std/num/
f32.rs

1//! Constants for the `f32` single-precision floating point type.
2//!
3//! *[See also the `f32` primitive type](primitive@f32).*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6//!
7//! For the constants defined directly in this module
8//! (as distinct from those defined in the `consts` sub-module),
9//! new code should instead use the associated constants
10//! defined directly on the `f32` type.
11
12#![stable(feature = "rust1", since = "1.0.0")]
13#![allow(missing_docs)]
14
15#[stable(feature = "rust1", since = "1.0.0")]
16#[allow(deprecated, deprecated_in_future)]
17pub use core::f32::{
18    DIGITS, EPSILON, INFINITY, MANTISSA_DIGITS, MAX, MAX_10_EXP, MAX_EXP, MIN, MIN_10_EXP, MIN_EXP,
19    MIN_POSITIVE, NAN, NEG_INFINITY, RADIX, consts,
20};
21
22#[cfg(not(test))]
23use crate::intrinsics;
24#[cfg(not(test))]
25use crate::sys::cmath;
26
27#[cfg(not(test))]
28impl f32 {
29    /// Returns the largest integer less than or equal to `self`.
30    ///
31    /// This function always returns the precise result.
32    ///
33    /// # Examples
34    ///
35    /// ```
36    /// let f = 3.7_f32;
37    /// let g = 3.0_f32;
38    /// let h = -3.7_f32;
39    ///
40    /// assert_eq!(f.floor(), 3.0);
41    /// assert_eq!(g.floor(), 3.0);
42    /// assert_eq!(h.floor(), -4.0);
43    /// ```
44    #[rustc_allow_incoherent_impl]
45    #[must_use = "method returns a new number and does not mutate the original value"]
46    #[stable(feature = "rust1", since = "1.0.0")]
47    #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")]
48    #[inline]
49    pub const fn floor(self) -> f32 {
50        core::f32::math::floor(self)
51    }
52
53    /// Returns the smallest integer greater than or equal to `self`.
54    ///
55    /// This function always returns the precise result.
56    ///
57    /// # Examples
58    ///
59    /// ```
60    /// let f = 3.01_f32;
61    /// let g = 4.0_f32;
62    ///
63    /// assert_eq!(f.ceil(), 4.0);
64    /// assert_eq!(g.ceil(), 4.0);
65    /// ```
66    #[doc(alias = "ceiling")]
67    #[rustc_allow_incoherent_impl]
68    #[must_use = "method returns a new number and does not mutate the original value"]
69    #[stable(feature = "rust1", since = "1.0.0")]
70    #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")]
71    #[inline]
72    pub const fn ceil(self) -> f32 {
73        core::f32::math::ceil(self)
74    }
75
76    /// Returns the nearest integer to `self`. If a value is half-way between two
77    /// integers, round away from `0.0`.
78    ///
79    /// This function always returns the precise result.
80    ///
81    /// # Examples
82    ///
83    /// ```
84    /// let f = 3.3_f32;
85    /// let g = -3.3_f32;
86    /// let h = -3.7_f32;
87    /// let i = 3.5_f32;
88    /// let j = 4.5_f32;
89    ///
90    /// assert_eq!(f.round(), 3.0);
91    /// assert_eq!(g.round(), -3.0);
92    /// assert_eq!(h.round(), -4.0);
93    /// assert_eq!(i.round(), 4.0);
94    /// assert_eq!(j.round(), 5.0);
95    /// ```
96    #[rustc_allow_incoherent_impl]
97    #[must_use = "method returns a new number and does not mutate the original value"]
98    #[stable(feature = "rust1", since = "1.0.0")]
99    #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")]
100    #[inline]
101    pub const fn round(self) -> f32 {
102        core::f32::math::round(self)
103    }
104
105    /// Returns the nearest integer to a number. Rounds half-way cases to the number
106    /// with an even least significant digit.
107    ///
108    /// This function always returns the precise result.
109    ///
110    /// # Examples
111    ///
112    /// ```
113    /// let f = 3.3_f32;
114    /// let g = -3.3_f32;
115    /// let h = 3.5_f32;
116    /// let i = 4.5_f32;
117    ///
118    /// assert_eq!(f.round_ties_even(), 3.0);
119    /// assert_eq!(g.round_ties_even(), -3.0);
120    /// assert_eq!(h.round_ties_even(), 4.0);
121    /// assert_eq!(i.round_ties_even(), 4.0);
122    /// ```
123    #[rustc_allow_incoherent_impl]
124    #[must_use = "method returns a new number and does not mutate the original value"]
125    #[stable(feature = "round_ties_even", since = "1.77.0")]
126    #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")]
127    #[inline]
128    pub const fn round_ties_even(self) -> f32 {
129        core::f32::math::round_ties_even(self)
130    }
131
132    /// Returns the integer part of `self`.
133    /// This means that non-integer numbers are always truncated towards zero.
134    ///
135    /// This function always returns the precise result.
136    ///
137    /// # Examples
138    ///
139    /// ```
140    /// let f = 3.7_f32;
141    /// let g = 3.0_f32;
142    /// let h = -3.7_f32;
143    ///
144    /// assert_eq!(f.trunc(), 3.0);
145    /// assert_eq!(g.trunc(), 3.0);
146    /// assert_eq!(h.trunc(), -3.0);
147    /// ```
148    #[doc(alias = "truncate")]
149    #[rustc_allow_incoherent_impl]
150    #[must_use = "method returns a new number and does not mutate the original value"]
151    #[stable(feature = "rust1", since = "1.0.0")]
152    #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")]
153    #[inline]
154    pub const fn trunc(self) -> f32 {
155        core::f32::math::trunc(self)
156    }
157
158    /// Returns the fractional part of `self`.
159    ///
160    /// This function always returns the precise result.
161    ///
162    /// # Examples
163    ///
164    /// ```
165    /// let x = 3.6_f32;
166    /// let y = -3.6_f32;
167    /// let abs_difference_x = (x.fract() - 0.6).abs();
168    /// let abs_difference_y = (y.fract() - (-0.6)).abs();
169    ///
170    /// assert!(abs_difference_x <= f32::EPSILON);
171    /// assert!(abs_difference_y <= f32::EPSILON);
172    /// ```
173    #[rustc_allow_incoherent_impl]
174    #[must_use = "method returns a new number and does not mutate the original value"]
175    #[stable(feature = "rust1", since = "1.0.0")]
176    #[rustc_const_unstable(feature = "const_float_round_methods", issue = "141555")]
177    #[inline]
178    pub const fn fract(self) -> f32 {
179        core::f32::math::fract(self)
180    }
181
182    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
183    /// error, yielding a more accurate result than an unfused multiply-add.
184    ///
185    /// Using `mul_add` *may* be more performant than an unfused multiply-add if
186    /// the target architecture has a dedicated `fma` CPU instruction. However,
187    /// this is not always true, and will be heavily dependant on designing
188    /// algorithms with specific target hardware in mind.
189    ///
190    /// # Precision
191    ///
192    /// The result of this operation is guaranteed to be the rounded
193    /// infinite-precision result. It is specified by IEEE 754 as
194    /// `fusedMultiplyAdd` and guaranteed not to change.
195    ///
196    /// # Examples
197    ///
198    /// ```
199    /// let m = 10.0_f32;
200    /// let x = 4.0_f32;
201    /// let b = 60.0_f32;
202    ///
203    /// assert_eq!(m.mul_add(x, b), 100.0);
204    /// assert_eq!(m * x + b, 100.0);
205    ///
206    /// let one_plus_eps = 1.0_f32 + f32::EPSILON;
207    /// let one_minus_eps = 1.0_f32 - f32::EPSILON;
208    /// let minus_one = -1.0_f32;
209    ///
210    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
211    /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f32::EPSILON * f32::EPSILON);
212    /// // Different rounding with the non-fused multiply and add.
213    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
214    /// ```
215    #[rustc_allow_incoherent_impl]
216    #[doc(alias = "fmaf", alias = "fusedMultiplyAdd")]
217    #[must_use = "method returns a new number and does not mutate the original value"]
218    #[stable(feature = "rust1", since = "1.0.0")]
219    #[inline]
220    pub fn mul_add(self, a: f32, b: f32) -> f32 {
221        core::f32::math::mul_add(self, a, b)
222    }
223
224    /// Calculates Euclidean division, the matching method for `rem_euclid`.
225    ///
226    /// This computes the integer `n` such that
227    /// `self = n * rhs + self.rem_euclid(rhs)`.
228    /// In other words, the result is `self / rhs` rounded to the integer `n`
229    /// such that `self >= n * rhs`.
230    ///
231    /// # Precision
232    ///
233    /// The result of this operation is guaranteed to be the rounded
234    /// infinite-precision result.
235    ///
236    /// # Examples
237    ///
238    /// ```
239    /// let a: f32 = 7.0;
240    /// let b = 4.0;
241    /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
242    /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
243    /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
244    /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
245    /// ```
246    #[rustc_allow_incoherent_impl]
247    #[must_use = "method returns a new number and does not mutate the original value"]
248    #[inline]
249    #[stable(feature = "euclidean_division", since = "1.38.0")]
250    pub fn div_euclid(self, rhs: f32) -> f32 {
251        core::f32::math::div_euclid(self, rhs)
252    }
253
254    /// Calculates the least nonnegative remainder of `self (mod rhs)`.
255    ///
256    /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
257    /// most cases. However, due to a floating point round-off error it can
258    /// result in `r == rhs.abs()`, violating the mathematical definition, if
259    /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
260    /// This result is not an element of the function's codomain, but it is the
261    /// closest floating point number in the real numbers and thus fulfills the
262    /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
263    /// approximately.
264    ///
265    /// # Precision
266    ///
267    /// The result of this operation is guaranteed to be the rounded
268    /// infinite-precision result.
269    ///
270    /// # Examples
271    ///
272    /// ```
273    /// let a: f32 = 7.0;
274    /// let b = 4.0;
275    /// assert_eq!(a.rem_euclid(b), 3.0);
276    /// assert_eq!((-a).rem_euclid(b), 1.0);
277    /// assert_eq!(a.rem_euclid(-b), 3.0);
278    /// assert_eq!((-a).rem_euclid(-b), 1.0);
279    /// // limitation due to round-off error
280    /// assert!((-f32::EPSILON).rem_euclid(3.0) != 0.0);
281    /// ```
282    #[doc(alias = "modulo", alias = "mod")]
283    #[rustc_allow_incoherent_impl]
284    #[must_use = "method returns a new number and does not mutate the original value"]
285    #[inline]
286    #[stable(feature = "euclidean_division", since = "1.38.0")]
287    pub fn rem_euclid(self, rhs: f32) -> f32 {
288        core::f32::math::rem_euclid(self, rhs)
289    }
290
291    /// Raises a number to an integer power.
292    ///
293    /// Using this function is generally faster than using `powf`.
294    /// It might have a different sequence of rounding operations than `powf`,
295    /// so the results are not guaranteed to agree.
296    ///
297    /// # Unspecified precision
298    ///
299    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
300    /// can even differ within the same execution from one invocation to the next.
301    ///
302    /// # Examples
303    ///
304    /// ```
305    /// let x = 2.0_f32;
306    /// let abs_difference = (x.powi(2) - (x * x)).abs();
307    /// assert!(abs_difference <= f32::EPSILON);
308    ///
309    /// assert_eq!(f32::powi(f32::NAN, 0), 1.0);
310    /// ```
311    #[rustc_allow_incoherent_impl]
312    #[must_use = "method returns a new number and does not mutate the original value"]
313    #[stable(feature = "rust1", since = "1.0.0")]
314    #[inline]
315    pub fn powi(self, n: i32) -> f32 {
316        core::f32::math::powi(self, n)
317    }
318
319    /// Raises a number to a floating point power.
320    ///
321    /// # Unspecified precision
322    ///
323    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
324    /// can even differ within the same execution from one invocation to the next.
325    ///
326    /// # Examples
327    ///
328    /// ```
329    /// let x = 2.0_f32;
330    /// let abs_difference = (x.powf(2.0) - (x * x)).abs();
331    /// assert!(abs_difference <= f32::EPSILON);
332    ///
333    /// assert_eq!(f32::powf(1.0, f32::NAN), 1.0);
334    /// assert_eq!(f32::powf(f32::NAN, 0.0), 1.0);
335    /// ```
336    #[rustc_allow_incoherent_impl]
337    #[must_use = "method returns a new number and does not mutate the original value"]
338    #[stable(feature = "rust1", since = "1.0.0")]
339    #[inline]
340    pub fn powf(self, n: f32) -> f32 {
341        unsafe { intrinsics::powf32(self, n) }
342    }
343
344    /// Returns the square root of a number.
345    ///
346    /// Returns NaN if `self` is a negative number other than `-0.0`.
347    ///
348    /// # Precision
349    ///
350    /// The result of this operation is guaranteed to be the rounded
351    /// infinite-precision result. It is specified by IEEE 754 as `squareRoot`
352    /// and guaranteed not to change.
353    ///
354    /// # Examples
355    ///
356    /// ```
357    /// let positive = 4.0_f32;
358    /// let negative = -4.0_f32;
359    /// let negative_zero = -0.0_f32;
360    ///
361    /// assert_eq!(positive.sqrt(), 2.0);
362    /// assert!(negative.sqrt().is_nan());
363    /// assert!(negative_zero.sqrt() == negative_zero);
364    /// ```
365    #[doc(alias = "squareRoot")]
366    #[rustc_allow_incoherent_impl]
367    #[must_use = "method returns a new number and does not mutate the original value"]
368    #[stable(feature = "rust1", since = "1.0.0")]
369    #[inline]
370    pub fn sqrt(self) -> f32 {
371        core::f32::math::sqrt(self)
372    }
373
374    /// Returns `e^(self)`, (the exponential function).
375    ///
376    /// # Unspecified precision
377    ///
378    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
379    /// can even differ within the same execution from one invocation to the next.
380    ///
381    /// # Examples
382    ///
383    /// ```
384    /// let one = 1.0f32;
385    /// // e^1
386    /// let e = one.exp();
387    ///
388    /// // ln(e) - 1 == 0
389    /// let abs_difference = (e.ln() - 1.0).abs();
390    ///
391    /// assert!(abs_difference <= f32::EPSILON);
392    /// ```
393    #[rustc_allow_incoherent_impl]
394    #[must_use = "method returns a new number and does not mutate the original value"]
395    #[stable(feature = "rust1", since = "1.0.0")]
396    #[inline]
397    pub fn exp(self) -> f32 {
398        unsafe { intrinsics::expf32(self) }
399    }
400
401    /// Returns `2^(self)`.
402    ///
403    /// # Unspecified precision
404    ///
405    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
406    /// can even differ within the same execution from one invocation to the next.
407    ///
408    /// # Examples
409    ///
410    /// ```
411    /// let f = 2.0f32;
412    ///
413    /// // 2^2 - 4 == 0
414    /// let abs_difference = (f.exp2() - 4.0).abs();
415    ///
416    /// assert!(abs_difference <= f32::EPSILON);
417    /// ```
418    #[rustc_allow_incoherent_impl]
419    #[must_use = "method returns a new number and does not mutate the original value"]
420    #[stable(feature = "rust1", since = "1.0.0")]
421    #[inline]
422    pub fn exp2(self) -> f32 {
423        unsafe { intrinsics::exp2f32(self) }
424    }
425
426    /// Returns the natural logarithm of the number.
427    ///
428    /// This returns NaN when the number is negative, and negative infinity when number is zero.
429    ///
430    /// # Unspecified precision
431    ///
432    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
433    /// can even differ within the same execution from one invocation to the next.
434    ///
435    /// # Examples
436    ///
437    /// ```
438    /// let one = 1.0f32;
439    /// // e^1
440    /// let e = one.exp();
441    ///
442    /// // ln(e) - 1 == 0
443    /// let abs_difference = (e.ln() - 1.0).abs();
444    ///
445    /// assert!(abs_difference <= f32::EPSILON);
446    /// ```
447    ///
448    /// Non-positive values:
449    /// ```
450    /// assert_eq!(0_f32.ln(), f32::NEG_INFINITY);
451    /// assert!((-42_f32).ln().is_nan());
452    /// ```
453    #[rustc_allow_incoherent_impl]
454    #[must_use = "method returns a new number and does not mutate the original value"]
455    #[stable(feature = "rust1", since = "1.0.0")]
456    #[inline]
457    pub fn ln(self) -> f32 {
458        unsafe { intrinsics::logf32(self) }
459    }
460
461    /// Returns the logarithm of the number with respect to an arbitrary base.
462    ///
463    /// This returns NaN when the number is negative, and negative infinity when number is zero.
464    ///
465    /// The result might not be correctly rounded owing to implementation details;
466    /// `self.log2()` can produce more accurate results for base 2, and
467    /// `self.log10()` can produce more accurate results for base 10.
468    ///
469    /// # Unspecified precision
470    ///
471    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
472    /// can even differ within the same execution from one invocation to the next.
473    ///
474    /// # Examples
475    ///
476    /// ```
477    /// let five = 5.0f32;
478    ///
479    /// // log5(5) - 1 == 0
480    /// let abs_difference = (five.log(5.0) - 1.0).abs();
481    ///
482    /// assert!(abs_difference <= f32::EPSILON);
483    /// ```
484    ///
485    /// Non-positive values:
486    /// ```
487    /// assert_eq!(0_f32.log(10.0), f32::NEG_INFINITY);
488    /// assert!((-42_f32).log(10.0).is_nan());
489    /// ```
490    #[rustc_allow_incoherent_impl]
491    #[must_use = "method returns a new number and does not mutate the original value"]
492    #[stable(feature = "rust1", since = "1.0.0")]
493    #[inline]
494    pub fn log(self, base: f32) -> f32 {
495        self.ln() / base.ln()
496    }
497
498    /// Returns the base 2 logarithm of the number.
499    ///
500    /// This returns NaN when the number is negative, and negative infinity when number is zero.
501    ///
502    /// # Unspecified precision
503    ///
504    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
505    /// can even differ within the same execution from one invocation to the next.
506    ///
507    /// # Examples
508    ///
509    /// ```
510    /// let two = 2.0f32;
511    ///
512    /// // log2(2) - 1 == 0
513    /// let abs_difference = (two.log2() - 1.0).abs();
514    ///
515    /// assert!(abs_difference <= f32::EPSILON);
516    /// ```
517    ///
518    /// Non-positive values:
519    /// ```
520    /// assert_eq!(0_f32.log2(), f32::NEG_INFINITY);
521    /// assert!((-42_f32).log2().is_nan());
522    /// ```
523    #[rustc_allow_incoherent_impl]
524    #[must_use = "method returns a new number and does not mutate the original value"]
525    #[stable(feature = "rust1", since = "1.0.0")]
526    #[inline]
527    pub fn log2(self) -> f32 {
528        unsafe { intrinsics::log2f32(self) }
529    }
530
531    /// Returns the base 10 logarithm of the number.
532    ///
533    /// This returns NaN when the number is negative, and negative infinity when number is zero.
534    ///
535    /// # Unspecified precision
536    ///
537    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
538    /// can even differ within the same execution from one invocation to the next.
539    ///
540    /// # Examples
541    ///
542    /// ```
543    /// let ten = 10.0f32;
544    ///
545    /// // log10(10) - 1 == 0
546    /// let abs_difference = (ten.log10() - 1.0).abs();
547    ///
548    /// assert!(abs_difference <= f32::EPSILON);
549    /// ```
550    ///
551    /// Non-positive values:
552    /// ```
553    /// assert_eq!(0_f32.log10(), f32::NEG_INFINITY);
554    /// assert!((-42_f32).log10().is_nan());
555    /// ```
556    #[rustc_allow_incoherent_impl]
557    #[must_use = "method returns a new number and does not mutate the original value"]
558    #[stable(feature = "rust1", since = "1.0.0")]
559    #[inline]
560    pub fn log10(self) -> f32 {
561        unsafe { intrinsics::log10f32(self) }
562    }
563
564    /// The positive difference of two numbers.
565    ///
566    /// * If `self <= other`: `0.0`
567    /// * Else: `self - other`
568    ///
569    /// # Unspecified precision
570    ///
571    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
572    /// can even differ within the same execution from one invocation to the next.
573    /// This function currently corresponds to the `fdimf` from libc on Unix
574    /// and Windows. Note that this might change in the future.
575    ///
576    /// # Examples
577    ///
578    /// ```
579    /// let x = 3.0f32;
580    /// let y = -3.0f32;
581    ///
582    /// let abs_difference_x = (x.abs_sub(1.0) - 2.0).abs();
583    /// let abs_difference_y = (y.abs_sub(1.0) - 0.0).abs();
584    ///
585    /// assert!(abs_difference_x <= f32::EPSILON);
586    /// assert!(abs_difference_y <= f32::EPSILON);
587    /// ```
588    #[rustc_allow_incoherent_impl]
589    #[must_use = "method returns a new number and does not mutate the original value"]
590    #[stable(feature = "rust1", since = "1.0.0")]
591    #[inline]
592    #[deprecated(
593        since = "1.10.0",
594        note = "you probably meant `(self - other).abs()`: \
595                this operation is `(self - other).max(0.0)` \
596                except that `abs_sub` also propagates NaNs (also \
597                known as `fdimf` in C). If you truly need the positive \
598                difference, consider using that expression or the C function \
599                `fdimf`, depending on how you wish to handle NaN (please consider \
600                filing an issue describing your use-case too)."
601    )]
602    pub fn abs_sub(self, other: f32) -> f32 {
603        #[allow(deprecated)]
604        core::f32::math::abs_sub(self, other)
605    }
606
607    /// Returns the cube root of a number.
608    ///
609    /// # Unspecified precision
610    ///
611    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
612    /// can even differ within the same execution from one invocation to the next.
613    /// This function currently corresponds to the `cbrtf` from libc on Unix
614    /// and Windows. Note that this might change in the future.
615    ///
616    /// # Examples
617    ///
618    /// ```
619    /// let x = 8.0f32;
620    ///
621    /// // x^(1/3) - 2 == 0
622    /// let abs_difference = (x.cbrt() - 2.0).abs();
623    ///
624    /// assert!(abs_difference <= f32::EPSILON);
625    /// ```
626    #[rustc_allow_incoherent_impl]
627    #[must_use = "method returns a new number and does not mutate the original value"]
628    #[stable(feature = "rust1", since = "1.0.0")]
629    #[inline]
630    pub fn cbrt(self) -> f32 {
631        core::f32::math::cbrt(self)
632    }
633
634    /// Compute the distance between the origin and a point (`x`, `y`) on the
635    /// Euclidean plane. Equivalently, compute the length of the hypotenuse of a
636    /// right-angle triangle with other sides having length `x.abs()` and
637    /// `y.abs()`.
638    ///
639    /// # Unspecified precision
640    ///
641    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
642    /// can even differ within the same execution from one invocation to the next.
643    /// This function currently corresponds to the `hypotf` from libc on Unix
644    /// and Windows. Note that this might change in the future.
645    ///
646    /// # Examples
647    ///
648    /// ```
649    /// let x = 2.0f32;
650    /// let y = 3.0f32;
651    ///
652    /// // sqrt(x^2 + y^2)
653    /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
654    ///
655    /// assert!(abs_difference <= f32::EPSILON);
656    /// ```
657    #[rustc_allow_incoherent_impl]
658    #[must_use = "method returns a new number and does not mutate the original value"]
659    #[stable(feature = "rust1", since = "1.0.0")]
660    #[inline]
661    pub fn hypot(self, other: f32) -> f32 {
662        cmath::hypotf(self, other)
663    }
664
665    /// Computes the sine of a number (in radians).
666    ///
667    /// # Unspecified precision
668    ///
669    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
670    /// can even differ within the same execution from one invocation to the next.
671    ///
672    /// # Examples
673    ///
674    /// ```
675    /// let x = std::f32::consts::FRAC_PI_2;
676    ///
677    /// let abs_difference = (x.sin() - 1.0).abs();
678    ///
679    /// assert!(abs_difference <= f32::EPSILON);
680    /// ```
681    #[rustc_allow_incoherent_impl]
682    #[must_use = "method returns a new number and does not mutate the original value"]
683    #[stable(feature = "rust1", since = "1.0.0")]
684    #[inline]
685    pub fn sin(self) -> f32 {
686        unsafe { intrinsics::sinf32(self) }
687    }
688
689    /// Computes the cosine of a number (in radians).
690    ///
691    /// # Unspecified precision
692    ///
693    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
694    /// can even differ within the same execution from one invocation to the next.
695    ///
696    /// # Examples
697    ///
698    /// ```
699    /// let x = 2.0 * std::f32::consts::PI;
700    ///
701    /// let abs_difference = (x.cos() - 1.0).abs();
702    ///
703    /// assert!(abs_difference <= f32::EPSILON);
704    /// ```
705    #[rustc_allow_incoherent_impl]
706    #[must_use = "method returns a new number and does not mutate the original value"]
707    #[stable(feature = "rust1", since = "1.0.0")]
708    #[inline]
709    pub fn cos(self) -> f32 {
710        unsafe { intrinsics::cosf32(self) }
711    }
712
713    /// Computes the tangent of a number (in radians).
714    ///
715    /// # Unspecified precision
716    ///
717    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
718    /// can even differ within the same execution from one invocation to the next.
719    /// This function currently corresponds to the `tanf` from libc on Unix and
720    /// Windows. Note that this might change in the future.
721    ///
722    /// # Examples
723    ///
724    /// ```
725    /// let x = std::f32::consts::FRAC_PI_4;
726    /// let abs_difference = (x.tan() - 1.0).abs();
727    ///
728    /// assert!(abs_difference <= f32::EPSILON);
729    /// ```
730    #[rustc_allow_incoherent_impl]
731    #[must_use = "method returns a new number and does not mutate the original value"]
732    #[stable(feature = "rust1", since = "1.0.0")]
733    #[inline]
734    pub fn tan(self) -> f32 {
735        cmath::tanf(self)
736    }
737
738    /// Computes the arcsine of a number. Return value is in radians in
739    /// the range [-pi/2, pi/2] or NaN if the number is outside the range
740    /// [-1, 1].
741    ///
742    /// # Unspecified precision
743    ///
744    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
745    /// can even differ within the same execution from one invocation to the next.
746    /// This function currently corresponds to the `asinf` from libc on Unix
747    /// and Windows. Note that this might change in the future.
748    ///
749    /// # Examples
750    ///
751    /// ```
752    /// let f = std::f32::consts::FRAC_PI_2;
753    ///
754    /// // asin(sin(pi/2))
755    /// let abs_difference = (f.sin().asin() - std::f32::consts::FRAC_PI_2).abs();
756    ///
757    /// assert!(abs_difference <= f32::EPSILON);
758    /// ```
759    #[doc(alias = "arcsin")]
760    #[rustc_allow_incoherent_impl]
761    #[must_use = "method returns a new number and does not mutate the original value"]
762    #[stable(feature = "rust1", since = "1.0.0")]
763    #[inline]
764    pub fn asin(self) -> f32 {
765        cmath::asinf(self)
766    }
767
768    /// Computes the arccosine of a number. Return value is in radians in
769    /// the range [0, pi] or NaN if the number is outside the range
770    /// [-1, 1].
771    ///
772    /// # Unspecified precision
773    ///
774    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
775    /// can even differ within the same execution from one invocation to the next.
776    /// This function currently corresponds to the `acosf` from libc on Unix
777    /// and Windows. Note that this might change in the future.
778    ///
779    /// # Examples
780    ///
781    /// ```
782    /// let f = std::f32::consts::FRAC_PI_4;
783    ///
784    /// // acos(cos(pi/4))
785    /// let abs_difference = (f.cos().acos() - std::f32::consts::FRAC_PI_4).abs();
786    ///
787    /// assert!(abs_difference <= f32::EPSILON);
788    /// ```
789    #[doc(alias = "arccos")]
790    #[rustc_allow_incoherent_impl]
791    #[must_use = "method returns a new number and does not mutate the original value"]
792    #[stable(feature = "rust1", since = "1.0.0")]
793    #[inline]
794    pub fn acos(self) -> f32 {
795        cmath::acosf(self)
796    }
797
798    /// Computes the arctangent of a number. Return value is in radians in the
799    /// range [-pi/2, pi/2];
800    ///
801    /// # Unspecified precision
802    ///
803    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
804    /// can even differ within the same execution from one invocation to the next.
805    /// This function currently corresponds to the `atanf` from libc on Unix
806    /// and Windows. Note that this might change in the future.
807    ///
808    /// # Examples
809    ///
810    /// ```
811    /// let f = 1.0f32;
812    ///
813    /// // atan(tan(1))
814    /// let abs_difference = (f.tan().atan() - 1.0).abs();
815    ///
816    /// assert!(abs_difference <= f32::EPSILON);
817    /// ```
818    #[doc(alias = "arctan")]
819    #[rustc_allow_incoherent_impl]
820    #[must_use = "method returns a new number and does not mutate the original value"]
821    #[stable(feature = "rust1", since = "1.0.0")]
822    #[inline]
823    pub fn atan(self) -> f32 {
824        cmath::atanf(self)
825    }
826
827    /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians.
828    ///
829    /// * `x = 0`, `y = 0`: `0`
830    /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
831    /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
832    /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
833    ///
834    /// # Unspecified precision
835    ///
836    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
837    /// can even differ within the same execution from one invocation to the next.
838    /// This function currently corresponds to the `atan2f` from libc on Unix
839    /// and Windows. Note that this might change in the future.
840    ///
841    /// # Examples
842    ///
843    /// ```
844    /// // Positive angles measured counter-clockwise
845    /// // from positive x axis
846    /// // -pi/4 radians (45 deg clockwise)
847    /// let x1 = 3.0f32;
848    /// let y1 = -3.0f32;
849    ///
850    /// // 3pi/4 radians (135 deg counter-clockwise)
851    /// let x2 = -3.0f32;
852    /// let y2 = 3.0f32;
853    ///
854    /// let abs_difference_1 = (y1.atan2(x1) - (-std::f32::consts::FRAC_PI_4)).abs();
855    /// let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f32::consts::FRAC_PI_4)).abs();
856    ///
857    /// assert!(abs_difference_1 <= f32::EPSILON);
858    /// assert!(abs_difference_2 <= f32::EPSILON);
859    /// ```
860    #[rustc_allow_incoherent_impl]
861    #[must_use = "method returns a new number and does not mutate the original value"]
862    #[stable(feature = "rust1", since = "1.0.0")]
863    #[inline]
864    pub fn atan2(self, other: f32) -> f32 {
865        cmath::atan2f(self, other)
866    }
867
868    /// Simultaneously computes the sine and cosine of the number, `x`. Returns
869    /// `(sin(x), cos(x))`.
870    ///
871    /// # Unspecified precision
872    ///
873    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
874    /// can even differ within the same execution from one invocation to the next.
875    /// This function currently corresponds to the `(f32::sin(x),
876    /// f32::cos(x))`. Note that this might change in the future.
877    ///
878    /// # Examples
879    ///
880    /// ```
881    /// let x = std::f32::consts::FRAC_PI_4;
882    /// let f = x.sin_cos();
883    ///
884    /// let abs_difference_0 = (f.0 - x.sin()).abs();
885    /// let abs_difference_1 = (f.1 - x.cos()).abs();
886    ///
887    /// assert!(abs_difference_0 <= f32::EPSILON);
888    /// assert!(abs_difference_1 <= f32::EPSILON);
889    /// ```
890    #[doc(alias = "sincos")]
891    #[rustc_allow_incoherent_impl]
892    #[stable(feature = "rust1", since = "1.0.0")]
893    #[inline]
894    pub fn sin_cos(self) -> (f32, f32) {
895        (self.sin(), self.cos())
896    }
897
898    /// Returns `e^(self) - 1` in a way that is accurate even if the
899    /// number is close to zero.
900    ///
901    /// # Unspecified precision
902    ///
903    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
904    /// can even differ within the same execution from one invocation to the next.
905    /// This function currently corresponds to the `expm1f` from libc on Unix
906    /// and Windows. Note that this might change in the future.
907    ///
908    /// # Examples
909    ///
910    /// ```
911    /// let x = 1e-8_f32;
912    ///
913    /// // for very small x, e^x is approximately 1 + x + x^2 / 2
914    /// let approx = x + x * x / 2.0;
915    /// let abs_difference = (x.exp_m1() - approx).abs();
916    ///
917    /// assert!(abs_difference < 1e-10);
918    /// ```
919    #[rustc_allow_incoherent_impl]
920    #[must_use = "method returns a new number and does not mutate the original value"]
921    #[stable(feature = "rust1", since = "1.0.0")]
922    #[inline]
923    pub fn exp_m1(self) -> f32 {
924        cmath::expm1f(self)
925    }
926
927    /// Returns `ln(1+n)` (natural logarithm) more accurately than if
928    /// the operations were performed separately.
929    ///
930    /// This returns NaN when `n < -1.0`, and negative infinity when `n == -1.0`.
931    ///
932    /// # Unspecified precision
933    ///
934    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
935    /// can even differ within the same execution from one invocation to the next.
936    /// This function currently corresponds to the `log1pf` from libc on Unix
937    /// and Windows. Note that this might change in the future.
938    ///
939    /// # Examples
940    ///
941    /// ```
942    /// let x = 1e-8_f32;
943    ///
944    /// // for very small x, ln(1 + x) is approximately x - x^2 / 2
945    /// let approx = x - x * x / 2.0;
946    /// let abs_difference = (x.ln_1p() - approx).abs();
947    ///
948    /// assert!(abs_difference < 1e-10);
949    /// ```
950    ///
951    /// Out-of-range values:
952    /// ```
953    /// assert_eq!((-1.0_f32).ln_1p(), f32::NEG_INFINITY);
954    /// assert!((-2.0_f32).ln_1p().is_nan());
955    /// ```
956    #[doc(alias = "log1p")]
957    #[rustc_allow_incoherent_impl]
958    #[must_use = "method returns a new number and does not mutate the original value"]
959    #[stable(feature = "rust1", since = "1.0.0")]
960    #[inline]
961    pub fn ln_1p(self) -> f32 {
962        cmath::log1pf(self)
963    }
964
965    /// Hyperbolic sine function.
966    ///
967    /// # Unspecified precision
968    ///
969    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
970    /// can even differ within the same execution from one invocation to the next.
971    /// This function currently corresponds to the `sinhf` from libc on Unix
972    /// and Windows. Note that this might change in the future.
973    ///
974    /// # Examples
975    ///
976    /// ```
977    /// let e = std::f32::consts::E;
978    /// let x = 1.0f32;
979    ///
980    /// let f = x.sinh();
981    /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
982    /// let g = ((e * e) - 1.0) / (2.0 * e);
983    /// let abs_difference = (f - g).abs();
984    ///
985    /// assert!(abs_difference <= f32::EPSILON);
986    /// ```
987    #[rustc_allow_incoherent_impl]
988    #[must_use = "method returns a new number and does not mutate the original value"]
989    #[stable(feature = "rust1", since = "1.0.0")]
990    #[inline]
991    pub fn sinh(self) -> f32 {
992        cmath::sinhf(self)
993    }
994
995    /// Hyperbolic cosine function.
996    ///
997    /// # Unspecified precision
998    ///
999    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
1000    /// can even differ within the same execution from one invocation to the next.
1001    /// This function currently corresponds to the `coshf` from libc on Unix
1002    /// and Windows. Note that this might change in the future.
1003    ///
1004    /// # Examples
1005    ///
1006    /// ```
1007    /// let e = std::f32::consts::E;
1008    /// let x = 1.0f32;
1009    /// let f = x.cosh();
1010    /// // Solving cosh() at 1 gives this result
1011    /// let g = ((e * e) + 1.0) / (2.0 * e);
1012    /// let abs_difference = (f - g).abs();
1013    ///
1014    /// // Same result
1015    /// assert!(abs_difference <= f32::EPSILON);
1016    /// ```
1017    #[rustc_allow_incoherent_impl]
1018    #[must_use = "method returns a new number and does not mutate the original value"]
1019    #[stable(feature = "rust1", since = "1.0.0")]
1020    #[inline]
1021    pub fn cosh(self) -> f32 {
1022        cmath::coshf(self)
1023    }
1024
1025    /// Hyperbolic tangent function.
1026    ///
1027    /// # Unspecified precision
1028    ///
1029    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
1030    /// can even differ within the same execution from one invocation to the next.
1031    /// This function currently corresponds to the `tanhf` from libc on Unix
1032    /// and Windows. Note that this might change in the future.
1033    ///
1034    /// # Examples
1035    ///
1036    /// ```
1037    /// let e = std::f32::consts::E;
1038    /// let x = 1.0f32;
1039    ///
1040    /// let f = x.tanh();
1041    /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
1042    /// let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2));
1043    /// let abs_difference = (f - g).abs();
1044    ///
1045    /// assert!(abs_difference <= f32::EPSILON);
1046    /// ```
1047    #[rustc_allow_incoherent_impl]
1048    #[must_use = "method returns a new number and does not mutate the original value"]
1049    #[stable(feature = "rust1", since = "1.0.0")]
1050    #[inline]
1051    pub fn tanh(self) -> f32 {
1052        cmath::tanhf(self)
1053    }
1054
1055    /// Inverse hyperbolic sine function.
1056    ///
1057    /// # Unspecified precision
1058    ///
1059    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
1060    /// can even differ within the same execution from one invocation to the next.
1061    ///
1062    /// # Examples
1063    ///
1064    /// ```
1065    /// let x = 1.0f32;
1066    /// let f = x.sinh().asinh();
1067    ///
1068    /// let abs_difference = (f - x).abs();
1069    ///
1070    /// assert!(abs_difference <= f32::EPSILON);
1071    /// ```
1072    #[doc(alias = "arcsinh")]
1073    #[rustc_allow_incoherent_impl]
1074    #[must_use = "method returns a new number and does not mutate the original value"]
1075    #[stable(feature = "rust1", since = "1.0.0")]
1076    #[inline]
1077    pub fn asinh(self) -> f32 {
1078        let ax = self.abs();
1079        let ix = 1.0 / ax;
1080        (ax + (ax / (Self::hypot(1.0, ix) + ix))).ln_1p().copysign(self)
1081    }
1082
1083    /// Inverse hyperbolic cosine function.
1084    ///
1085    /// # Unspecified precision
1086    ///
1087    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
1088    /// can even differ within the same execution from one invocation to the next.
1089    ///
1090    /// # Examples
1091    ///
1092    /// ```
1093    /// let x = 1.0f32;
1094    /// let f = x.cosh().acosh();
1095    ///
1096    /// let abs_difference = (f - x).abs();
1097    ///
1098    /// assert!(abs_difference <= f32::EPSILON);
1099    /// ```
1100    #[doc(alias = "arccosh")]
1101    #[rustc_allow_incoherent_impl]
1102    #[must_use = "method returns a new number and does not mutate the original value"]
1103    #[stable(feature = "rust1", since = "1.0.0")]
1104    #[inline]
1105    pub fn acosh(self) -> f32 {
1106        if self < 1.0 {
1107            Self::NAN
1108        } else {
1109            (self + ((self - 1.0).sqrt() * (self + 1.0).sqrt())).ln()
1110        }
1111    }
1112
1113    /// Inverse hyperbolic tangent function.
1114    ///
1115    /// # Unspecified precision
1116    ///
1117    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
1118    /// can even differ within the same execution from one invocation to the next.
1119    ///
1120    /// # Examples
1121    ///
1122    /// ```
1123    /// let e = std::f32::consts::E;
1124    /// let f = e.tanh().atanh();
1125    ///
1126    /// let abs_difference = (f - e).abs();
1127    ///
1128    /// assert!(abs_difference <= 1e-5);
1129    /// ```
1130    #[doc(alias = "arctanh")]
1131    #[rustc_allow_incoherent_impl]
1132    #[must_use = "method returns a new number and does not mutate the original value"]
1133    #[stable(feature = "rust1", since = "1.0.0")]
1134    #[inline]
1135    pub fn atanh(self) -> f32 {
1136        0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
1137    }
1138
1139    /// Gamma function.
1140    ///
1141    /// # Unspecified precision
1142    ///
1143    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
1144    /// can even differ within the same execution from one invocation to the next.
1145    /// This function currently corresponds to the `tgammaf` from libc on Unix
1146    /// and Windows. Note that this might change in the future.
1147    ///
1148    /// # Examples
1149    ///
1150    /// ```
1151    /// #![feature(float_gamma)]
1152    /// let x = 5.0f32;
1153    ///
1154    /// let abs_difference = (x.gamma() - 24.0).abs();
1155    ///
1156    /// assert!(abs_difference <= f32::EPSILON);
1157    /// ```
1158    #[rustc_allow_incoherent_impl]
1159    #[must_use = "method returns a new number and does not mutate the original value"]
1160    #[unstable(feature = "float_gamma", issue = "99842")]
1161    #[inline]
1162    pub fn gamma(self) -> f32 {
1163        cmath::tgammaf(self)
1164    }
1165
1166    /// Natural logarithm of the absolute value of the gamma function
1167    ///
1168    /// The integer part of the tuple indicates the sign of the gamma function.
1169    ///
1170    /// # Unspecified precision
1171    ///
1172    /// The precision of this function is non-deterministic. This means it varies by platform, Rust version, and
1173    /// can even differ within the same execution from one invocation to the next.
1174    /// This function currently corresponds to the `lgamma_r` from libc on Unix
1175    /// and Windows. Note that this might change in the future.
1176    ///
1177    /// # Examples
1178    ///
1179    /// ```
1180    /// #![feature(float_gamma)]
1181    /// let x = 2.0f32;
1182    ///
1183    /// let abs_difference = (x.ln_gamma().0 - 0.0).abs();
1184    ///
1185    /// assert!(abs_difference <= f32::EPSILON);
1186    /// ```
1187    #[rustc_allow_incoherent_impl]
1188    #[must_use = "method returns a new number and does not mutate the original value"]
1189    #[unstable(feature = "float_gamma", issue = "99842")]
1190    #[inline]
1191    pub fn ln_gamma(self) -> (f32, i32) {
1192        let mut signgamp: i32 = 0;
1193        let x = cmath::lgammaf_r(self, &mut signgamp);
1194        (x, signgamp)
1195    }
1196
1197    /// Error function.
1198    ///
1199    /// # Unspecified precision
1200    ///
1201    /// The precision of this function is non-deterministic. This means it varies by platform,
1202    /// Rust version, and can even differ within the same execution from one invocation to the next.
1203    ///
1204    /// This function currently corresponds to the `erff` from libc on Unix
1205    /// and Windows. Note that this might change in the future.
1206    ///
1207    /// # Examples
1208    ///
1209    /// ```
1210    /// #![feature(float_erf)]
1211    /// /// The error function relates what percent of a normal distribution lies
1212    /// /// within `x` standard deviations (scaled by `1/sqrt(2)`).
1213    /// fn within_standard_deviations(x: f32) -> f32 {
1214    ///     (x * std::f32::consts::FRAC_1_SQRT_2).erf() * 100.0
1215    /// }
1216    ///
1217    /// // 68% of a normal distribution is within one standard deviation
1218    /// assert!((within_standard_deviations(1.0) - 68.269).abs() < 0.01);
1219    /// // 95% of a normal distribution is within two standard deviations
1220    /// assert!((within_standard_deviations(2.0) - 95.450).abs() < 0.01);
1221    /// // 99.7% of a normal distribution is within three standard deviations
1222    /// assert!((within_standard_deviations(3.0) - 99.730).abs() < 0.01);
1223    /// ```
1224    #[rustc_allow_incoherent_impl]
1225    #[must_use = "method returns a new number and does not mutate the original value"]
1226    #[unstable(feature = "float_erf", issue = "136321")]
1227    #[inline]
1228    pub fn erf(self) -> f32 {
1229        cmath::erff(self)
1230    }
1231
1232    /// Complementary error function.
1233    ///
1234    /// # Unspecified precision
1235    ///
1236    /// The precision of this function is non-deterministic. This means it varies by platform,
1237    /// Rust version, and can even differ within the same execution from one invocation to the next.
1238    ///
1239    /// This function currently corresponds to the `erfcf` from libc on Unix
1240    /// and Windows. Note that this might change in the future.
1241    ///
1242    /// # Examples
1243    ///
1244    /// ```
1245    /// #![feature(float_erf)]
1246    /// let x: f32 = 0.123;
1247    ///
1248    /// let one = x.erf() + x.erfc();
1249    /// let abs_difference = (one - 1.0).abs();
1250    ///
1251    /// assert!(abs_difference <= f32::EPSILON);
1252    /// ```
1253    #[rustc_allow_incoherent_impl]
1254    #[must_use = "method returns a new number and does not mutate the original value"]
1255    #[unstable(feature = "float_erf", issue = "136321")]
1256    #[inline]
1257    pub fn erfc(self) -> f32 {
1258        cmath::erfcf(self)
1259    }
1260}