std/
f16.rs

1//! Constants for the `f16` half-precision floating point type.
2//!
3//! *[See also the `f16` primitive type](primitive@f16).*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6
7#[unstable(feature = "f16", issue = "116909")]
8pub use core::f16::consts;
9
10#[cfg(not(test))]
11use crate::intrinsics;
12#[cfg(not(test))]
13use crate::sys::cmath;
14
15#[cfg(not(test))]
16impl f16 {
17    /// Raises a number to a floating point power.
18    ///
19    /// # Unspecified precision
20    ///
21    /// The precision of this function is non-deterministic. This means it varies by platform,
22    /// Rust version, and can even differ within the same execution from one invocation to the next.
23    ///
24    /// # Examples
25    ///
26    /// ```
27    /// #![feature(f16)]
28    /// # #![feature(cfg_target_has_reliable_f16_f128)]
29    /// # #![expect(internal_features)]
30    /// # #[cfg(not(miri))]
31    /// # #[cfg(target_has_reliable_f16_math)] {
32    ///
33    /// let x = 2.0_f16;
34    /// let abs_difference = (x.powf(2.0) - (x * x)).abs();
35    /// assert!(abs_difference <= f16::EPSILON);
36    ///
37    /// assert_eq!(f16::powf(1.0, f16::NAN), 1.0);
38    /// assert_eq!(f16::powf(f16::NAN, 0.0), 1.0);
39    /// # }
40    /// ```
41    #[inline]
42    #[rustc_allow_incoherent_impl]
43    #[unstable(feature = "f16", issue = "116909")]
44    #[must_use = "method returns a new number and does not mutate the original value"]
45    pub fn powf(self, n: f16) -> f16 {
46        unsafe { intrinsics::powf16(self, n) }
47    }
48
49    /// Returns `e^(self)`, (the exponential function).
50    ///
51    /// # Unspecified precision
52    ///
53    /// The precision of this function is non-deterministic. This means it varies by platform,
54    /// Rust version, and can even differ within the same execution from one invocation to the next.
55    ///
56    /// # Examples
57    ///
58    /// ```
59    /// #![feature(f16)]
60    /// # #![feature(cfg_target_has_reliable_f16_f128)]
61    /// # #![expect(internal_features)]
62    /// # #[cfg(not(miri))]
63    /// # #[cfg(target_has_reliable_f16_math)] {
64    ///
65    /// let one = 1.0f16;
66    /// // e^1
67    /// let e = one.exp();
68    ///
69    /// // ln(e) - 1 == 0
70    /// let abs_difference = (e.ln() - 1.0).abs();
71    ///
72    /// assert!(abs_difference <= f16::EPSILON);
73    /// # }
74    /// ```
75    #[inline]
76    #[rustc_allow_incoherent_impl]
77    #[unstable(feature = "f16", issue = "116909")]
78    #[must_use = "method returns a new number and does not mutate the original value"]
79    pub fn exp(self) -> f16 {
80        unsafe { intrinsics::expf16(self) }
81    }
82
83    /// Returns `2^(self)`.
84    ///
85    /// # Unspecified precision
86    ///
87    /// The precision of this function is non-deterministic. This means it varies by platform,
88    /// Rust version, and can even differ within the same execution from one invocation to the next.
89    ///
90    /// # Examples
91    ///
92    /// ```
93    /// #![feature(f16)]
94    /// # #![feature(cfg_target_has_reliable_f16_f128)]
95    /// # #![expect(internal_features)]
96    /// # #[cfg(not(miri))]
97    /// # #[cfg(target_has_reliable_f16_math)] {
98    ///
99    /// let f = 2.0f16;
100    ///
101    /// // 2^2 - 4 == 0
102    /// let abs_difference = (f.exp2() - 4.0).abs();
103    ///
104    /// assert!(abs_difference <= f16::EPSILON);
105    /// # }
106    /// ```
107    #[inline]
108    #[rustc_allow_incoherent_impl]
109    #[unstable(feature = "f16", issue = "116909")]
110    #[must_use = "method returns a new number and does not mutate the original value"]
111    pub fn exp2(self) -> f16 {
112        unsafe { intrinsics::exp2f16(self) }
113    }
114
115    /// Returns the natural logarithm of the number.
116    ///
117    /// This returns NaN when the number is negative, and negative infinity when number is zero.
118    ///
119    /// # Unspecified precision
120    ///
121    /// The precision of this function is non-deterministic. This means it varies by platform,
122    /// Rust version, and can even differ within the same execution from one invocation to the next.
123    ///
124    /// # Examples
125    ///
126    /// ```
127    /// #![feature(f16)]
128    /// # #![feature(cfg_target_has_reliable_f16_f128)]
129    /// # #![expect(internal_features)]
130    /// # #[cfg(not(miri))]
131    /// # #[cfg(target_has_reliable_f16_math)] {
132    ///
133    /// let one = 1.0f16;
134    /// // e^1
135    /// let e = one.exp();
136    ///
137    /// // ln(e) - 1 == 0
138    /// let abs_difference = (e.ln() - 1.0).abs();
139    ///
140    /// assert!(abs_difference <= f16::EPSILON);
141    /// # }
142    /// ```
143    ///
144    /// Non-positive values:
145    /// ```
146    /// #![feature(f16)]
147    /// # #![feature(cfg_target_has_reliable_f16_f128)]
148    /// # #![expect(internal_features)]
149    /// # #[cfg(not(miri))]
150    /// # #[cfg(target_has_reliable_f16_math)] {
151    ///
152    /// assert_eq!(0_f16.ln(), f16::NEG_INFINITY);
153    /// assert!((-42_f16).ln().is_nan());
154    /// # }
155    /// ```
156    #[inline]
157    #[rustc_allow_incoherent_impl]
158    #[unstable(feature = "f16", issue = "116909")]
159    #[must_use = "method returns a new number and does not mutate the original value"]
160    pub fn ln(self) -> f16 {
161        unsafe { intrinsics::logf16(self) }
162    }
163
164    /// Returns the logarithm of the number with respect to an arbitrary base.
165    ///
166    /// This returns NaN when the number is negative, and negative infinity when number is zero.
167    ///
168    /// The result might not be correctly rounded owing to implementation details;
169    /// `self.log2()` can produce more accurate results for base 2, and
170    /// `self.log10()` can produce more accurate results for base 10.
171    ///
172    /// # Unspecified precision
173    ///
174    /// The precision of this function is non-deterministic. This means it varies by platform,
175    /// Rust version, and can even differ within the same execution from one invocation to the next.
176    ///
177    /// # Examples
178    ///
179    /// ```
180    /// #![feature(f16)]
181    /// # #![feature(cfg_target_has_reliable_f16_f128)]
182    /// # #![expect(internal_features)]
183    /// # #[cfg(not(miri))]
184    /// # #[cfg(target_has_reliable_f16_math)] {
185    ///
186    /// let five = 5.0f16;
187    ///
188    /// // log5(5) - 1 == 0
189    /// let abs_difference = (five.log(5.0) - 1.0).abs();
190    ///
191    /// assert!(abs_difference <= f16::EPSILON);
192    /// # }
193    /// ```
194    ///
195    /// Non-positive values:
196    /// ```
197    /// #![feature(f16)]
198    /// # #![feature(cfg_target_has_reliable_f16_f128)]
199    /// # #![expect(internal_features)]
200    /// # #[cfg(not(miri))]
201    /// # #[cfg(target_has_reliable_f16_math)] {
202    ///
203    /// assert_eq!(0_f16.log(10.0), f16::NEG_INFINITY);
204    /// assert!((-42_f16).log(10.0).is_nan());
205    /// # }
206    /// ```
207    #[inline]
208    #[rustc_allow_incoherent_impl]
209    #[unstable(feature = "f16", issue = "116909")]
210    #[must_use = "method returns a new number and does not mutate the original value"]
211    pub fn log(self, base: f16) -> f16 {
212        self.ln() / base.ln()
213    }
214
215    /// Returns the base 2 logarithm of the number.
216    ///
217    /// This returns NaN when the number is negative, and negative infinity when number is zero.
218    ///
219    /// # Unspecified precision
220    ///
221    /// The precision of this function is non-deterministic. This means it varies by platform,
222    /// Rust version, and can even differ within the same execution from one invocation to the next.
223    ///
224    /// # Examples
225    ///
226    /// ```
227    /// #![feature(f16)]
228    /// # #![feature(cfg_target_has_reliable_f16_f128)]
229    /// # #![expect(internal_features)]
230    /// # #[cfg(not(miri))]
231    /// # #[cfg(target_has_reliable_f16_math)] {
232    ///
233    /// let two = 2.0f16;
234    ///
235    /// // log2(2) - 1 == 0
236    /// let abs_difference = (two.log2() - 1.0).abs();
237    ///
238    /// assert!(abs_difference <= f16::EPSILON);
239    /// # }
240    /// ```
241    ///
242    /// Non-positive values:
243    /// ```
244    /// #![feature(f16)]
245    /// # #![feature(cfg_target_has_reliable_f16_f128)]
246    /// # #![expect(internal_features)]
247    /// # #[cfg(not(miri))]
248    /// # #[cfg(target_has_reliable_f16_math)] {
249    ///
250    /// assert_eq!(0_f16.log2(), f16::NEG_INFINITY);
251    /// assert!((-42_f16).log2().is_nan());
252    /// # }
253    /// ```
254    #[inline]
255    #[rustc_allow_incoherent_impl]
256    #[unstable(feature = "f16", issue = "116909")]
257    #[must_use = "method returns a new number and does not mutate the original value"]
258    pub fn log2(self) -> f16 {
259        unsafe { intrinsics::log2f16(self) }
260    }
261
262    /// Returns the base 10 logarithm of the number.
263    ///
264    /// This returns NaN when the number is negative, and negative infinity when number is zero.
265    ///
266    /// # Unspecified precision
267    ///
268    /// The precision of this function is non-deterministic. This means it varies by platform,
269    /// Rust version, and can even differ within the same execution from one invocation to the next.
270    ///
271    /// # Examples
272    ///
273    /// ```
274    /// #![feature(f16)]
275    /// # #![feature(cfg_target_has_reliable_f16_f128)]
276    /// # #![expect(internal_features)]
277    /// # #[cfg(not(miri))]
278    /// # #[cfg(target_has_reliable_f16_math)] {
279    ///
280    /// let ten = 10.0f16;
281    ///
282    /// // log10(10) - 1 == 0
283    /// let abs_difference = (ten.log10() - 1.0).abs();
284    ///
285    /// assert!(abs_difference <= f16::EPSILON);
286    /// # }
287    /// ```
288    ///
289    /// Non-positive values:
290    /// ```
291    /// #![feature(f16)]
292    /// # #![feature(cfg_target_has_reliable_f16_f128)]
293    /// # #![expect(internal_features)]
294    /// # #[cfg(not(miri))]
295    /// # #[cfg(target_has_reliable_f16_math)] {
296    ///
297    /// assert_eq!(0_f16.log10(), f16::NEG_INFINITY);
298    /// assert!((-42_f16).log10().is_nan());
299    /// # }
300    /// ```
301    #[inline]
302    #[rustc_allow_incoherent_impl]
303    #[unstable(feature = "f16", issue = "116909")]
304    #[must_use = "method returns a new number and does not mutate the original value"]
305    pub fn log10(self) -> f16 {
306        unsafe { intrinsics::log10f16(self) }
307    }
308
309    /// Compute the distance between the origin and a point (`x`, `y`) on the
310    /// Euclidean plane. Equivalently, compute the length of the hypotenuse of a
311    /// right-angle triangle with other sides having length `x.abs()` and
312    /// `y.abs()`.
313    ///
314    /// # Unspecified precision
315    ///
316    /// The precision of this function is non-deterministic. This means it varies by platform,
317    /// Rust version, and can even differ within the same execution from one invocation to the next.
318    ///
319    /// This function currently corresponds to the `hypotf` from libc on Unix
320    /// and Windows. Note that this might change in the future.
321    ///
322    /// # Examples
323    ///
324    /// ```
325    /// #![feature(f16)]
326    /// # #![feature(cfg_target_has_reliable_f16_f128)]
327    /// # #![expect(internal_features)]
328    /// # #[cfg(not(miri))]
329    /// # #[cfg(target_has_reliable_f16_math)] {
330    ///
331    /// let x = 2.0f16;
332    /// let y = 3.0f16;
333    ///
334    /// // sqrt(x^2 + y^2)
335    /// let abs_difference = (x.hypot(y) - (x.powi(2) + y.powi(2)).sqrt()).abs();
336    ///
337    /// assert!(abs_difference <= f16::EPSILON);
338    /// # }
339    /// ```
340    #[inline]
341    #[rustc_allow_incoherent_impl]
342    #[unstable(feature = "f16", issue = "116909")]
343    #[must_use = "method returns a new number and does not mutate the original value"]
344    pub fn hypot(self, other: f16) -> f16 {
345        cmath::hypotf(self as f32, other as f32) as f16
346    }
347
348    /// Computes the sine of a number (in radians).
349    ///
350    /// # Unspecified precision
351    ///
352    /// The precision of this function is non-deterministic. This means it varies by platform,
353    /// Rust version, and can even differ within the same execution from one invocation to the next.
354    ///
355    /// # Examples
356    ///
357    /// ```
358    /// #![feature(f16)]
359    /// # #![feature(cfg_target_has_reliable_f16_f128)]
360    /// # #![expect(internal_features)]
361    /// # #[cfg(not(miri))]
362    /// # #[cfg(target_has_reliable_f16_math)] {
363    ///
364    /// let x = std::f16::consts::FRAC_PI_2;
365    ///
366    /// let abs_difference = (x.sin() - 1.0).abs();
367    ///
368    /// assert!(abs_difference <= f16::EPSILON);
369    /// # }
370    /// ```
371    #[inline]
372    #[rustc_allow_incoherent_impl]
373    #[unstable(feature = "f16", issue = "116909")]
374    #[must_use = "method returns a new number and does not mutate the original value"]
375    pub fn sin(self) -> f16 {
376        unsafe { intrinsics::sinf16(self) }
377    }
378
379    /// Computes the cosine of a number (in radians).
380    ///
381    /// # Unspecified precision
382    ///
383    /// The precision of this function is non-deterministic. This means it varies by platform,
384    /// Rust version, and can even differ within the same execution from one invocation to the next.
385    ///
386    /// # Examples
387    ///
388    /// ```
389    /// #![feature(f16)]
390    /// # #![feature(cfg_target_has_reliable_f16_f128)]
391    /// # #![expect(internal_features)]
392    /// # #[cfg(not(miri))]
393    /// # #[cfg(target_has_reliable_f16_math)] {
394    ///
395    /// let x = 2.0 * std::f16::consts::PI;
396    ///
397    /// let abs_difference = (x.cos() - 1.0).abs();
398    ///
399    /// assert!(abs_difference <= f16::EPSILON);
400    /// # }
401    /// ```
402    #[inline]
403    #[rustc_allow_incoherent_impl]
404    #[unstable(feature = "f16", issue = "116909")]
405    #[must_use = "method returns a new number and does not mutate the original value"]
406    pub fn cos(self) -> f16 {
407        unsafe { intrinsics::cosf16(self) }
408    }
409
410    /// Computes the tangent of a number (in radians).
411    ///
412    /// # Unspecified precision
413    ///
414    /// The precision of this function is non-deterministic. This means it varies by platform,
415    /// Rust version, and can even differ within the same execution from one invocation to the next.
416    ///
417    /// This function currently corresponds to the `tanf` from libc on Unix and
418    /// Windows. Note that this might change in the future.
419    ///
420    /// # Examples
421    ///
422    /// ```
423    /// #![feature(f16)]
424    /// # #![feature(cfg_target_has_reliable_f16_f128)]
425    /// # #![expect(internal_features)]
426    /// # #[cfg(not(miri))]
427    /// # #[cfg(target_has_reliable_f16_math)] {
428    ///
429    /// let x = std::f16::consts::FRAC_PI_4;
430    /// let abs_difference = (x.tan() - 1.0).abs();
431    ///
432    /// assert!(abs_difference <= f16::EPSILON);
433    /// # }
434    /// ```
435    #[inline]
436    #[rustc_allow_incoherent_impl]
437    #[unstable(feature = "f16", issue = "116909")]
438    #[must_use = "method returns a new number and does not mutate the original value"]
439    pub fn tan(self) -> f16 {
440        cmath::tanf(self as f32) as f16
441    }
442
443    /// Computes the arcsine of a number. Return value is in radians in
444    /// the range [-pi/2, pi/2] or NaN if the number is outside the range
445    /// [-1, 1].
446    ///
447    /// # Unspecified precision
448    ///
449    /// The precision of this function is non-deterministic. This means it varies by platform,
450    /// Rust version, and can even differ within the same execution from one invocation to the next.
451    ///
452    /// This function currently corresponds to the `asinf` from libc on Unix
453    /// and Windows. Note that this might change in the future.
454    ///
455    /// # Examples
456    ///
457    /// ```
458    /// #![feature(f16)]
459    /// # #![feature(cfg_target_has_reliable_f16_f128)]
460    /// # #![expect(internal_features)]
461    /// # #[cfg(not(miri))]
462    /// # #[cfg(target_has_reliable_f16_math)] {
463    ///
464    /// let f = std::f16::consts::FRAC_PI_2;
465    ///
466    /// // asin(sin(pi/2))
467    /// let abs_difference = (f.sin().asin() - std::f16::consts::FRAC_PI_2).abs();
468    ///
469    /// assert!(abs_difference <= f16::EPSILON);
470    /// # }
471    /// ```
472    #[inline]
473    #[doc(alias = "arcsin")]
474    #[rustc_allow_incoherent_impl]
475    #[unstable(feature = "f16", issue = "116909")]
476    #[must_use = "method returns a new number and does not mutate the original value"]
477    pub fn asin(self) -> f16 {
478        cmath::asinf(self as f32) as f16
479    }
480
481    /// Computes the arccosine of a number. Return value is in radians in
482    /// the range [0, pi] or NaN if the number is outside the range
483    /// [-1, 1].
484    ///
485    /// # Unspecified precision
486    ///
487    /// The precision of this function is non-deterministic. This means it varies by platform,
488    /// Rust version, and can even differ within the same execution from one invocation to the next.
489    ///
490    /// This function currently corresponds to the `acosf` from libc on Unix
491    /// and Windows. Note that this might change in the future.
492    ///
493    /// # Examples
494    ///
495    /// ```
496    /// #![feature(f16)]
497    /// # #![feature(cfg_target_has_reliable_f16_f128)]
498    /// # #![expect(internal_features)]
499    /// # #[cfg(not(miri))]
500    /// # #[cfg(target_has_reliable_f16_math)] {
501    ///
502    /// let f = std::f16::consts::FRAC_PI_4;
503    ///
504    /// // acos(cos(pi/4))
505    /// let abs_difference = (f.cos().acos() - std::f16::consts::FRAC_PI_4).abs();
506    ///
507    /// assert!(abs_difference <= f16::EPSILON);
508    /// # }
509    /// ```
510    #[inline]
511    #[doc(alias = "arccos")]
512    #[rustc_allow_incoherent_impl]
513    #[unstable(feature = "f16", issue = "116909")]
514    #[must_use = "method returns a new number and does not mutate the original value"]
515    pub fn acos(self) -> f16 {
516        cmath::acosf(self as f32) as f16
517    }
518
519    /// Computes the arctangent of a number. Return value is in radians in the
520    /// range [-pi/2, pi/2];
521    ///
522    /// # Unspecified precision
523    ///
524    /// The precision of this function is non-deterministic. This means it varies by platform,
525    /// Rust version, and can even differ within the same execution from one invocation to the next.
526    ///
527    /// This function currently corresponds to the `atanf` from libc on Unix
528    /// and Windows. Note that this might change in the future.
529    ///
530    /// # Examples
531    ///
532    /// ```
533    /// #![feature(f16)]
534    /// # #![feature(cfg_target_has_reliable_f16_f128)]
535    /// # #![expect(internal_features)]
536    /// # #[cfg(not(miri))]
537    /// # #[cfg(target_has_reliable_f16_math)] {
538    ///
539    /// let f = 1.0f16;
540    ///
541    /// // atan(tan(1))
542    /// let abs_difference = (f.tan().atan() - 1.0).abs();
543    ///
544    /// assert!(abs_difference <= f16::EPSILON);
545    /// # }
546    /// ```
547    #[inline]
548    #[doc(alias = "arctan")]
549    #[rustc_allow_incoherent_impl]
550    #[unstable(feature = "f16", issue = "116909")]
551    #[must_use = "method returns a new number and does not mutate the original value"]
552    pub fn atan(self) -> f16 {
553        cmath::atanf(self as f32) as f16
554    }
555
556    /// Computes the four quadrant arctangent of `self` (`y`) and `other` (`x`) in radians.
557    ///
558    /// * `x = 0`, `y = 0`: `0`
559    /// * `x >= 0`: `arctan(y/x)` -> `[-pi/2, pi/2]`
560    /// * `y >= 0`: `arctan(y/x) + pi` -> `(pi/2, pi]`
561    /// * `y < 0`: `arctan(y/x) - pi` -> `(-pi, -pi/2)`
562    ///
563    /// # Unspecified precision
564    ///
565    /// The precision of this function is non-deterministic. This means it varies by platform,
566    /// Rust version, and can even differ within the same execution from one invocation to the next.
567    ///
568    /// This function currently corresponds to the `atan2f` from libc on Unix
569    /// and Windows. Note that this might change in the future.
570    ///
571    /// # Examples
572    ///
573    /// ```
574    /// #![feature(f16)]
575    /// # #![feature(cfg_target_has_reliable_f16_f128)]
576    /// # #![expect(internal_features)]
577    /// # #[cfg(not(miri))]
578    /// # #[cfg(target_has_reliable_f16_math)] {
579    ///
580    /// // Positive angles measured counter-clockwise
581    /// // from positive x axis
582    /// // -pi/4 radians (45 deg clockwise)
583    /// let x1 = 3.0f16;
584    /// let y1 = -3.0f16;
585    ///
586    /// // 3pi/4 radians (135 deg counter-clockwise)
587    /// let x2 = -3.0f16;
588    /// let y2 = 3.0f16;
589    ///
590    /// let abs_difference_1 = (y1.atan2(x1) - (-std::f16::consts::FRAC_PI_4)).abs();
591    /// let abs_difference_2 = (y2.atan2(x2) - (3.0 * std::f16::consts::FRAC_PI_4)).abs();
592    ///
593    /// assert!(abs_difference_1 <= f16::EPSILON);
594    /// assert!(abs_difference_2 <= f16::EPSILON);
595    /// # }
596    /// ```
597    #[inline]
598    #[rustc_allow_incoherent_impl]
599    #[unstable(feature = "f16", issue = "116909")]
600    #[must_use = "method returns a new number and does not mutate the original value"]
601    pub fn atan2(self, other: f16) -> f16 {
602        cmath::atan2f(self as f32, other as f32) as f16
603    }
604
605    /// Simultaneously computes the sine and cosine of the number, `x`. Returns
606    /// `(sin(x), cos(x))`.
607    ///
608    /// # Unspecified precision
609    ///
610    /// The precision of this function is non-deterministic. This means it varies by platform,
611    /// Rust version, and can even differ within the same execution from one invocation to the next.
612    ///
613    /// This function currently corresponds to the `(f16::sin(x),
614    /// f16::cos(x))`. Note that this might change in the future.
615    ///
616    /// # Examples
617    ///
618    /// ```
619    /// #![feature(f16)]
620    /// # #![feature(cfg_target_has_reliable_f16_f128)]
621    /// # #![expect(internal_features)]
622    /// # #[cfg(not(miri))]
623    /// # #[cfg(target_has_reliable_f16_math)] {
624    ///
625    /// let x = std::f16::consts::FRAC_PI_4;
626    /// let f = x.sin_cos();
627    ///
628    /// let abs_difference_0 = (f.0 - x.sin()).abs();
629    /// let abs_difference_1 = (f.1 - x.cos()).abs();
630    ///
631    /// assert!(abs_difference_0 <= f16::EPSILON);
632    /// assert!(abs_difference_1 <= f16::EPSILON);
633    /// # }
634    /// ```
635    #[inline]
636    #[doc(alias = "sincos")]
637    #[rustc_allow_incoherent_impl]
638    #[unstable(feature = "f16", issue = "116909")]
639    pub fn sin_cos(self) -> (f16, f16) {
640        (self.sin(), self.cos())
641    }
642
643    /// Returns `e^(self) - 1` in a way that is accurate even if the
644    /// number is close to zero.
645    ///
646    /// # Unspecified precision
647    ///
648    /// The precision of this function is non-deterministic. This means it varies by platform,
649    /// Rust version, and can even differ within the same execution from one invocation to the next.
650    ///
651    /// This function currently corresponds to the `expm1f` from libc on Unix
652    /// and Windows. Note that this might change in the future.
653    ///
654    /// # Examples
655    ///
656    /// ```
657    /// #![feature(f16)]
658    /// # #![feature(cfg_target_has_reliable_f16_f128)]
659    /// # #![expect(internal_features)]
660    /// # #[cfg(not(miri))]
661    /// # #[cfg(target_has_reliable_f16_math)] {
662    ///
663    /// let x = 1e-4_f16;
664    ///
665    /// // for very small x, e^x is approximately 1 + x + x^2 / 2
666    /// let approx = x + x * x / 2.0;
667    /// let abs_difference = (x.exp_m1() - approx).abs();
668    ///
669    /// assert!(abs_difference < 1e-4);
670    /// # }
671    /// ```
672    #[inline]
673    #[rustc_allow_incoherent_impl]
674    #[unstable(feature = "f16", issue = "116909")]
675    #[must_use = "method returns a new number and does not mutate the original value"]
676    pub fn exp_m1(self) -> f16 {
677        cmath::expm1f(self as f32) as f16
678    }
679
680    /// Returns `ln(1+n)` (natural logarithm) more accurately than if
681    /// the operations were performed separately.
682    ///
683    /// This returns NaN when `n < -1.0`, and negative infinity when `n == -1.0`.
684    ///
685    /// # Unspecified precision
686    ///
687    /// The precision of this function is non-deterministic. This means it varies by platform,
688    /// Rust version, and can even differ within the same execution from one invocation to the next.
689    ///
690    /// This function currently corresponds to the `log1pf` from libc on Unix
691    /// and Windows. Note that this might change in the future.
692    ///
693    /// # Examples
694    ///
695    /// ```
696    /// #![feature(f16)]
697    /// # #![feature(cfg_target_has_reliable_f16_f128)]
698    /// # #![expect(internal_features)]
699    /// # #[cfg(not(miri))]
700    /// # #[cfg(target_has_reliable_f16_math)] {
701    ///
702    /// let x = 1e-4_f16;
703    ///
704    /// // for very small x, ln(1 + x) is approximately x - x^2 / 2
705    /// let approx = x - x * x / 2.0;
706    /// let abs_difference = (x.ln_1p() - approx).abs();
707    ///
708    /// assert!(abs_difference < 1e-4);
709    /// # }
710    /// ```
711    ///
712    /// Out-of-range values:
713    /// ```
714    /// #![feature(f16)]
715    /// # #![feature(cfg_target_has_reliable_f16_f128)]
716    /// # #![expect(internal_features)]
717    /// # #[cfg(not(miri))]
718    /// # #[cfg(target_has_reliable_f16_math)] {
719    ///
720    /// assert_eq!((-1.0_f16).ln_1p(), f16::NEG_INFINITY);
721    /// assert!((-2.0_f16).ln_1p().is_nan());
722    /// # }
723    /// ```
724    #[inline]
725    #[doc(alias = "log1p")]
726    #[rustc_allow_incoherent_impl]
727    #[unstable(feature = "f16", issue = "116909")]
728    #[must_use = "method returns a new number and does not mutate the original value"]
729    pub fn ln_1p(self) -> f16 {
730        cmath::log1pf(self as f32) as f16
731    }
732
733    /// Hyperbolic sine function.
734    ///
735    /// # Unspecified precision
736    ///
737    /// The precision of this function is non-deterministic. This means it varies by platform,
738    /// Rust version, and can even differ within the same execution from one invocation to the next.
739    ///
740    /// This function currently corresponds to the `sinhf` from libc on Unix
741    /// and Windows. Note that this might change in the future.
742    ///
743    /// # Examples
744    ///
745    /// ```
746    /// #![feature(f16)]
747    /// # #![feature(cfg_target_has_reliable_f16_f128)]
748    /// # #![expect(internal_features)]
749    /// # #[cfg(not(miri))]
750    /// # #[cfg(target_has_reliable_f16_math)] {
751    ///
752    /// let e = std::f16::consts::E;
753    /// let x = 1.0f16;
754    ///
755    /// let f = x.sinh();
756    /// // Solving sinh() at 1 gives `(e^2-1)/(2e)`
757    /// let g = ((e * e) - 1.0) / (2.0 * e);
758    /// let abs_difference = (f - g).abs();
759    ///
760    /// assert!(abs_difference <= f16::EPSILON);
761    /// # }
762    /// ```
763    #[inline]
764    #[rustc_allow_incoherent_impl]
765    #[unstable(feature = "f16", issue = "116909")]
766    #[must_use = "method returns a new number and does not mutate the original value"]
767    pub fn sinh(self) -> f16 {
768        cmath::sinhf(self as f32) as f16
769    }
770
771    /// Hyperbolic cosine function.
772    ///
773    /// # Unspecified precision
774    ///
775    /// The precision of this function is non-deterministic. This means it varies by platform,
776    /// Rust version, and can even differ within the same execution from one invocation to the next.
777    ///
778    /// This function currently corresponds to the `coshf` from libc on Unix
779    /// and Windows. Note that this might change in the future.
780    ///
781    /// # Examples
782    ///
783    /// ```
784    /// #![feature(f16)]
785    /// # #![feature(cfg_target_has_reliable_f16_f128)]
786    /// # #![expect(internal_features)]
787    /// # #[cfg(not(miri))]
788    /// # #[cfg(target_has_reliable_f16_math)] {
789    ///
790    /// let e = std::f16::consts::E;
791    /// let x = 1.0f16;
792    /// let f = x.cosh();
793    /// // Solving cosh() at 1 gives this result
794    /// let g = ((e * e) + 1.0) / (2.0 * e);
795    /// let abs_difference = (f - g).abs();
796    ///
797    /// // Same result
798    /// assert!(abs_difference <= f16::EPSILON);
799    /// # }
800    /// ```
801    #[inline]
802    #[rustc_allow_incoherent_impl]
803    #[unstable(feature = "f16", issue = "116909")]
804    #[must_use = "method returns a new number and does not mutate the original value"]
805    pub fn cosh(self) -> f16 {
806        cmath::coshf(self as f32) as f16
807    }
808
809    /// Hyperbolic tangent function.
810    ///
811    /// # Unspecified precision
812    ///
813    /// The precision of this function is non-deterministic. This means it varies by platform,
814    /// Rust version, and can even differ within the same execution from one invocation to the next.
815    ///
816    /// This function currently corresponds to the `tanhf` from libc on Unix
817    /// and Windows. Note that this might change in the future.
818    ///
819    /// # Examples
820    ///
821    /// ```
822    /// #![feature(f16)]
823    /// # #![feature(cfg_target_has_reliable_f16_f128)]
824    /// # #![expect(internal_features)]
825    /// # #[cfg(not(miri))]
826    /// # #[cfg(target_has_reliable_f16_math)] {
827    ///
828    /// let e = std::f16::consts::E;
829    /// let x = 1.0f16;
830    ///
831    /// let f = x.tanh();
832    /// // Solving tanh() at 1 gives `(1 - e^(-2))/(1 + e^(-2))`
833    /// let g = (1.0 - e.powi(-2)) / (1.0 + e.powi(-2));
834    /// let abs_difference = (f - g).abs();
835    ///
836    /// assert!(abs_difference <= f16::EPSILON);
837    /// # }
838    /// ```
839    #[inline]
840    #[rustc_allow_incoherent_impl]
841    #[unstable(feature = "f16", issue = "116909")]
842    #[must_use = "method returns a new number and does not mutate the original value"]
843    pub fn tanh(self) -> f16 {
844        cmath::tanhf(self as f32) as f16
845    }
846
847    /// Inverse hyperbolic sine function.
848    ///
849    /// # Unspecified precision
850    ///
851    /// The precision of this function is non-deterministic. This means it varies by platform,
852    /// Rust version, and can even differ within the same execution from one invocation to the next.
853    ///
854    /// # Examples
855    ///
856    /// ```
857    /// #![feature(f16)]
858    /// # #![feature(cfg_target_has_reliable_f16_f128)]
859    /// # #![expect(internal_features)]
860    /// # #[cfg(not(miri))]
861    /// # #[cfg(target_has_reliable_f16_math)] {
862    ///
863    /// let x = 1.0f16;
864    /// let f = x.sinh().asinh();
865    ///
866    /// let abs_difference = (f - x).abs();
867    ///
868    /// assert!(abs_difference <= f16::EPSILON);
869    /// # }
870    /// ```
871    #[inline]
872    #[doc(alias = "arcsinh")]
873    #[rustc_allow_incoherent_impl]
874    #[unstable(feature = "f16", issue = "116909")]
875    #[must_use = "method returns a new number and does not mutate the original value"]
876    pub fn asinh(self) -> f16 {
877        let ax = self.abs();
878        let ix = 1.0 / ax;
879        (ax + (ax / (Self::hypot(1.0, ix) + ix))).ln_1p().copysign(self)
880    }
881
882    /// Inverse hyperbolic cosine function.
883    ///
884    /// # Unspecified precision
885    ///
886    /// The precision of this function is non-deterministic. This means it varies by platform,
887    /// Rust version, and can even differ within the same execution from one invocation to the next.
888    ///
889    /// # Examples
890    ///
891    /// ```
892    /// #![feature(f16)]
893    /// # #![feature(cfg_target_has_reliable_f16_f128)]
894    /// # #![expect(internal_features)]
895    /// # #[cfg(not(miri))]
896    /// # #[cfg(target_has_reliable_f16_math)] {
897    ///
898    /// let x = 1.0f16;
899    /// let f = x.cosh().acosh();
900    ///
901    /// let abs_difference = (f - x).abs();
902    ///
903    /// assert!(abs_difference <= f16::EPSILON);
904    /// # }
905    /// ```
906    #[inline]
907    #[doc(alias = "arccosh")]
908    #[rustc_allow_incoherent_impl]
909    #[unstable(feature = "f16", issue = "116909")]
910    #[must_use = "method returns a new number and does not mutate the original value"]
911    pub fn acosh(self) -> f16 {
912        if self < 1.0 {
913            Self::NAN
914        } else {
915            (self + ((self - 1.0).sqrt() * (self + 1.0).sqrt())).ln()
916        }
917    }
918
919    /// Inverse hyperbolic tangent function.
920    ///
921    /// # Unspecified precision
922    ///
923    /// The precision of this function is non-deterministic. This means it varies by platform,
924    /// Rust version, and can even differ within the same execution from one invocation to the next.
925    ///
926    /// # Examples
927    ///
928    /// ```
929    /// #![feature(f16)]
930    /// # #![feature(cfg_target_has_reliable_f16_f128)]
931    /// # #![expect(internal_features)]
932    /// # #[cfg(not(miri))]
933    /// # #[cfg(target_has_reliable_f16_math)] {
934    ///
935    /// let e = std::f16::consts::E;
936    /// let f = e.tanh().atanh();
937    ///
938    /// let abs_difference = (f - e).abs();
939    ///
940    /// assert!(abs_difference <= 0.01);
941    /// # }
942    /// ```
943    #[inline]
944    #[doc(alias = "arctanh")]
945    #[rustc_allow_incoherent_impl]
946    #[unstable(feature = "f16", issue = "116909")]
947    #[must_use = "method returns a new number and does not mutate the original value"]
948    pub fn atanh(self) -> f16 {
949        0.5 * ((2.0 * self) / (1.0 - self)).ln_1p()
950    }
951
952    /// Gamma function.
953    ///
954    /// # Unspecified precision
955    ///
956    /// The precision of this function is non-deterministic. This means it varies by platform,
957    /// Rust version, and can even differ within the same execution from one invocation to the next.
958    ///
959    /// This function currently corresponds to the `tgammaf` from libc on Unix
960    /// and Windows. Note that this might change in the future.
961    ///
962    /// # Examples
963    ///
964    /// ```
965    /// #![feature(f16)]
966    /// #![feature(float_gamma)]
967    /// # #![feature(cfg_target_has_reliable_f16_f128)]
968    /// # #![expect(internal_features)]
969    /// # #[cfg(not(miri))]
970    /// # #[cfg(target_has_reliable_f16_math)] {
971    ///
972    /// let x = 5.0f16;
973    ///
974    /// let abs_difference = (x.gamma() - 24.0).abs();
975    ///
976    /// assert!(abs_difference <= f16::EPSILON);
977    /// # }
978    /// ```
979    #[inline]
980    #[rustc_allow_incoherent_impl]
981    #[unstable(feature = "f16", issue = "116909")]
982    // #[unstable(feature = "float_gamma", issue = "99842")]
983    #[must_use = "method returns a new number and does not mutate the original value"]
984    pub fn gamma(self) -> f16 {
985        cmath::tgammaf(self as f32) as f16
986    }
987
988    /// Natural logarithm of the absolute value of the gamma function
989    ///
990    /// The integer part of the tuple indicates the sign of the gamma function.
991    ///
992    /// # Unspecified precision
993    ///
994    /// The precision of this function is non-deterministic. This means it varies by platform,
995    /// Rust version, and can even differ within the same execution from one invocation to the next.
996    ///
997    /// This function currently corresponds to the `lgamma_r` from libc on Unix
998    /// and Windows. Note that this might change in the future.
999    ///
1000    /// # Examples
1001    ///
1002    /// ```
1003    /// #![feature(f16)]
1004    /// #![feature(float_gamma)]
1005    /// # #![feature(cfg_target_has_reliable_f16_f128)]
1006    /// # #![expect(internal_features)]
1007    /// # #[cfg(not(miri))]
1008    /// # #[cfg(target_has_reliable_f16_math)] {
1009    ///
1010    /// let x = 2.0f16;
1011    ///
1012    /// let abs_difference = (x.ln_gamma().0 - 0.0).abs();
1013    ///
1014    /// assert!(abs_difference <= f16::EPSILON);
1015    /// # }
1016    /// ```
1017    #[inline]
1018    #[rustc_allow_incoherent_impl]
1019    #[unstable(feature = "f16", issue = "116909")]
1020    // #[unstable(feature = "float_gamma", issue = "99842")]
1021    #[must_use = "method returns a new number and does not mutate the original value"]
1022    pub fn ln_gamma(self) -> (f16, i32) {
1023        let mut signgamp: i32 = 0;
1024        let x = cmath::lgammaf_r(self as f32, &mut signgamp) as f16;
1025        (x, signgamp)
1026    }
1027
1028    /// Error function.
1029    ///
1030    /// # Unspecified precision
1031    ///
1032    /// The precision of this function is non-deterministic. This means it varies by platform,
1033    /// Rust version, and can even differ within the same execution from one invocation to the next.
1034    ///
1035    /// This function currently corresponds to the `erff` from libc on Unix
1036    /// and Windows. Note that this might change in the future.
1037    ///
1038    /// # Examples
1039    ///
1040    /// ```
1041    /// #![feature(f16)]
1042    /// #![feature(float_erf)]
1043    /// # #![feature(cfg_target_has_reliable_f16_f128)]
1044    /// # #![expect(internal_features)]
1045    /// # #[cfg(not(miri))]
1046    /// # #[cfg(target_has_reliable_f16_math)] {
1047    /// /// The error function relates what percent of a normal distribution lies
1048    /// /// within `x` standard deviations (scaled by `1/sqrt(2)`).
1049    /// fn within_standard_deviations(x: f16) -> f16 {
1050    ///     (x * std::f16::consts::FRAC_1_SQRT_2).erf() * 100.0
1051    /// }
1052    ///
1053    /// // 68% of a normal distribution is within one standard deviation
1054    /// assert!((within_standard_deviations(1.0) - 68.269).abs() < 0.1);
1055    /// // 95% of a normal distribution is within two standard deviations
1056    /// assert!((within_standard_deviations(2.0) - 95.450).abs() < 0.1);
1057    /// // 99.7% of a normal distribution is within three standard deviations
1058    /// assert!((within_standard_deviations(3.0) - 99.730).abs() < 0.1);
1059    /// # }
1060    /// ```
1061    #[rustc_allow_incoherent_impl]
1062    #[must_use = "method returns a new number and does not mutate the original value"]
1063    #[unstable(feature = "f16", issue = "116909")]
1064    // #[unstable(feature = "float_erf", issue = "136321")]
1065    #[inline]
1066    pub fn erf(self) -> f16 {
1067        cmath::erff(self as f32) as f16
1068    }
1069
1070    /// Complementary error function.
1071    ///
1072    /// # Unspecified precision
1073    ///
1074    /// The precision of this function is non-deterministic. This means it varies by platform,
1075    /// Rust version, and can even differ within the same execution from one invocation to the next.
1076    ///
1077    /// This function currently corresponds to the `erfcf` from libc on Unix
1078    /// and Windows. Note that this might change in the future.
1079    ///
1080    /// # Examples
1081    ///
1082    /// ```
1083    /// #![feature(f16)]
1084    /// #![feature(float_erf)]
1085    /// # #![feature(cfg_target_has_reliable_f16_f128)]
1086    /// # #![expect(internal_features)]
1087    /// # #[cfg(not(miri))]
1088    /// # #[cfg(target_has_reliable_f16_math)] {
1089    /// let x: f16 = 0.123;
1090    ///
1091    /// let one = x.erf() + x.erfc();
1092    /// let abs_difference = (one - 1.0).abs();
1093    ///
1094    /// assert!(abs_difference <= f16::EPSILON);
1095    /// # }
1096    /// ```
1097    #[rustc_allow_incoherent_impl]
1098    #[must_use = "method returns a new number and does not mutate the original value"]
1099    #[unstable(feature = "f16", issue = "116909")]
1100    // #[unstable(feature = "float_erf", issue = "136321")]
1101    #[inline]
1102    pub fn erfc(self) -> f16 {
1103        cmath::erfcf(self as f32) as f16
1104    }
1105}