolic (m, n, Ap, Ai, Ax, &Symbolic, Control, Info) ;

status = umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control, Info) ;

status = umfpack_di_solve (sys, Ap, Ai, Ax, X, B, Numeric, Control, Info) ;

umfpack_di_free_symbolic (&Symbolic) ;

umfpack_di_free_numeric (&Numeric) ;

3

4 Installation

You will need to install both UMFPACK and AMD to use UMFPACK. The UMFPACK and AMD

subdirectories must be placed side-by-side within the same parent directory. AMD is a stand-alone
package that is required by UMFPACK. UMFPACK can be compiled without the BLAS but your
performance will be much less than what it should be.

UMFPACK can optionally use CHOLMOD, CCAMD, CCOLAMD, COLAMD, and SuiteSparse_metis

(a slightly modified version of the original METIS v5.1.0) by default. You can remove this
dependency by compiling with the cmake variable UMFPACK_USE_CHOLMOD set to OFF; see the
CMakeLists.txt file.

CMake is used to build the UMFPACK library. An optional top-level Makefile simplifies its
use. To compile and install the library for system-wide usage:

make ; sudo make install

To compile/install for local usage (SuiteSparse/lib and SuiteSparse/include)

make local ; sudo make install

To run the demos

make demos

For Windows, simply import the CMakeLists.txt script into Visual Studio.
Use the MATLAB command umfpack make in the MATLAB directory to compile UMFPACK

and AMD for use in MATLAB.
The UMFPACK CONFIG string can include combinations of the following; most deal with how the

BLAS are called:

� -DNBLAS if you do not have any BLAS at all.

� -DLONGBLAS if your BLAS takes non-int32_t integer arguments.

� -DBLAS INT = the integer used by the BLAS.

� -DNRECIPROCAL controls a trade-off between speed and accuracy. This is off by default (speed
preferred over accuracy) except when compiling for MATLAB.

When you compile your program that uses the C-callable UMFPACK library, you need to
link your program with all libraries: -lumfpack -lamd -lcholmod -lcolamd -lccolamd -lcamd -lmetis
-lsuitesparseconfig. If you don’t compile UMFPACK to use METIS, then you can just use -lumfpack
-lamd -lsuitesparseconfig.

All libraries are placed in SuiteSparse/lib and all include files are placed in SuiteSparse/include,
and make install will also place them where they are available system-wide. To install for just
yourself, use make local and then make install.

You do not need to directly include any AMD include files in your program, unless you directly
call AMD routines. You only need the

#include "umfpack.h"

statement, as described in Section 3.

4

5 The primary UMFPACK routines

5.1 umfpack di symbolic

int umfpack_di_symbolic

(

int32_t n_row,

int32_t n_col,

const int32_t Ap [],

const int32_t Ai [],

const double Ax [],

void **Symbolic,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

int umfpack_dl_symbolic

(

int64_t n_row,

int64_t n_col,

const int64_t Ap [],

const int64_t Ai [],

const double Ax [],

void **Symbolic,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

int umfpack_zi_symbolic

(

int32_t n_row,

int32_t n_col,

const int32_t Ap [],

const int32_t Ai [],

const double Ax [], const double Az [],

void **Symbolic,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

int umfpack_zl_symbolic

(

int64_t n_row,

int64_t n_col,

const int64_t Ap [],

const int64_t Ai [],

const double Ax [], const double Az [],

void **Symbolic,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

/*

double int32_t Syntax:

5

#include "umfpack.h"

void *Symbolic ;

int32_t n_row, n_col, *Ap, *Ai ;

double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], *Ax ;

int status = umfpack_di_symbolic (n_row, n_col, Ap, Ai, Ax,

&Symbolic, Control, Info) ;

double int64_t Syntax:

#include "umfpack.h"

void *Symbolic ;

int64_t n_row, n_col, *Ap, *Ai ;

double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], *Ax ;

int status = umfpack_dl_symbolic (n_row, n_col, Ap, Ai, Ax,

&Symbolic, Control, Info) ;

complex int32_t Syntax:

#include "umfpack.h"

void *Symbolic ;

int32_t n_row, n_col, *Ap, *Ai ;

double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], *Ax, *Az ;

int status = umfpack_zi_symbolic (n_row, n_col, Ap, Ai, Ax, Az,

&Symbolic, Control, Info) ;

complex int64_t Syntax:

#include "umfpack.h"

void *Symbolic ;

int64_t n_row, n_col, *Ap, *Ai ;

double Control [UMFPACK_CONTROL], Info [UMFPACK_INFO], *Ax, *Az ;

int status = umfpack_zl_symbolic (n_row, n_col, Ap, Ai, Ax, Az,

&Symbolic, Control, Info) ;

packed complex Syntax:

Same as above, except Az is NULL.

Purpose:

Given nonzero pattern of a sparse matrix A in column-oriented form,

umfpack_*_symbolic performs a column pre-ordering to reduce fill-in

(using COLAMD, AMD or METIS) and a symbolic factorization. This is required

before the matrix can be numerically factorized with umfpack_*_numeric.

If you wish to bypass the COLAMD/AMD/METIS pre-ordering and provide your own

ordering, use umfpack_*_qsymbolic instead. If you wish to pass in a

pointer to a user-provided ordering function, use umfpack_*_fsymbolic.

Since umfpack_*_symbolic and umfpack_*_qsymbolic are very similar, options

for both routines are discussed below.

For the following discussion, let S be the submatrix of A obtained after

eliminating all pivots of zero Markowitz cost. S has dimension

(n_row-n1-nempty_row) -by- (n_col-n1-nempty_col), where

6

n1 = Info [UMFPACK_COL_SINGLETONS] + Info [UMFPACK_ROW_SINGLETONS],

nempty_row = Info [UMFPACK_NEMPTY_ROW] and

nempty_col = Info [UMFPACK_NEMPTY_COL].

Returns:

The status code is returned. See Info [UMFPACK_STATUS], below.

Arguments:

Int n_row ; Input argument, not modified.

Int n_col ; Input argument, not modified.

A is an n_row-by-n_col matrix. Restriction: n_row > 0 and n_col > 0.

Int Ap [n_col+1] ; Input argument, not modified.

Ap is an integer array of size n_col+1. On input, it holds the

"pointers" for the column form of the sparse matrix A. Column j of

the matrix A is held in Ai [(Ap [j]) ... (Ap [j+1]-1)]. The first

entry, Ap [0], must be zero, and Ap [j] <= Ap [j+1] must hold for all

j in the range 0 to n_col-1. The value nz = Ap [n_col] is thus the

total number of entries in the pattern of the matrix A. nz must be

greater than or equal to zero.

Int Ai [nz] ; Input argument, not modified, of size nz = Ap [n_col].

The nonzero pattern (row indices) for column j is stored in

Ai [(Ap [j]) ... (Ap [j+1]-1)]. The row indices in a given column j

must be in ascending order, and no duplicate row indices may be present.

Row indices must be in the range 0 to n_row-1 (the matrix is 0-based).

See umfpack_*_triplet_to_col for how to sort the columns of a matrix

and sum up the duplicate entries. See umfpack_*_report_matrix for how

to print the matrix A.

double Ax [nz] ; Optional input argument, not modified. May be NULL.

Size 2*nz for packed complex case.

The numerical values of the sparse matrix A. The nonzero pattern (row

indices) for column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and

the corresponding numerical values are stored in

Ax [(Ap [j]) ... (Ap [j+1]-1)]. Used only for gathering statistics

about how many nonzeros are placed on the diagonal by the fill-reducing

ordering.

double Az [nz] ; Optional input argument, not modified, for complex

versions. May be NULL.

For the complex versions, this holds the imaginary part of A. The

imaginary part of column j is held in Az [(Ap [j]) ... (Ap [j+1]-1)].

If Az is NULL, then both real

and imaginary parts are contained in Ax[0..2*nz-1], with Ax[2*k]

and Ax[2*k+1] being the real and imaginary part of the kth entry.

7

Used for statistics only. See the description of Ax, above.

void **Symbolic ; Output argument.

**Symbolic is the address of a (void *) pointer variable in the user’s

calling routine (see Syntax, above). On input, the contents of this

variable are not defined. On output, this variable holds a (void *)

pointer to the Symbolic object (if successful), or (void *) NULL if

a failure occurred.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control

settings are used (the defaults are suitable for all matrices,

ranging from those with highly unsymmetric nonzero pattern, to

symmetric matrices). Otherwise, the settings are determined from the

Control array. See umfpack_*_defaults on how to fill the Control

array with the default settings. If Control contains NaN’s, the

defaults are used. The following Control parameters are used:

Control [UMFPACK_STRATEGY]: This is the most important control

parameter. It determines what kind of ordering and pivoting

strategy that UMFPACK should use.

NOTE: the interaction of numerical and fill-reducing pivoting is

a delicate balance, and a perfect hueristic is not possible because

sparsity-preserving pivoting is an NP-hard problem. Selecting the

wrong strategy can lead to catastrophic fill-in and/or numerical

inaccuracy.

UMFPACK_STRATEGY_AUTO: This is the default. The input matrix is

analyzed to determine how symmetric the nonzero pattern is, and

how many entries there are on the diagonal. It then selects one

of the following strategies. Refer to the User Guide for a

description of how the strategy is automatically selected.

UMFPACK_STRATEGY_UNSYMMETRIC: Use the unsymmetric strategy. COLAMD

is used to order the columns of A, followed by a postorder of

the column elimination tree. No attempt is made to perform

diagonal pivoting. The column ordering is refined during

factorization.

In the numerical factorization, the

Control [UMFPACK_SYM_PIVOT_TOLERANCE] parameter is ignored. A

pivot is selected if its magnitude is >=

Control [UMFPACK_PIVOT_TOLERANCE] (default 0.1) times the

largest entry in its column.

UMFPACK_STRATEGY_SYMMETRIC: Use the symmetric strategy

In this method, the approximate minimum degree

ordering (AMD) is applied to A+A’, followed by a postorder of

the elimination tree of A+A’. UMFPACK attempts to perform

diagonal pivoting during numerical factorization. No refinement

of the column pre-ordering is performed during factorization.

8

In the numerical factorization, a nonzero entry on the diagonal

is selected as the pivot if its magnitude is >= Control

[UMFPACK_SYM_PIVOT_TOLERANCE] (default 0.001) times the largest

entry in its column. If this is not acceptable, then an

off-diagonal pivot is selected with magnitude >= Control

[UMFPACK_PIVOT_TOLERANCE] (default 0.1) times the largest entry

in its column.

Control [UMFPACK_ORDERING]: The ordering method to use:

UMFPACK_ORDERING_CHOLMOD try AMD/COLAMD, then METIS if needed

UMFPACK_ORDERING_AMD just AMD or COLAMD

UMFPACK_ORDERING_GIVEN just Qinit (umfpack_*_qsymbolic only)

UMFPACK_ORDERING_NONE no fill-reducing ordering

UMFPACK_ORDERING_METIS just METIS(A+A’) or METIS(A’A)

UMFPACK_ORDERING_BEST try AMD/COLAMD, METIS, and NESDIS

UMFPACK_ORDERING_USER just user function (*_fsymbolic only)

UMFPACK_ORDERING_METIS_GUARD use METIS, AMD, or COLAMD.

Symmetric strategy: always use METIS on A+A’. Unsymmetric

strategy: use METIS on A’A, unless A has one or more very dense

rows. In that case, A’A is very costly to form. In this case,

COLAMD is used instead of METIS.

Control [UMFPACK_SINGLETONS]: If false (0), then singletons are

not removed prior to factorization. Default: true (1).

Control [UMFPACK_DENSE_COL]:

If COLAMD is used, columns with more than

max (16, Control [UMFPACK_DENSE_COL] * 16 * sqrt (n_row)) entries

are placed placed last in the column pre-ordering. Default: 0.2.

Control [UMFPACK_DENSE_ROW]:

Rows with more than max (16, Control [UMFPACK_DENSE_ROW] * 16 *

sqrt (n_col)) entries are treated differently in the COLAMD

pre-ordering, and in the internal data structures during the

subsequent numeric factorization. Default: 0.2.

If any row exists with more than these number of entries, and

if the unsymmetric strategy is selected, the METIS_GUARD ordering

selects COLAMD instead of METIS.

Control [UMFPACK_AMD_DENSE]: rows/columns in A+A’ with more than

max (16, Control [UMFPACK_AMD_DENSE] * sqrt (n)) entries

(where n = n_row = n_col) are ignored in the AMD pre-ordering.

Default: 10.

Control [UMFPACK_BLOCK_SIZE]: the block size to use for Level-3 BLAS

in the subsequent numerical factorization (umfpack_*_numeric).

A value less than 1 is treated as 1. Default: 32. Modifying this

parameter affects when updates are applied to the working frontal

matrix, and can indirectly affect fill-in and operation count.

Assuming the block size is large enough (8 or so), this parameter

has a modest effect on performance.

Control [UMFPACK_FIXQ]: If > 0, then the pre-ordering Q is not modified

during numeric factorization. If < 0, then Q may be modified. If

zero, then this is controlled automatically (the unsymmetric

9

strategy modifies Q, the others do not). Default: 0.

Note that the symbolic analysis will in general modify the input

ordering Qinit to obtain Q; see umfpack_qsymbolic.h for details.

This option ensures Q does not change, as found in the symbolic

analysis, but Qinit is in general not the same as Q.

Control [UMFPACK_AGGRESSIVE]: If nonzero, aggressive absorption is used

in COLAMD and AMD. Default: 1.

// added for v6.0.0:

Control [UMFPACK_STRATEGY_THRESH_SYM]: tsym, Default 0.5.

Control [UMFPACK_STRATEGY_THRESH_NNZDIAG]: tdiag, Default 0.9.

For the auto strategy, if the pattern of the submatrix S after

removing singletons has a symmetry of tsym or more (0 being

completely unsymmetric and 1 being completely symmetric, and if the

fraction of entries present on the diagonal is >= tdiag, then the

symmetric strategy is chosen. Otherwise, the unsymmetric strategy

is chosen.

double Info [UMFPACK_INFO] ; Output argument, not defined on input.

Contains statistics about the symbolic analysis. If a (double *) NULL

pointer is passed, then no statistics are returned in Info (this is not

an error condition). The entire Info array is cleared (all entries set

to -1) and then the following statistics are computed:

Info [UMFPACK_STATUS]: status code. This is also the return value,

whether or not Info is present.

UMFPACK_OK

Each column of the input matrix contained row indices

in increasing order, with no duplicates. Only in this case

does umfpack_*_symbolic compute a valid symbolic factorization.

For the other cases below, no Symbolic object is created

(*Symbolic is (void *) NULL).

UMFPACK_ERROR_n_nonpositive

n is less than or equal to zero.

UMFPACK_ERROR_invalid_matrix

Number of entries in the matrix is negative, Ap [0] is nonzero,

a column has a negative number of entries, a row index is out of

bounds, or the columns of input matrix were jumbled (unsorted

columns or duplicate entries).

UMFPACK_ERROR_out_of_memory

Insufficient memory to perform the symbolic analysis. If the

analysis requires more than 2GB of memory and you are using

the int32_t version of UMFPACK, then you are guaranteed

to run out of memory. Try using the 64-bit version of UMFPACK.

10

UMFPACK_ERROR_argument_missing

One or more required arguments is missing.

UMFPACK_ERROR_internal_error

Something very serious went wrong. This is a bug.

Please contact the author (DrTimothyAldenDavis@gmail.com).

Info [UMFPACK_NROW]: the value of the input argument n_row.

Info [UMFPACK_NCOL]: the value of the input argument n_col.

Info [UMFPACK_NZ]: the number of entries in the input matrix

(Ap [n_col]).

Info [UMFPACK_SIZE_OF_UNIT]: the number of bytes in a Unit,

for memory usage statistics below.

Info [UMFPACK_SIZE_OF_INT]: the number of bytes in an int32_t.

Info [UMFPACK_SIZE_OF_LONG]: the number of bytes in a int64_t.

Info [UMFPACK_SIZE_OF_POINTER]: the number of bytes in a void *

pointer.

Info [UMFPACK_SIZE_OF_ENTRY]: the number of bytes in a numerical entry.

Info [UMFPACK_NDENSE_ROW]: number of "dense" rows in A. These rows are

ignored when the column pre-ordering is computed in COLAMD. They

are also treated differently during numeric factorization. If > 0,

then the matrix had to be re-analyzed by UMF_analyze, which does

not ignore these rows.

Info [UMFPACK_NEMPTY_ROW]: number of "empty" rows in A, as determined

These are rows that either have no entries, or whose entries are

all in pivot columns of zero-Markowitz-cost pivots.

Info [UMFPACK_NDENSE_COL]: number of "dense" columns in A. COLAMD

orders these columns are ordered last in the factorization, but

before "empty" columns.

Info [UMFPACK_NEMPTY_COL]: number of "empty" columns in A. These are

columns that either have no entries, or whose entries are all in

pivot rows of zero-Markowitz-cost pivots. These columns are

ordered last in the factorization, to the right of "dense" columns.

Info [UMFPACK_SYMBOLIC_DEFRAG]: number of garbage collections

performed during ordering and symbolic pre-analysis.

Info [UMFPACK_SYMBOLIC_PEAK_MEMORY]: the amount of memory (in Units)

required for umfpack_*_symbolic to complete. This count includes

the size of the Symbolic object itself, which is also reported in

Info [UMFPACK_SYMBOLIC_SIZE].

11

Info [UMFPACK_SYMBOLIC_SIZE]: the final size of the Symbolic object (in

Units). This is fairly small, roughly 2*n to 13*n integers,

depending on the matrix.

Info [UMFPACK_VARIABLE_INIT_ESTIMATE]: the Numeric object contains two

parts. The first is fixed in size (O (n_row+n_col)). The

second part holds the sparse LU factors and the contribution blocks

from factorized frontal matrices. This part changes in size during

factorization. Info [UMFPACK_VARIABLE_INIT_ESTIMATE] is the exact

size (in Units) required for this second variable-sized part in

order for the numerical factorization to start.

Info [UMFPACK_VARIABLE_PEAK_ESTIMATE]: the estimated peak size (in

Units) of the variable-sized part of the Numeric object. This is

usually an upper bound, but that is not guaranteed.

Info [UMFPACK_VARIABLE_FINAL_ESTIMATE]: the estimated final size (in

Units) of the variable-sized part of the Numeric object. This is

usually an upper bound, but that is not guaranteed. It holds just

the sparse LU factors.

Info [UMFPACK_NUMERIC_SIZE_ESTIMATE]: an estimate of the final size (in

Units) of the entire Numeric object (both fixed-size and variable-

sized parts), which holds the LU factorization (including the L, U,

P and Q matrices).

Info [UMFPACK_PEAK_MEMORY_ESTIMATE]: an estimate of the total amount of

memory (in Units) required by umfpack_*_symbolic and

umfpack_*_numeric to perform both the symbolic and numeric

factorization. This is the larger of the amount of memory needed

in umfpack_*_numeric itself, and the amount of memory needed in

umfpack_*_symbolic (Info [UMFPACK_SYMBOLIC_PEAK_MEMORY]). The

count includes the size of both the Symbolic and Numeric objects

themselves. It can be a very loose upper bound, particularly when

the symmetric strategy is used.

Info [UMFPACK_FLOPS_ESTIMATE]: an estimate of the total floating-point

operations required to factorize the matrix. This is a "true"

theoretical estimate of the number of flops that would be performed

by a flop-parsimonious sparse LU algorithm. It assumes that no

extra flops are performed except for what is strictly required to

compute the LU factorization. It ignores, for example, the flops

performed by umfpack_di_numeric to add contribution blocks of

frontal matrices together. If L and U are the upper bound on the

pattern of the factors, then this flop count estimate can be

represented in MATLAB (for real matrices, not complex) as:

Lnz = full (sum (spones (L))) - 1 ; % nz in each col of L

Unz = full (sum (spones (U’)))’ - 1 ; % nz in each row of U

flops = 2*Lnz*Unz + sum (Lnz) ;

The actual "true flop" count found by umfpack_*_numeric will be

less than this estimate.

12

For the real version, only (+ - * /) are counted. For the complex

version, the following counts are used:

operation flops

c = 1/b 6

c = a*b 6

c -= a*b 8

Info [UMFPACK_LNZ_ESTIMATE]: an estimate of the number of nonzeros in

L, including the diagonal. Since L is unit-diagonal, the diagonal

of L is not stored. This estimate is a strict upper bound on the

actual nonzeros in L to be computed by umfpack_*_numeric.

Info [UMFPACK_UNZ_ESTIMATE]: an estimate of the number of nonzeros in

U, including the diagonal. This estimate is a strict upper bound on

the actual nonzeros in U to be computed by umfpack_*_numeric.

Info [UMFPACK_MAX_FRONT_SIZE_ESTIMATE]: estimate of the size of the

largest frontal matrix (# of entries), for arbitrary partial

pivoting during numerical factorization.

Info [UMFPACK_SYMBOLIC_TIME]: The CPU time taken, in seconds.

Info [UMFPACK_SYMBOLIC_WALLTIME]: The wallclock time taken, in seconds.

Info [UMFPACK_STRATEGY_USED]: The ordering strategy used:

UMFPACK_STRATEGY_SYMMETRIC or UMFPACK_STRATEGY_UNSYMMETRIC

Info [UMFPACK_ORDERING_USED]: The ordering method used:

UMFPACK_ORDERING_AMD (AMD for sym. strategy, COLAMD for unsym.)

UMFPACK_ORDERING_GIVEN

UMFPACK_ORDERING_NONE

UMFPACK_ORDERING_METIS

UMFPACK_ORDERING_USER

Info [UMFPACK_QFIXED]: 1 if the column pre-ordering will be refined

during numerical factorization, 0 if not.

Info [UMFPACK_DIAG_PREFERED]: 1 if diagonal pivoting will be attempted,

0 if not.

Info [UMFPACK_COL_SINGLETONS]: the matrix A is analyzed by first

eliminating all pivots with zero Markowitz cost. This count is the

number of these pivots with exactly one nonzero in their pivot

column.

Info [UMFPACK_ROW_SINGLETONS]: the number of zero-Markowitz-cost

pivots with exactly one nonzero in their pivot row.

Info [UMFPACK_PATTERN_SYMMETRY]: the symmetry of the pattern of S.

Info [UMFPACK_NZ_A_PLUS_AT]: the number of off-diagonal entries in S+S’.

Info [UMFPACK_NZDIAG]: the number of entries on the diagonal of S.

13

Info [UMFPACK_N2]: if S is square, and nempty_row = nempty_col, this

is equal to n_row - n1 - nempty_row.

Info [UMFPACK_S_SYMMETRIC]: 1 if S is square and its diagonal has been

preserved, 0 otherwise.

Info [UMFPACK_MAX_FRONT_NROWS_ESTIMATE]: estimate of the max number of

rows in any frontal matrix, for arbitrary partial pivoting.

Info [UMFPACK_MAX_FRONT_NCOLS_ESTIMATE]: estimate of the max number of

columns in any frontal matrix, for arbitrary partial pivoting.

--

The next four statistics are computed only if AMD is used:

--

Info [UMFPACK_SYMMETRIC_LUNZ]: The number of nonzeros in L and U,

assuming no pivoting during numerical factorization, and assuming a

zero-free diagonal of U. Excludes the entries on the diagonal of

L. If the matrix has a purely symmetric nonzero pattern, this is

often a lower bound on the nonzeros in the actual L and U computed

in the numerical factorization, for matrices that fit the criteria

for the "symmetric" strategy.

Info [UMFPACK_SYMMETRIC_FLOPS]: The floating-point operation count in

the numerical factorization phase, assuming no pivoting. If the

pattern of the matrix is symmetric, this is normally a lower bound

on the floating-point operation count in the actual numerical

factorization, for matrices that fit the criteria for the symmetric

strategy.

Info [UMFPACK_SYMMETRIC_NDENSE]: The number of "dense" rows/columns of

S+S’ that were ignored during the AMD ordering. These are placed

last in the output order. If > 0, then the

Info [UMFPACK_SYMMETRIC_*] statistics, above are rough upper bounds.

Info [UMFPACK_SYMMETRIC_DMAX]: The maximum number of nonzeros in any

column of L, if no pivoting is performed during numerical

factorization. Excludes the part of the LU factorization for

pivots with zero Markowitz cost.

At the start of umfpack_*_symbolic, all of Info is set of -1, and then

after that only the above listed Info [...] entries are accessed.

Future versions might modify different parts of Info.

*/

14

5.2 umfpack di numeric

int umfpack_di_numeric

(

const int32_t Ap [],

const int32_t Ai [],

const double Ax [],

void *Symbolic,

void **Numeric,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

int umfpack_dl_numeric

(

const int64_t Ap [],

const int64_t Ai [],

const double Ax [],

void *Symbolic,

void **Numeric,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

int umfpack_zi_numeric

(

const int32_t Ap [],

const int32_t Ai [],

const double Ax [], const double Az [],

void *Symbolic,

void **Numeric,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

int umfpack_zl_numeric

(

const int64_t Ap [],

const int64_t Ai [],

const double Ax [], const double Az [],

void *Symbolic,

void **Numeric,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

/*

double int32_t Syntax:

#include "umfpack.h"

void *Symbolic, *Numeric ;

int32_t *Ap, *Ai, status ;

double *Ax, Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;

int status = umfpack_di_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control,

Info) ;

15

double int64_t Syntax:

#include "umfpack.h"

void *Symbolic, *Numeric ;

int64_t *Ap, *Ai ;

double *Ax, Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;

int status = umfpack_dl_numeric (Ap, Ai, Ax, Symbolic, &Numeric, Control,

Info) ;

complex int32_t Syntax:

#include "umfpack.h"

void *Symbolic, *Numeric ;

int32_t *Ap, *Ai ;

double *Ax, *Az, Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;

int status = umfpack_zi_numeric (Ap, Ai, Ax, Az, Symbolic, &Numeric,

Control, Info) ;

complex int64_t Syntax:

#include "umfpack.h"

void *Symbolic, *Numeric ;

int64_t *Ap, *Ai ;

double *Ax, *Az, Control [UMFPACK_CONTROL], Info [UMFPACK_INFO] ;

int status = umfpack_zl_numeric (Ap, Ai, Ax, Az, Symbolic, &Numeric,

Control, Info) ;

packed complex Syntax:

Same as above, except that Az is NULL.

Purpose:

Given a sparse matrix A in column-oriented form, and a symbolic analysis

computed by umfpack_*_*symbolic, the umfpack_*_numeric routine performs the

numerical factorization, PAQ=LU, PRAQ=LU, or P(R\A)Q=LU, where P and Q are

permutation matrices (represented as permutation vectors), R is the row

scaling, L is unit-lower triangular, and U is upper triangular. This is

required before the system Ax=b (or other related linear systems) can be

solved. umfpack_*_numeric can be called multiple times for each call to

umfpack_*_*symbolic, to factorize a sequence of matrices with identical

nonzero pattern. Simply compute the Symbolic object once, with

umfpack_*_*symbolic, and reuse it for subsequent matrices. This routine

safely detects if the pattern changes, and sets an appropriate error code.

Returns:

The status code is returned. See Info [UMFPACK_STATUS], below.

Arguments:

Int Ap [n_col+1] ; Input argument, not modified.

This must be identical to the Ap array passed to umfpack_*_*symbolic.

16

The value of n_col is what was passed to umfpack_*_*symbolic (this is

held in the Symbolic object).

Int Ai [nz] ; Input argument, not modified, of size nz = Ap [n_col].

This must be identical to the Ai array passed to umfpack_*_*symbolic.

double Ax [nz] ; Input argument, not modified, of size nz = Ap [n_col].

Size 2*nz for packed complex case.

The numerical values of the sparse matrix A. The nonzero pattern (row

indices) for column j is stored in Ai [(Ap [j]) ... (Ap [j+1]-1)], and

the corresponding numerical values are stored in

Ax [(Ap [j]) ... (Ap [j+1]-1)].

double Az [nz] ; Input argument, not modified, for complex versions.

For the complex versions, this holds the imaginary part of A. The

imaginary part of column j is held in Az [(Ap [j]) ... (Ap [j+1]-1)].

If Az is NULL, then both real

and imaginary parts are contained in Ax[0..2*nz-1], with Ax[2*k]

and Ax[2*k+1] being the real and imaginary part of the kth entry.

void *Symbolic ; Input argument, not modified.

The Symbolic object, which holds the symbolic factorization computed by

umfpack_*_*symbolic. The Symbolic object is not modified by

umfpack_*_numeric.

void **Numeric ; Output argument.

**Numeric is the address of a (void *) pointer variable in the user’s

calling routine (see Syntax, above). On input, the contents of this

variable are not defined. On output, this variable holds a (void *)

pointer to the Numeric object (if successful), or (void *) NULL if

a failure occurred.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control

settings are used. Otherwise, the settings are determined from the

Control array. See umfpack_*_defaults on how to fill the Control

array with the default settings. If Control contains NaN’s, the

defaults are used. The following Control parameters are used:

Control [UMFPACK_PIVOT_TOLERANCE]: relative pivot tolerance for

threshold partial pivoting with row interchanges. In any given

column, an entry is numerically acceptable if its absolute value is

greater than or equal to Control [UMFPACK_PIVOT_TOLERANCE] times

the largest absolute value in the column. A value of 1.0 gives true

partial pivoting. If less than or equal to zero, then any nonzero

entry is numerically acceptable as a pivot. Default: 0.1.

Smaller values tend to lead to sparser LU factors, but the solution

17

to the linear system can become inaccurate. Larger values can lead

to a more accurate solution (but not always), and usually an

increase in the total work.

For complex matrices, a cheap approximate of the absolute value

is used for the threshold partial pivoting test (|a_real| + |a_imag|

instead of the more expensive-to-compute exact absolute value

sqrt (a_real^2 + a_imag^2)).

Control [UMFPACK_SYM_PIVOT_TOLERANCE]:

If diagonal pivoting is attempted (the symmetric

strategy is used) then this parameter is used to control when the

diagonal entry is selected in a given pivot column. The absolute

value of the entry must be >= Control [UMFPACK_SYM_PIVOT_TOLERANCE]

times the largest absolute value in the column. A value of zero

will ensure that no off-diagonal pivoting is performed, except that

zero diagonal entries are not selected if there are any off-diagonal

nonzero entries.

If an off-diagonal pivot is selected, an attempt is made to restore

symmetry later on. Suppose A (i,j) is selected, where i != j.

If column i has not yet been selected as a pivot column, then

the entry A (j,i) is redefined as a "diagonal" entry, except that

the tighter tolerance (Control [UMFPACK_PIVOT_TOLERANCE]) is

applied. This strategy has an effect similar to 2-by-2 pivoting

for symmetric indefinite matrices. If a 2-by-2 block pivot with

nonzero structure

i j

i: 0 x

j: x 0

is selected in a symmetric indefinite factorization method, the

2-by-2 block is inverted and a rank-2 update is applied. In

UMFPACK, this 2-by-2 block would be reordered as

j i

i: x 0

j: 0 x

In both cases, the symmetry of the Schur complement is preserved.

Control [UMFPACK_SCALE]: Note that the user’s input matrix is

never modified, only an internal copy is scaled.

There are three valid settings for this parameter. If any other

value is provided, the default is used.

UMFPACK_SCALE_NONE: no scaling is performed.

UMFPACK_SCALE_SUM: each row of the input matrix A is divided by

the sum of the absolute values of the entries in that row.

The scaled matrix has an infinity norm of 1.

UMFPACK_SCALE_MAX: each row of the input matrix A is divided by

18

the maximum the absolute values of the entries in that row.

In the scaled matrix the largest entry in each row has

a magnitude exactly equal to 1.

Note that for complex matrices, a cheap approximate absolute value

is used, |a_real| + |a_imag|, instead of the exact absolute value

sqrt ((a_real)^2 + (a_imag)^2).

Scaling is very important for the "symmetric" strategy when

diagonal pivoting is attempted. It also improves the performance

of the "unsymmetric" strategy.

Default: UMFPACK_SCALE_SUM.

Control [UMFPACK_ALLOC_INIT]:

When umfpack_*_numeric starts, it allocates memory for the Numeric

object. Part of this is of fixed size (approximately n double’s +

12*n integers). The remainder is of variable size, which grows to

hold the LU factors and the frontal matrices created during

factorization. A estimate of the upper bound is computed by

umfpack_*_*symbolic, and returned by umfpack_*_*symbolic in

Info [UMFPACK_VARIABLE_PEAK_ESTIMATE] (in Units).

If Control [UMFPACK_ALLOC_INIT] is >= 0, umfpack_*_numeric initially

allocates space for the variable-sized part equal to this estimate

times Control [UMFPACK_ALLOC_INIT]. Typically, for matrices for

which the "unsymmetric" strategy applies, umfpack_*_numeric needs

only about half the estimated memory space, so a setting of 0.5 or

0.6 often provides enough memory for umfpack_*_numeric to factorize

the matrix with no subsequent increases in the size of this block.

If the matrix is ordered via AMD, then this non-negative parameter

is ignored. The initial allocation ratio computed automatically,

as 1.2 * (nz + Info [UMFPACK_SYMMETRIC_LUNZ]) /

(Info [UMFPACK_LNZ_ESTIMATE] + Info [UMFPACK_UNZ_ESTIMATE] -

min (n_row, n_col)).

If Control [UMFPACK_ALLOC_INIT] is negative, then umfpack_*_numeric

allocates a space with initial size (in Units) equal to

(-Control [UMFPACK_ALLOC_INIT]).

Regardless of the value of this parameter, a space equal to or

greater than the the bare minimum amount of memory needed to start

the factorization is always initially allocated. The bare initial

memory required is returned by umfpack_*_*symbolic in

Info [UMFPACK_VARIABLE_INIT_ESTIMATE] (an exact value, not an

estimate).

If the variable-size part of the Numeric object is found to be too

small sometime after numerical factorization has started, the memory

is increased in size by a factor of 1.2. If this fails, the

request is reduced by a factor of 0.95 until it succeeds, or until

it determines that no increase in size is possible. Garbage

collection then occurs.

19

The strategy of attempting to "malloc" a working space, and

re-trying with a smaller space, may not work when UMFPACK is used

as a mexFunction MATLAB, since mxMalloc aborts the mexFunction if it

fails. This issue does not affect the use of UMFPACK as a part of

the built-in x=A\b in MATLAB 6.5 and later.

If you are using the umfpack mexFunction, decrease the magnitude of

Control [UMFPACK_ALLOC_INIT] if you run out of memory in MATLAB.

Default initial allocation size: 0.7. Thus, with the default

control settings and the "unsymmetric" strategy, the upper-bound is

reached after two reallocations (0.7 * 1.2 * 1.2 = 1.008).

Changing this parameter has little effect on fill-in or operation

count. It has a small impact on run-time (the extra time required

to do the garbage collection and memory reallocation).

Control [UMFPACK_FRONT_ALLOC_INIT]:

When UMFPACK starts the factorization of each "chain" of frontal

matrices, it allocates a working array to hold the frontal matrices

as they are factorized. The symbolic factorization computes the

size of the largest possible frontal matrix that could occur during

the factorization of each chain.

If Control [UMFPACK_FRONT_ALLOC_INIT] is >= 0, the following

strategy is used. If the AMD ordering was used, this non-negative

parameter is ignored. A front of size (d+2)*(d+2) is allocated,

where d = Info [UMFPACK_SYMMETRIC_DMAX]. Otherwise, a front of

size Control [UMFPACK_FRONT_ALLOC_INIT] times the largest front

possible for this chain is allocated.

If Control [UMFPACK_FRONT_ALLOC_INIT] is negative, then a front of

size (-Control [UMFPACK_FRONT_ALLOC_INIT]) is allocated (where the

size is in terms of the number of numerical entries). This is done

regardless of the ordering method or ordering strategy used.

Default: 0.5.

Control [UMFPACK_DROPTOL]:

Entries in L and U with absolute value less than or equal to the

drop tolerance are removed from the data structures (unless leaving

them there reduces memory usage by reducing the space required

for the nonzero pattern of L and U).

Default: 0.0.

double Info [UMFPACK_INFO] ; Output argument.

Contains statistics about the numeric factorization. If a

(double *) NULL pointer is passed, then no statistics are returned in

Info (this is not an error condition). The following statistics are

computed in umfpack_*_numeric:

20

Info [UMFPACK_STATUS]: status code. This is also the return value,

whether or not Info is present.

UMFPACK_OK

Numeric factorization was successful. umfpack_*_numeric

computed a valid numeric factorization.

UMFPACK_WARNING_singular_matrix

Numeric factorization was successful, but the matrix is

singular. umfpack_*_numeric computed a valid numeric

factorization, but you will get a divide by zero in

umfpack_*_*solve. For the other cases below, no Numeric object

is created (*Numeric is (void *) NULL).

UMFPACK_ERROR_out_of_memory

Insufficient memory to complete the numeric factorization.

UMFPACK_ERROR_argument_missing

One or more required arguments are missing.

UMFPACK_ERROR_invalid_Symbolic_object

Symbolic object provided as input is invalid.

UMFPACK_ERROR_different_pattern

The pattern (Ap and/or Ai) has changed since the call to

umfpack_*_*symbolic which produced the Symbolic object.

Info [UMFPACK_NROW]: the value of n_row stored in the Symbolic object.

Info [UMFPACK_NCOL]: the value of n_col stored in the Symbolic object.

Info [UMFPACK_NZ]: the number of entries in the input matrix.

This value is obtained from the Symbolic object.

Info [UMFPACK_SIZE_OF_UNIT]: the number of bytes in a Unit, for memory

usage statistics below.

Info [UMFPACK_VARIABLE_INIT]: the initial size (in Units) of the

variable-sized part of the Numeric object. If this differs from

Info [UMFPACK_VARIABLE_INIT_ESTIMATE], then the pattern (Ap and/or

Ai) has changed since the last call to umfpack_*_*symbolic, which is

an error condition.

Info [UMFPACK_VARIABLE_PEAK]: the peak size (in Units) of the

variable-sized part of the Numeric object. This size is the amount

of space actually used inside the block of memory, not the space

allocated via UMF_malloc. You can reduce UMFPACK’s memory

requirements by setting Control [UMFPACK_ALLOC_INIT] to the ratio

21

Info [UMFPACK_VARIABLE_PEAK] / Info[UMFPACK_VARIABLE_PEAK_ESTIMATE].

This will ensure that no memory reallocations occur (you may want to

add 0.001 to make sure that integer roundoff does not lead to a

memory size that is 1 Unit too small; otherwise, garbage collection

and reallocation will occur).

Info [UMFPACK_VARIABLE_FINAL]: the final size (in Units) of the

variable-sized part of the Numeric object. It holds just the

sparse LU factors.

Info [UMFPACK_NUMERIC_SIZE]: the actual final size (in Units) of the

entire Numeric object, including the final size of the variable

part of the object. Info [UMFPACK_NUMERIC_SIZE_ESTIMATE],

an estimate, was computed by umfpack_*_*symbolic. The estimate is

normally an upper bound on the actual final size, but this is not

guaranteed.

Info [UMFPACK_PEAK_MEMORY]: the actual peak memory usage (in Units) of

both umfpack_*_*symbolic and umfpack_*_numeric. An estimate,

Info [UMFPACK_PEAK_MEMORY_ESTIMATE], was computed by

umfpack_*_*symbolic. The estimate is normally an upper bound on the

actual peak usage, but this is not guaranteed. With testing on

hundreds of matrix arising in real applications, I have never

observed a matrix where this estimate or the Numeric size estimate

was less than the actual result, but this is theoretically possible.

Please send me one if you find such a matrix.

Info [UMFPACK_FLOPS]: the actual count of the (useful) floating-point

operations performed. An estimate, Info [UMFPACK_FLOPS_ESTIMATE],

was computed by umfpack_*_*symbolic. The estimate is guaranteed to

be an upper bound on this flop count. The flop count excludes

"useless" flops on zero values, flops performed during the pivot

search (for tentative updates and assembly of candidate columns),

and flops performed to add frontal matrices together.

For the real version, only (+ - * /) are counted. For the complex

version, the following counts are used:

operation flops

c = 1/b 6

c = a*b 6

c -= a*b 8

Info [UMFPACK_LNZ]: the actual nonzero entries in final factor L,

including the diagonal. This excludes any zero entries in L,

although some of these are stored in the Numeric object. The

Info [UMFPACK_LU_ENTRIES] statistic does account for all

explicitly stored zeros, however. Info [UMFPACK_LNZ_ESTIMATE],

an estimate, was computed by umfpack_*_*symbolic. The estimate is

guaranteed to be an upper bound on Info [UMFPACK_LNZ].

Info [UMFPACK_UNZ]: the actual nonzero entries in final factor U,

including the diagonal. This excludes any zero entries in U,

although some of these are stored in the Numeric object. The

Info [UMFPACK_LU_ENTRIES] statistic does account for all

22

explicitly stored zeros, however. Info [UMFPACK_UNZ_ESTIMATE],

an estimate, was computed by umfpack_*_*symbolic. The estimate is

guaranteed to be an upper bound on Info [UMFPACK_UNZ].

Info [UMFPACK_NUMERIC_DEFRAG]: The number of garbage collections

performed during umfpack_*_numeric, to compact the contents of the

variable-sized workspace used by umfpack_*_numeric. No estimate was

computed by umfpack_*_*symbolic. In the current version of UMFPACK,

garbage collection is performed and then the memory is reallocated,

so this statistic is the same as Info [UMFPACK_NUMERIC_REALLOC],

below. It may differ in future releases.

Info [UMFPACK_NUMERIC_REALLOC]: The number of times that the Numeric

object was increased in size from its initial size. A rough upper

bound on the peak size of the Numeric object was computed by

umfpack_*_*symbolic, so reallocations should be rare. However, if

umfpack_*_numeric is unable to allocate that much storage, it

reduces its request until either the allocation succeeds, or until

it gets too small to do anything with. If the memory that it

finally got was small, but usable, then the reallocation count

could be high. No estimate of this count was computed by

umfpack_*_*symbolic.

Info [UMFPACK_NUMERIC_COSTLY_REALLOC]: The number of times that the

system realloc library routine (or mxRealloc for the mexFunction)

had to move the workspace. Realloc can sometimes increase the size

of a block of memory without moving it, which is much faster. This

statistic will always be <= Info [UMFPACK_NUMERIC_REALLOC]. If your

memory space is fragmented, then the number of "costly" realloc’s

will be equal to Info [UMFPACK_NUMERIC_REALLOC].

Info [UMFPACK_COMPRESSED_PATTERN]: The number of integers used to

represent the pattern of L and U.

Info [UMFPACK_LU_ENTRIES]: The total number of numerical values that

are stored for the LU factors. Some of the values may be explicitly

zero in order to save space (allowing for a smaller compressed

pattern).

Info [UMFPACK_NUMERIC_TIME]: The CPU time taken, in seconds.

Info [UMFPACK_RCOND]: A rough estimate of the condition number, equal

to min (abs (diag (U))) / max (abs (diag (U))), or zero if the

diagonal of U is all zero.

Info [UMFPACK_UDIAG_NZ]: The number of numerically nonzero values on

the diagonal of U.

Info [UMFPACK_UMIN]: the smallest absolute value on the diagonal of U.

Info [UMFPACK_UMAX]: the smallest absolute value on the diagonal of U.

Info [UMFPACK_MAX_FRONT_SIZE]: the size of the

largest frontal matrix (number of entries).

23

Info [UMFPACK_NUMERIC_WALLTIME]: The wallclock time taken, in seconds.

Info [UMFPACK_MAX_FRONT_NROWS]: the max number of

rows in any frontal matrix.

Info [UMFPACK_MAX_FRONT_NCOLS]: the max number of

columns in any frontal matrix.

Info [UMFPACK_WAS_SCALED]: the scaling used, either UMFPACK_SCALE_NONE,

UMFPACK_SCALE_SUM, or UMFPACK_SCALE_MAX.

Info [UMFPACK_RSMIN]: if scaling is performed, the smallest scale factor

for any row (either the smallest sum of absolute entries, or the

smallest maximum of absolute entries).

Info [UMFPACK_RSMAX]: if scaling is performed, the largest scale factor

for any row (either the largest sum of absolute entries, or the

largest maximum of absolute entries).

Info [UMFPACK_ALLOC_INIT_USED]: the initial allocation parameter used.

Info [UMFPACK_FORCED_UPDATES]: the number of BLAS-3 updates to the

frontal matrices that were required because the frontal matrix

grew larger than its current working array.

Info [UMFPACK_NOFF_DIAG]: number of off-diagonal pivots selected, if the

symmetric strategy is used.

Info [UMFPACK_NZDROPPED]: the number of entries smaller in absolute

value than Control [UMFPACK_DROPTOL] that were dropped from L and U.

Note that entries on the diagonal of U are never dropped.

Info [UMFPACK_ALL_LNZ]: the number of entries in L, including the

diagonal, if no small entries are dropped.

Info [UMFPACK_ALL_UNZ]: the number of entries in U, including the

diagonal, if no small entries are dropped.

Only the above listed Info [...] entries are accessed. The remaining

entries of Info are not accessed or modified by umfpack_*_numeric.

Future versions might modify different parts of Info.

*/

24

5.3 umfpack di solve

int umfpack_di_solve

(

int sys,

const int32_t Ap [],

const int32_t Ai [],

const double Ax [],

double X [],

const double B [],

void *Numeric,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

int umfpack_dl_solve

(

int sys,

const int64_t Ap [],

const int64_t Ai [],

const double Ax [],

double X [],

const double B [],

void *Numeric,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

int umfpack_zi_solve

(

int sys,

const int32_t Ap [],

const int32_t Ai [],

const double Ax [], const double Az [],

double Xx [], double Xz [],

const double Bx [], const double Bz [],

void *Numeric,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

int umfpack_zl_solve

(

int sys,

const int64_t Ap [],

const int64_t Ai [],

const double Ax [], const double Az [],

double Xx [], double Xz [],

const double Bx [], const double Bz [],

void *Numeric,

const double Control [UMFPACK_CONTROL],

double Info [UMFPACK_INFO]

) ;

/*

25

double int32_t Syntax:

#include "umfpack.h"

void *Numeric ;

int32_t *Ap, *Ai ;

int sys ;

double *B, *X, *Ax, Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ;

int status = umfpack_di_solve (sys, Ap, Ai, Ax, X, B, Numeric, Control,

Info) ;

double int64_t Syntax:

#include "umfpack.h"

void *Numeric ;

int64_t *Ap, *Ai ;

int sys ;

double *B, *X, *Ax, Info [UMFPACK_INFO], Control [UMFPACK_CONTROL] ;

int status = umfpack_dl_solve (sys, Ap, Ai, Ax, X, B, Numeric, Control,

Info) ;

complex int32_t Syntax:

#include "umfpack.h"

void *Numeric ;

int32_t *Ap, *Ai ;

int sys ;

double *Bx, *Bz, *Xx, *Xz, *Ax, *Az, Info [UMFPACK_INFO],

Control [UMFPACK_CONTROL] ;

int status = umfpack_zi_solve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz,

Numeric, Control, Info) ;

complex int64_t Syntax:

#include "umfpack.h"

void *Numeric ;

int64_t *Ap, *Ai ;

int sys ;

double *Bx, *Bz, *Xx, *Xz, *Ax, *Az, Info [UMFPACK_INFO],

Control [UMFPACK_CONTROL] ;

int status = umfpack_zl_solve (sys, Ap, Ai, Ax, Az, Xx, Xz, Bx, Bz,

Numeric, Control, Info) ;

packed complex Syntax:

Same as above, Xz, Bz, and Az are NULL.

Purpose:

Given LU factors computed by umfpack_*_numeric (PAQ=LU, PRAQ=LU, or

P(R\A)Q=LU) and the right-hand-side, B, solve a linear system for the

solution X. Iterative refinement is optionally performed. Only square

systems are handled. Singular matrices result in a divide-by-zero for all

systems except those involving just the matrix L. Iterative refinement is

not performed for singular matrices. In the discussion below, n is equal

to n_row and n_col, because only square systems are handled.

26

Returns:

The status code is returned. See Info [UMFPACK_STATUS], below.

Arguments:

int sys ; Input argument, not modified.

Defines which system to solve. (’) is the linear algebraic transpose

(complex conjugate if A is complex), and (.’) is the array transpose.

sys value system solved

UMFPACK_A Ax=b

UMFPACK_At A’x=b

UMFPACK_Aat A.’x=b

UMFPACK_Pt_L P’Lx=b

UMFPACK_L Lx=b

UMFPACK_Lt_P L’Px=b

UMFPACK_Lat_P L.’Px=b

UMFPACK_Lt L’x=b

UMFPACK_U_Qt UQ’x=b

UMFPACK_U Ux=b

UMFPACK_Q_Ut QU’x=b

UMFPACK_Q_Uat QU.’x=b

UMFPACK_Ut U’x=b

UMFPACK_Uat U.’x=b

Iterative refinement can be optionally performed when sys is any of

the following:

UMFPACK_A Ax=b

UMFPACK_At A’x=b

UMFPACK_Aat A.’x=b

For the other values of the sys argument, iterative refinement is not

performed (Control [UMFPACK_IRSTEP], Ap, Ai, Ax, and Az are ignored).

Int Ap [n+1] ; Input argument, not modified.

Int Ai [nz] ; Input argument, not modified.

double Ax [nz] ; Input argument, not modified.

Size 2*nz for packed complex case.

double Az [nz] ; Input argument, not modified, for complex versions.

If iterative refinement is requested (Control [UMFPACK_IRSTEP] >= 1,

Ax=b, A’x=b, or A.’x=b is being solved, and A is nonsingular), then

these arrays must be identical to the same ones passed to

umfpack_*_numeric. The umfpack_*_solve routine does not check the

contents of these arguments, so the results are undefined if Ap, Ai, Ax,

and/or Az are modified between the calls the umfpack_*_numeric and

umfpack_*_solve. These three arrays do not need to be present (NULL

pointers can be passed) if Control [UMFPACK_IRSTEP] is zero, or if a

system other than Ax=b, A’x=b, or A.’x=b is being solved, or if A is

singular, since in each of these cases A is not accessed.

27

If Az, Xz, or Bz are NULL, then both real

and imaginary parts are contained in Ax[0..2*nz-1], with Ax[2*k]

and Ax[2*k+1] being the real and imaginary part of the kth entry.

double X [n] ; Output argument.

or:

double Xx [n] ; Output argument, real part

Size 2*n for packed complex case.

double Xz [n] ; Output argument, imaginary part.

The solution to the linear system, where n = n_row = n_col is the

dimension of the matrices A, L, and U.

If Az, Xz, or Bz are NULL, then both real

and imaginary parts are returned in Xx[0..2*n-1], with Xx[2*k] and

Xx[2*k+1] being the real and imaginary part of the kth entry.

double B [n] ; Input argument, not modified.

or:

double Bx [n] ; Input argument, not modified, real part.

Size 2*n for packed complex case.

double Bz [n] ; Input argument, not modified, imaginary part.

The right-hand side vector, b, stored as a conventional array of size n

(or two arrays of size n for complex versions). This routine does not

solve for multiple right-hand-sides, nor does it allow b to be stored in

a sparse-column form.

If Az, Xz, or Bz are NULL, then both real

and imaginary parts are contained in Bx[0..2*n-1], with Bx[2*k]

and Bx[2*k+1] being the real and imaginary part of the kth entry.

void *Numeric ; Input argument, not modified.

Numeric must point to a valid Numeric object, computed by

umfpack_*_numeric.

double Control [UMFPACK_CONTROL] ; Input argument, not modified.

If a (double *) NULL pointer is passed, then the default control

settings are used. Otherwise, the settings are determined from the

Control array. See umfpack_*_defaults on how to fill the Control

array with the default settings. If Control contains NaN’s, the

defaults are used. The following Control parameters are used:

Control [UMFPACK_IRSTEP]: The maximum number of iterative refinement

steps to attempt. A value less than zero is treated as zero. If

less than 1, or if Ax=b, A’x=b, or A.’x=b is not being solved, or

if A is singular, then the Ap, Ai, Ax, and Az arguments are not

accessed. Default: 2.

double Info [UMFPACK_INFO] ; Output argument.

Contains statistics about the solution factorization. If a

(double *) NULL pointer is passed, then no statistics are returned in

28

Info (this is not an error condition). The following statistics are

computed in umfpack_*_solve:

Info [UMFPACK_STATUS]: status code. This is also the return value,

whether or not Info is present.

UMFPACK_OK

The linear system was successfully solved.

UMFPACK_WARNING_singular_matrix

A divide-by-zero occurred. Your solution will contain Inf’s

and/or NaN’s. Some parts of the solution may be valid. For

example, solving Ax=b with

A = [2 0] b = [1] returns x = [0.5]

[0 0] [0] [Inf]

UMFPACK_ERROR_out_of_memory

Insufficient memory to solve the linear system.

UMFPACK_ERROR_argument_missing

One or more required arguments are missing. The B, X, (or

Bx and Xx for the complex versions) arguments

are always required. Info and Control are not required. Ap,

Ai, Ax are required if Ax=b,

A’x=b, A.’x=b is to be solved, the (default) iterative

refinement is requested, and the matrix A is nonsingular.

UMFPACK_ERROR_invalid_system

The sys argument is not valid, or the matrix A is not square.

UMFPACK_ERROR_invalid_Numeric_object

The Numeric object is not valid.

Info [UMFPACK_NROW], Info [UMFPACK_NCOL]:

The dimensions of the matrix A (L is n_row-by-n_inner and

U is n_inner-by-n_col, with n_inner = min(n_row,n_col)).

Info [UMFPACK_NZ]: the number of entries in the input matrix, Ap [n],

if iterative refinement is requested (Ax=b, A’x=b, or A.’x=b is

being solved, Control [UMFPACK_IRSTEP] >= 1, and A is nonsingular).

Info [UMFPACK_IR_TAKEN]: The number of iterative refinement steps

effectively taken. The number of steps attempted may be one more

than this; the refinement algorithm backtracks if the last

refinement step worsens the solution.

Info [UMFPACK_IR_ATTEMPTED]: The number of iterative refinement steps

attempted. The number of times a linear system was solved is one

29

more than this (once for the initial Ax=b, and once for each Ay=r

solved for each iterative refinement step attempted).

Info [UMFPACK_OMEGA1]: sparse backward error estimate, omega1, if

iterative refinement was performed, or -1 if iterative refinement

not performed.

Info [UMFPACK_OMEGA2]: sparse backward error estimate, omega2, if

iterative refinement was performed, or -1 if iterative refinement

not performed.

Info [UMFPACK_SOLVE_FLOPS]: the number of floating point operations

performed to solve the linear system. This includes the work

taken for all iterative refinement steps, including the backtrack

(if any).

Info [UMFPACK_SOLVE_TIME]: The time taken, in seconds.

Info [UMFPACK_SOLVE_WALLTIME]: The wallclock time taken, in seconds.

Only the above listed Info [...] entries are accessed. The remaining

entries of Info are not accessed or modified by umfpack_*_solve.

Future versions might modify different parts of Info.

*/

30

5.4 umfpack di free symbolic

void umfpack_di_free_symbolic

(

void **Symbolic

) ;

void umfpack_dl_free_symbolic

(

void **Symbolic

) ;

void umfpack_zi_free_symbolic

(

void **Symbolic

) ;

void umfpack_zl_free_symbolic

(

void **Symbolic

) ;

/*

double int32_t Syntax:

#include "umfpack.h"

void *Symbolic ;

umfpack_di_free_symbolic (&Symbolic) ;

double int64_t Syntax:

#include "umfpack.h"

void *Symbolic ;

umfpack_dl_free_symbolic (&Symbolic) ;

complex int32_t Syntax:

#include "umfpack.h"

void *Symbolic ;

umfpack_zi_free_symbolic (&Symbolic) ;

complex int64_t Syntax:

#include "umfpack.h"

void *Symbolic ;

umfpack_zl_free_symbolic (&Symbolic) ;

Purpose:

Deallocates the Symbolic object and sets the Symbolic handle to NULL. This

routine is the only valid way of destroying the Symbolic object.

Arguments:

void **Symbolic ; Input argument, set to (void *) NULL on output.

31

Points to a valid Symbolic object computed by umfpack_*_symbolic.

No action is taken if Symbolic is a (void *) NULL pointer.

*/

5.5 umfpack di free numeric

void umfpack_di_free_numeric

(

void **Numeric

) ;

void umfpack_dl_free_numeric

(

void **Numeric

) ;

void umfpack_zi_free_numeric

(

void **Numeric

) ;

void umfpack_zl_free_numeric

(

void **Numeric

) ;

/*

double int32_t Syntax:

#include "umfpack.h"

void *Numeric ;

umfpack_di_free_numeric (&Numeric) ;

double int64_t Syntax:

#include "umfpack.h"

void *Numeric ;

umfpack_dl_free_numeric (&Numeric) ;

complex int32_t Syntax:

#include "umfpack.h"

void *Numeric ;

umfpack_zi_free_numeric (&Numeric) ;

complex int64_t Syntax:

#include "umfpack.h"

void *Numeric ;

umfpack_zl_free_numeric (&Numeric) ;

Purpose:

32

Deallocates the Numeric object and sets the Numeric handle to NULL. This

routine is the only valid way of destroying the Numeric object.

Arguments:

void **Numeric ; Input argument, set to (void *) NULL on output.

Numeric points to a valid Numeric object, computed by umfpack_*_numeric.

No action is taken if Numeric is a (void *) NULL pointer.

*/

}

5.6 umfpack di defaults

void umfpack_di_defaults

(

double Control [UMFPACK_CONTROL]

) ;

void umfpack_dl_defaults

(

double Control [UMFPACK_CONTROL]

) ;

void umfpack_zi_defaults

(

double Control [UMFPACK_CONTROL]

) ;

void umfpack_zl_defaults

(

double Control [UMFPACK_CONTROL]

) ;

/*

double int32_t Syntax:

#include "umfpack.h"

double Control [UMFPACK_CONTROL] ;

umfpack_di_defaults (Control) ;

double int64_t Syntax:

#include "umfpack.h"

double Control [UMFPACK_CONTROL] ;

umfpack_dl_defaults (Control) ;

complex int32_t Syntax:

#include "umfpack.h"

double Control [UMFPACK_CONTROL] ;

umfpack_zi_defaults (Control) ;

33

complex int64_t Syntax:

#include "umfpack.h"

double Control [UMFPACK_CONTROL] ;

umfpack_zl_defaults (Control) ;

Purpose:

Sets the default control parameter settings.

Arguments:

double Control [UMFPACK_CONTROL] ; Output argument.

Control is set to the default control parameter settings. You can

then modify individual settings by changing specific entries in the

Control array. If Control is a (double *) NULL pointer, then

umfpack_*_defaults returns silently (no error is generated, since

passing a NULL pointer for Control to any UMFPACK routine is valid).

*/

34

