core/str/
mod.rs

1//! String manipulation.
2//!
3//! For more details, see the [`std::str`] module.
4//!
5//! [`std::str`]: ../../std/str/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9mod converts;
10mod count;
11mod error;
12mod iter;
13mod traits;
14mod validations;
15
16use self::pattern::{DoubleEndedSearcher, Pattern, ReverseSearcher, Searcher};
17use crate::char::{self, EscapeDebugExtArgs};
18use crate::ops::Range;
19use crate::slice::{self, SliceIndex};
20use crate::ub_checks::assert_unsafe_precondition;
21use crate::{ascii, mem};
22
23pub mod pattern;
24
25mod lossy;
26#[unstable(feature = "str_from_raw_parts", issue = "119206")]
27pub use converts::{from_raw_parts, from_raw_parts_mut};
28#[stable(feature = "rust1", since = "1.0.0")]
29pub use converts::{from_utf8, from_utf8_unchecked};
30#[stable(feature = "str_mut_extras", since = "1.20.0")]
31pub use converts::{from_utf8_mut, from_utf8_unchecked_mut};
32#[stable(feature = "rust1", since = "1.0.0")]
33pub use error::{ParseBoolError, Utf8Error};
34#[stable(feature = "encode_utf16", since = "1.8.0")]
35pub use iter::EncodeUtf16;
36#[stable(feature = "rust1", since = "1.0.0")]
37#[allow(deprecated)]
38pub use iter::LinesAny;
39#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
40pub use iter::SplitAsciiWhitespace;
41#[stable(feature = "split_inclusive", since = "1.51.0")]
42pub use iter::SplitInclusive;
43#[stable(feature = "rust1", since = "1.0.0")]
44pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace};
45#[stable(feature = "str_escape", since = "1.34.0")]
46pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode};
47#[stable(feature = "str_match_indices", since = "1.5.0")]
48pub use iter::{MatchIndices, RMatchIndices};
49use iter::{MatchIndicesInternal, MatchesInternal, SplitInternal, SplitNInternal};
50#[stable(feature = "str_matches", since = "1.2.0")]
51pub use iter::{Matches, RMatches};
52#[stable(feature = "rust1", since = "1.0.0")]
53pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator};
54#[stable(feature = "rust1", since = "1.0.0")]
55pub use iter::{RSplitN, SplitN};
56#[stable(feature = "utf8_chunks", since = "1.79.0")]
57pub use lossy::{Utf8Chunk, Utf8Chunks};
58#[stable(feature = "rust1", since = "1.0.0")]
59pub use traits::FromStr;
60#[unstable(feature = "str_internals", issue = "none")]
61pub use validations::{next_code_point, utf8_char_width};
62
63#[inline(never)]
64#[cold]
65#[track_caller]
66#[rustc_allow_const_fn_unstable(const_eval_select)]
67#[cfg(not(feature = "panic_immediate_abort"))]
68const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
69    crate::intrinsics::const_eval_select((s, begin, end), slice_error_fail_ct, slice_error_fail_rt)
70}
71
72#[cfg(feature = "panic_immediate_abort")]
73const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
74    slice_error_fail_ct(s, begin, end)
75}
76
77#[track_caller]
78const fn slice_error_fail_ct(_: &str, _: usize, _: usize) -> ! {
79    panic!("failed to slice string");
80}
81
82#[track_caller]
83fn slice_error_fail_rt(s: &str, begin: usize, end: usize) -> ! {
84    const MAX_DISPLAY_LENGTH: usize = 256;
85    let trunc_len = s.floor_char_boundary(MAX_DISPLAY_LENGTH);
86    let s_trunc = &s[..trunc_len];
87    let ellipsis = if trunc_len < s.len() { "[...]" } else { "" };
88
89    // 1. out of bounds
90    if begin > s.len() || end > s.len() {
91        let oob_index = if begin > s.len() { begin } else { end };
92        panic!("byte index {oob_index} is out of bounds of `{s_trunc}`{ellipsis}");
93    }
94
95    // 2. begin <= end
96    assert!(
97        begin <= end,
98        "begin <= end ({} <= {}) when slicing `{}`{}",
99        begin,
100        end,
101        s_trunc,
102        ellipsis
103    );
104
105    // 3. character boundary
106    let index = if !s.is_char_boundary(begin) { begin } else { end };
107    // find the character
108    let char_start = s.floor_char_boundary(index);
109    // `char_start` must be less than len and a char boundary
110    let ch = s[char_start..].chars().next().unwrap();
111    let char_range = char_start..char_start + ch.len_utf8();
112    panic!(
113        "byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}",
114        index, ch, char_range, s_trunc, ellipsis
115    );
116}
117
118impl str {
119    /// Returns the length of `self`.
120    ///
121    /// This length is in bytes, not [`char`]s or graphemes. In other words,
122    /// it might not be what a human considers the length of the string.
123    ///
124    /// [`char`]: prim@char
125    ///
126    /// # Examples
127    ///
128    /// ```
129    /// let len = "foo".len();
130    /// assert_eq!(3, len);
131    ///
132    /// assert_eq!("ƒoo".len(), 4); // fancy f!
133    /// assert_eq!("ƒoo".chars().count(), 3);
134    /// ```
135    #[stable(feature = "rust1", since = "1.0.0")]
136    #[rustc_const_stable(feature = "const_str_len", since = "1.39.0")]
137    #[rustc_diagnostic_item = "str_len"]
138    #[rustc_no_implicit_autorefs]
139    #[must_use]
140    #[inline]
141    pub const fn len(&self) -> usize {
142        self.as_bytes().len()
143    }
144
145    /// Returns `true` if `self` has a length of zero bytes.
146    ///
147    /// # Examples
148    ///
149    /// ```
150    /// let s = "";
151    /// assert!(s.is_empty());
152    ///
153    /// let s = "not empty";
154    /// assert!(!s.is_empty());
155    /// ```
156    #[stable(feature = "rust1", since = "1.0.0")]
157    #[rustc_const_stable(feature = "const_str_is_empty", since = "1.39.0")]
158    #[rustc_no_implicit_autorefs]
159    #[must_use]
160    #[inline]
161    pub const fn is_empty(&self) -> bool {
162        self.len() == 0
163    }
164
165    /// Converts a slice of bytes to a string slice.
166    ///
167    /// A string slice ([`&str`]) is made of bytes ([`u8`]), and a byte slice
168    /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts between
169    /// the two. Not all byte slices are valid string slices, however: [`&str`] requires
170    /// that it is valid UTF-8. `from_utf8()` checks to ensure that the bytes are valid
171    /// UTF-8, and then does the conversion.
172    ///
173    /// [`&str`]: str
174    /// [byteslice]: prim@slice
175    ///
176    /// If you are sure that the byte slice is valid UTF-8, and you don't want to
177    /// incur the overhead of the validity check, there is an unsafe version of
178    /// this function, [`from_utf8_unchecked`], which has the same
179    /// behavior but skips the check.
180    ///
181    /// If you need a `String` instead of a `&str`, consider
182    /// [`String::from_utf8`][string].
183    ///
184    /// [string]: ../std/string/struct.String.html#method.from_utf8
185    ///
186    /// Because you can stack-allocate a `[u8; N]`, and you can take a
187    /// [`&[u8]`][byteslice] of it, this function is one way to have a
188    /// stack-allocated string. There is an example of this in the
189    /// examples section below.
190    ///
191    /// [byteslice]: slice
192    ///
193    /// # Errors
194    ///
195    /// Returns `Err` if the slice is not UTF-8 with a description as to why the
196    /// provided slice is not UTF-8.
197    ///
198    /// # Examples
199    ///
200    /// Basic usage:
201    ///
202    /// ```
203    /// // some bytes, in a vector
204    /// let sparkle_heart = vec![240, 159, 146, 150];
205    ///
206    /// // We can use the ? (try) operator to check if the bytes are valid
207    /// let sparkle_heart = str::from_utf8(&sparkle_heart)?;
208    ///
209    /// assert_eq!("💖", sparkle_heart);
210    /// # Ok::<_, std::str::Utf8Error>(())
211    /// ```
212    ///
213    /// Incorrect bytes:
214    ///
215    /// ```
216    /// // some invalid bytes, in a vector
217    /// let sparkle_heart = vec![0, 159, 146, 150];
218    ///
219    /// assert!(str::from_utf8(&sparkle_heart).is_err());
220    /// ```
221    ///
222    /// See the docs for [`Utf8Error`] for more details on the kinds of
223    /// errors that can be returned.
224    ///
225    /// A "stack allocated string":
226    ///
227    /// ```
228    /// // some bytes, in a stack-allocated array
229    /// let sparkle_heart = [240, 159, 146, 150];
230    ///
231    /// // We know these bytes are valid, so just use `unwrap()`.
232    /// let sparkle_heart: &str = str::from_utf8(&sparkle_heart).unwrap();
233    ///
234    /// assert_eq!("💖", sparkle_heart);
235    /// ```
236    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
237    #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
238    #[rustc_diagnostic_item = "str_inherent_from_utf8"]
239    pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
240        converts::from_utf8(v)
241    }
242
243    /// Converts a mutable slice of bytes to a mutable string slice.
244    ///
245    /// # Examples
246    ///
247    /// Basic usage:
248    ///
249    /// ```
250    /// // "Hello, Rust!" as a mutable vector
251    /// let mut hellorust = vec![72, 101, 108, 108, 111, 44, 32, 82, 117, 115, 116, 33];
252    ///
253    /// // As we know these bytes are valid, we can use `unwrap()`
254    /// let outstr = str::from_utf8_mut(&mut hellorust).unwrap();
255    ///
256    /// assert_eq!("Hello, Rust!", outstr);
257    /// ```
258    ///
259    /// Incorrect bytes:
260    ///
261    /// ```
262    /// // Some invalid bytes in a mutable vector
263    /// let mut invalid = vec![128, 223];
264    ///
265    /// assert!(str::from_utf8_mut(&mut invalid).is_err());
266    /// ```
267    /// See the docs for [`Utf8Error`] for more details on the kinds of
268    /// errors that can be returned.
269    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
270    #[rustc_const_stable(feature = "const_str_from_utf8", since = "1.87.0")]
271    #[rustc_diagnostic_item = "str_inherent_from_utf8_mut"]
272    pub const fn from_utf8_mut(v: &mut [u8]) -> Result<&mut str, Utf8Error> {
273        converts::from_utf8_mut(v)
274    }
275
276    /// Converts a slice of bytes to a string slice without checking
277    /// that the string contains valid UTF-8.
278    ///
279    /// See the safe version, [`from_utf8`], for more information.
280    ///
281    /// # Safety
282    ///
283    /// The bytes passed in must be valid UTF-8.
284    ///
285    /// # Examples
286    ///
287    /// Basic usage:
288    ///
289    /// ```
290    /// // some bytes, in a vector
291    /// let sparkle_heart = vec![240, 159, 146, 150];
292    ///
293    /// let sparkle_heart = unsafe {
294    ///     str::from_utf8_unchecked(&sparkle_heart)
295    /// };
296    ///
297    /// assert_eq!("💖", sparkle_heart);
298    /// ```
299    #[inline]
300    #[must_use]
301    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
302    #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
303    #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked"]
304    pub const unsafe fn from_utf8_unchecked(v: &[u8]) -> &str {
305        // SAFETY: converts::from_utf8_unchecked has the same safety requirements as this function.
306        unsafe { converts::from_utf8_unchecked(v) }
307    }
308
309    /// Converts a slice of bytes to a string slice without checking
310    /// that the string contains valid UTF-8; mutable version.
311    ///
312    /// See the immutable version, [`from_utf8_unchecked()`] for documentation and safety requirements.
313    ///
314    /// # Examples
315    ///
316    /// Basic usage:
317    ///
318    /// ```
319    /// let mut heart = vec![240, 159, 146, 150];
320    /// let heart = unsafe { str::from_utf8_unchecked_mut(&mut heart) };
321    ///
322    /// assert_eq!("💖", heart);
323    /// ```
324    #[inline]
325    #[must_use]
326    #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
327    #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
328    #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked_mut"]
329    pub const unsafe fn from_utf8_unchecked_mut(v: &mut [u8]) -> &mut str {
330        // SAFETY: converts::from_utf8_unchecked_mut has the same safety requirements as this function.
331        unsafe { converts::from_utf8_unchecked_mut(v) }
332    }
333
334    /// Checks that `index`-th byte is the first byte in a UTF-8 code point
335    /// sequence or the end of the string.
336    ///
337    /// The start and end of the string (when `index == self.len()`) are
338    /// considered to be boundaries.
339    ///
340    /// Returns `false` if `index` is greater than `self.len()`.
341    ///
342    /// # Examples
343    ///
344    /// ```
345    /// let s = "Löwe 老虎 Léopard";
346    /// assert!(s.is_char_boundary(0));
347    /// // start of `老`
348    /// assert!(s.is_char_boundary(6));
349    /// assert!(s.is_char_boundary(s.len()));
350    ///
351    /// // second byte of `ö`
352    /// assert!(!s.is_char_boundary(2));
353    ///
354    /// // third byte of `老`
355    /// assert!(!s.is_char_boundary(8));
356    /// ```
357    #[must_use]
358    #[stable(feature = "is_char_boundary", since = "1.9.0")]
359    #[rustc_const_stable(feature = "const_is_char_boundary", since = "1.86.0")]
360    #[inline]
361    pub const fn is_char_boundary(&self, index: usize) -> bool {
362        // 0 is always ok.
363        // Test for 0 explicitly so that it can optimize out the check
364        // easily and skip reading string data for that case.
365        // Note that optimizing `self.get(..index)` relies on this.
366        if index == 0 {
367            return true;
368        }
369
370        if index >= self.len() {
371            // For `true` we have two options:
372            //
373            // - index == self.len()
374            //   Empty strings are valid, so return true
375            // - index > self.len()
376            //   In this case return false
377            //
378            // The check is placed exactly here, because it improves generated
379            // code on higher opt-levels. See PR #84751 for more details.
380            index == self.len()
381        } else {
382            self.as_bytes()[index].is_utf8_char_boundary()
383        }
384    }
385
386    /// Finds the closest `x` not exceeding `index` where [`is_char_boundary(x)`] is `true`.
387    ///
388    /// This method can help you truncate a string so that it's still valid UTF-8, but doesn't
389    /// exceed a given number of bytes. Note that this is done purely at the character level
390    /// and can still visually split graphemes, even though the underlying characters aren't
391    /// split. For example, the emoji 🧑‍🔬 (scientist) could be split so that the string only
392    /// includes 🧑 (person) instead.
393    ///
394    /// [`is_char_boundary(x)`]: Self::is_char_boundary
395    ///
396    /// # Examples
397    ///
398    /// ```
399    /// #![feature(round_char_boundary)]
400    /// let s = "❤️🧡💛💚💙💜";
401    /// assert_eq!(s.len(), 26);
402    /// assert!(!s.is_char_boundary(13));
403    ///
404    /// let closest = s.floor_char_boundary(13);
405    /// assert_eq!(closest, 10);
406    /// assert_eq!(&s[..closest], "❤️🧡");
407    /// ```
408    #[unstable(feature = "round_char_boundary", issue = "93743")]
409    #[inline]
410    pub fn floor_char_boundary(&self, index: usize) -> usize {
411        if index >= self.len() {
412            self.len()
413        } else {
414            let lower_bound = index.saturating_sub(3);
415            let new_index = self.as_bytes()[lower_bound..=index]
416                .iter()
417                .rposition(|b| b.is_utf8_char_boundary());
418
419            // SAFETY: we know that the character boundary will be within four bytes
420            unsafe { lower_bound + new_index.unwrap_unchecked() }
421        }
422    }
423
424    /// Finds the closest `x` not below `index` where [`is_char_boundary(x)`] is `true`.
425    ///
426    /// If `index` is greater than the length of the string, this returns the length of the string.
427    ///
428    /// This method is the natural complement to [`floor_char_boundary`]. See that method
429    /// for more details.
430    ///
431    /// [`floor_char_boundary`]: str::floor_char_boundary
432    /// [`is_char_boundary(x)`]: Self::is_char_boundary
433    ///
434    /// # Examples
435    ///
436    /// ```
437    /// #![feature(round_char_boundary)]
438    /// let s = "❤️🧡💛💚💙💜";
439    /// assert_eq!(s.len(), 26);
440    /// assert!(!s.is_char_boundary(13));
441    ///
442    /// let closest = s.ceil_char_boundary(13);
443    /// assert_eq!(closest, 14);
444    /// assert_eq!(&s[..closest], "❤️🧡💛");
445    /// ```
446    #[unstable(feature = "round_char_boundary", issue = "93743")]
447    #[inline]
448    pub fn ceil_char_boundary(&self, index: usize) -> usize {
449        if index > self.len() {
450            self.len()
451        } else {
452            let upper_bound = Ord::min(index + 4, self.len());
453            self.as_bytes()[index..upper_bound]
454                .iter()
455                .position(|b| b.is_utf8_char_boundary())
456                .map_or(upper_bound, |pos| pos + index)
457        }
458    }
459
460    /// Converts a string slice to a byte slice. To convert the byte slice back
461    /// into a string slice, use the [`from_utf8`] function.
462    ///
463    /// # Examples
464    ///
465    /// ```
466    /// let bytes = "bors".as_bytes();
467    /// assert_eq!(b"bors", bytes);
468    /// ```
469    #[stable(feature = "rust1", since = "1.0.0")]
470    #[rustc_const_stable(feature = "str_as_bytes", since = "1.39.0")]
471    #[must_use]
472    #[inline(always)]
473    #[allow(unused_attributes)]
474    pub const fn as_bytes(&self) -> &[u8] {
475        // SAFETY: const sound because we transmute two types with the same layout
476        unsafe { mem::transmute(self) }
477    }
478
479    /// Converts a mutable string slice to a mutable byte slice.
480    ///
481    /// # Safety
482    ///
483    /// The caller must ensure that the content of the slice is valid UTF-8
484    /// before the borrow ends and the underlying `str` is used.
485    ///
486    /// Use of a `str` whose contents are not valid UTF-8 is undefined behavior.
487    ///
488    /// # Examples
489    ///
490    /// Basic usage:
491    ///
492    /// ```
493    /// let mut s = String::from("Hello");
494    /// let bytes = unsafe { s.as_bytes_mut() };
495    ///
496    /// assert_eq!(b"Hello", bytes);
497    /// ```
498    ///
499    /// Mutability:
500    ///
501    /// ```
502    /// let mut s = String::from("🗻∈🌏");
503    ///
504    /// unsafe {
505    ///     let bytes = s.as_bytes_mut();
506    ///
507    ///     bytes[0] = 0xF0;
508    ///     bytes[1] = 0x9F;
509    ///     bytes[2] = 0x8D;
510    ///     bytes[3] = 0x94;
511    /// }
512    ///
513    /// assert_eq!("🍔∈🌏", s);
514    /// ```
515    #[stable(feature = "str_mut_extras", since = "1.20.0")]
516    #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
517    #[must_use]
518    #[inline(always)]
519    pub const unsafe fn as_bytes_mut(&mut self) -> &mut [u8] {
520        // SAFETY: the cast from `&str` to `&[u8]` is safe since `str`
521        // has the same layout as `&[u8]` (only std can make this guarantee).
522        // The pointer dereference is safe since it comes from a mutable reference which
523        // is guaranteed to be valid for writes.
524        unsafe { &mut *(self as *mut str as *mut [u8]) }
525    }
526
527    /// Converts a string slice to a raw pointer.
528    ///
529    /// As string slices are a slice of bytes, the raw pointer points to a
530    /// [`u8`]. This pointer will be pointing to the first byte of the string
531    /// slice.
532    ///
533    /// The caller must ensure that the returned pointer is never written to.
534    /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`].
535    ///
536    /// [`as_mut_ptr`]: str::as_mut_ptr
537    ///
538    /// # Examples
539    ///
540    /// ```
541    /// let s = "Hello";
542    /// let ptr = s.as_ptr();
543    /// ```
544    #[stable(feature = "rust1", since = "1.0.0")]
545    #[rustc_const_stable(feature = "rustc_str_as_ptr", since = "1.32.0")]
546    #[rustc_never_returns_null_ptr]
547    #[rustc_as_ptr]
548    #[must_use]
549    #[inline(always)]
550    pub const fn as_ptr(&self) -> *const u8 {
551        self as *const str as *const u8
552    }
553
554    /// Converts a mutable string slice to a raw pointer.
555    ///
556    /// As string slices are a slice of bytes, the raw pointer points to a
557    /// [`u8`]. This pointer will be pointing to the first byte of the string
558    /// slice.
559    ///
560    /// It is your responsibility to make sure that the string slice only gets
561    /// modified in a way that it remains valid UTF-8.
562    #[stable(feature = "str_as_mut_ptr", since = "1.36.0")]
563    #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
564    #[rustc_never_returns_null_ptr]
565    #[rustc_as_ptr]
566    #[must_use]
567    #[inline(always)]
568    pub const fn as_mut_ptr(&mut self) -> *mut u8 {
569        self as *mut str as *mut u8
570    }
571
572    /// Returns a subslice of `str`.
573    ///
574    /// This is the non-panicking alternative to indexing the `str`. Returns
575    /// [`None`] whenever equivalent indexing operation would panic.
576    ///
577    /// # Examples
578    ///
579    /// ```
580    /// let v = String::from("🗻∈🌏");
581    ///
582    /// assert_eq!(Some("🗻"), v.get(0..4));
583    ///
584    /// // indices not on UTF-8 sequence boundaries
585    /// assert!(v.get(1..).is_none());
586    /// assert!(v.get(..8).is_none());
587    ///
588    /// // out of bounds
589    /// assert!(v.get(..42).is_none());
590    /// ```
591    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
592    #[inline]
593    pub fn get<I: SliceIndex<str>>(&self, i: I) -> Option<&I::Output> {
594        i.get(self)
595    }
596
597    /// Returns a mutable subslice of `str`.
598    ///
599    /// This is the non-panicking alternative to indexing the `str`. Returns
600    /// [`None`] whenever equivalent indexing operation would panic.
601    ///
602    /// # Examples
603    ///
604    /// ```
605    /// let mut v = String::from("hello");
606    /// // correct length
607    /// assert!(v.get_mut(0..5).is_some());
608    /// // out of bounds
609    /// assert!(v.get_mut(..42).is_none());
610    /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
611    ///
612    /// assert_eq!("hello", v);
613    /// {
614    ///     let s = v.get_mut(0..2);
615    ///     let s = s.map(|s| {
616    ///         s.make_ascii_uppercase();
617    ///         &*s
618    ///     });
619    ///     assert_eq!(Some("HE"), s);
620    /// }
621    /// assert_eq!("HEllo", v);
622    /// ```
623    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
624    #[inline]
625    pub fn get_mut<I: SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> {
626        i.get_mut(self)
627    }
628
629    /// Returns an unchecked subslice of `str`.
630    ///
631    /// This is the unchecked alternative to indexing the `str`.
632    ///
633    /// # Safety
634    ///
635    /// Callers of this function are responsible that these preconditions are
636    /// satisfied:
637    ///
638    /// * The starting index must not exceed the ending index;
639    /// * Indexes must be within bounds of the original slice;
640    /// * Indexes must lie on UTF-8 sequence boundaries.
641    ///
642    /// Failing that, the returned string slice may reference invalid memory or
643    /// violate the invariants communicated by the `str` type.
644    ///
645    /// # Examples
646    ///
647    /// ```
648    /// let v = "🗻∈🌏";
649    /// unsafe {
650    ///     assert_eq!("🗻", v.get_unchecked(0..4));
651    ///     assert_eq!("∈", v.get_unchecked(4..7));
652    ///     assert_eq!("🌏", v.get_unchecked(7..11));
653    /// }
654    /// ```
655    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
656    #[inline]
657    pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output {
658        // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
659        // the slice is dereferenceable because `self` is a safe reference.
660        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
661        unsafe { &*i.get_unchecked(self) }
662    }
663
664    /// Returns a mutable, unchecked subslice of `str`.
665    ///
666    /// This is the unchecked alternative to indexing the `str`.
667    ///
668    /// # Safety
669    ///
670    /// Callers of this function are responsible that these preconditions are
671    /// satisfied:
672    ///
673    /// * The starting index must not exceed the ending index;
674    /// * Indexes must be within bounds of the original slice;
675    /// * Indexes must lie on UTF-8 sequence boundaries.
676    ///
677    /// Failing that, the returned string slice may reference invalid memory or
678    /// violate the invariants communicated by the `str` type.
679    ///
680    /// # Examples
681    ///
682    /// ```
683    /// let mut v = String::from("🗻∈🌏");
684    /// unsafe {
685    ///     assert_eq!("🗻", v.get_unchecked_mut(0..4));
686    ///     assert_eq!("∈", v.get_unchecked_mut(4..7));
687    ///     assert_eq!("🌏", v.get_unchecked_mut(7..11));
688    /// }
689    /// ```
690    #[stable(feature = "str_checked_slicing", since = "1.20.0")]
691    #[inline]
692    pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output {
693        // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
694        // the slice is dereferenceable because `self` is a safe reference.
695        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
696        unsafe { &mut *i.get_unchecked_mut(self) }
697    }
698
699    /// Creates a string slice from another string slice, bypassing safety
700    /// checks.
701    ///
702    /// This is generally not recommended, use with caution! For a safe
703    /// alternative see [`str`] and [`Index`].
704    ///
705    /// [`Index`]: crate::ops::Index
706    ///
707    /// This new slice goes from `begin` to `end`, including `begin` but
708    /// excluding `end`.
709    ///
710    /// To get a mutable string slice instead, see the
711    /// [`slice_mut_unchecked`] method.
712    ///
713    /// [`slice_mut_unchecked`]: str::slice_mut_unchecked
714    ///
715    /// # Safety
716    ///
717    /// Callers of this function are responsible that three preconditions are
718    /// satisfied:
719    ///
720    /// * `begin` must not exceed `end`.
721    /// * `begin` and `end` must be byte positions within the string slice.
722    /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
723    ///
724    /// # Examples
725    ///
726    /// ```
727    /// let s = "Löwe 老虎 Léopard";
728    ///
729    /// unsafe {
730    ///     assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
731    /// }
732    ///
733    /// let s = "Hello, world!";
734    ///
735    /// unsafe {
736    ///     assert_eq!("world", s.slice_unchecked(7, 12));
737    /// }
738    /// ```
739    #[stable(feature = "rust1", since = "1.0.0")]
740    #[deprecated(since = "1.29.0", note = "use `get_unchecked(begin..end)` instead")]
741    #[must_use]
742    #[inline]
743    pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str {
744        // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
745        // the slice is dereferenceable because `self` is a safe reference.
746        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
747        unsafe { &*(begin..end).get_unchecked(self) }
748    }
749
750    /// Creates a string slice from another string slice, bypassing safety
751    /// checks.
752    ///
753    /// This is generally not recommended, use with caution! For a safe
754    /// alternative see [`str`] and [`IndexMut`].
755    ///
756    /// [`IndexMut`]: crate::ops::IndexMut
757    ///
758    /// This new slice goes from `begin` to `end`, including `begin` but
759    /// excluding `end`.
760    ///
761    /// To get an immutable string slice instead, see the
762    /// [`slice_unchecked`] method.
763    ///
764    /// [`slice_unchecked`]: str::slice_unchecked
765    ///
766    /// # Safety
767    ///
768    /// Callers of this function are responsible that three preconditions are
769    /// satisfied:
770    ///
771    /// * `begin` must not exceed `end`.
772    /// * `begin` and `end` must be byte positions within the string slice.
773    /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
774    #[stable(feature = "str_slice_mut", since = "1.5.0")]
775    #[deprecated(since = "1.29.0", note = "use `get_unchecked_mut(begin..end)` instead")]
776    #[inline]
777    pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str {
778        // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
779        // the slice is dereferenceable because `self` is a safe reference.
780        // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
781        unsafe { &mut *(begin..end).get_unchecked_mut(self) }
782    }
783
784    /// Divides one string slice into two at an index.
785    ///
786    /// The argument, `mid`, should be a byte offset from the start of the
787    /// string. It must also be on the boundary of a UTF-8 code point.
788    ///
789    /// The two slices returned go from the start of the string slice to `mid`,
790    /// and from `mid` to the end of the string slice.
791    ///
792    /// To get mutable string slices instead, see the [`split_at_mut`]
793    /// method.
794    ///
795    /// [`split_at_mut`]: str::split_at_mut
796    ///
797    /// # Panics
798    ///
799    /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
800    /// the end of the last code point of the string slice.  For a non-panicking
801    /// alternative see [`split_at_checked`](str::split_at_checked).
802    ///
803    /// # Examples
804    ///
805    /// ```
806    /// let s = "Per Martin-Löf";
807    ///
808    /// let (first, last) = s.split_at(3);
809    ///
810    /// assert_eq!("Per", first);
811    /// assert_eq!(" Martin-Löf", last);
812    /// ```
813    #[inline]
814    #[must_use]
815    #[stable(feature = "str_split_at", since = "1.4.0")]
816    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
817    pub const fn split_at(&self, mid: usize) -> (&str, &str) {
818        match self.split_at_checked(mid) {
819            None => slice_error_fail(self, 0, mid),
820            Some(pair) => pair,
821        }
822    }
823
824    /// Divides one mutable string slice into two at an index.
825    ///
826    /// The argument, `mid`, should be a byte offset from the start of the
827    /// string. It must also be on the boundary of a UTF-8 code point.
828    ///
829    /// The two slices returned go from the start of the string slice to `mid`,
830    /// and from `mid` to the end of the string slice.
831    ///
832    /// To get immutable string slices instead, see the [`split_at`] method.
833    ///
834    /// [`split_at`]: str::split_at
835    ///
836    /// # Panics
837    ///
838    /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
839    /// the end of the last code point of the string slice.  For a non-panicking
840    /// alternative see [`split_at_mut_checked`](str::split_at_mut_checked).
841    ///
842    /// # Examples
843    ///
844    /// ```
845    /// let mut s = "Per Martin-Löf".to_string();
846    /// {
847    ///     let (first, last) = s.split_at_mut(3);
848    ///     first.make_ascii_uppercase();
849    ///     assert_eq!("PER", first);
850    ///     assert_eq!(" Martin-Löf", last);
851    /// }
852    /// assert_eq!("PER Martin-Löf", s);
853    /// ```
854    #[inline]
855    #[must_use]
856    #[stable(feature = "str_split_at", since = "1.4.0")]
857    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
858    pub const fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) {
859        // is_char_boundary checks that the index is in [0, .len()]
860        if self.is_char_boundary(mid) {
861            // SAFETY: just checked that `mid` is on a char boundary.
862            unsafe { self.split_at_mut_unchecked(mid) }
863        } else {
864            slice_error_fail(self, 0, mid)
865        }
866    }
867
868    /// Divides one string slice into two at an index.
869    ///
870    /// The argument, `mid`, should be a valid byte offset from the start of the
871    /// string. It must also be on the boundary of a UTF-8 code point. The
872    /// method returns `None` if that’s not the case.
873    ///
874    /// The two slices returned go from the start of the string slice to `mid`,
875    /// and from `mid` to the end of the string slice.
876    ///
877    /// To get mutable string slices instead, see the [`split_at_mut_checked`]
878    /// method.
879    ///
880    /// [`split_at_mut_checked`]: str::split_at_mut_checked
881    ///
882    /// # Examples
883    ///
884    /// ```
885    /// let s = "Per Martin-Löf";
886    ///
887    /// let (first, last) = s.split_at_checked(3).unwrap();
888    /// assert_eq!("Per", first);
889    /// assert_eq!(" Martin-Löf", last);
890    ///
891    /// assert_eq!(None, s.split_at_checked(13));  // Inside “ö”
892    /// assert_eq!(None, s.split_at_checked(16));  // Beyond the string length
893    /// ```
894    #[inline]
895    #[must_use]
896    #[stable(feature = "split_at_checked", since = "1.80.0")]
897    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
898    pub const fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)> {
899        // is_char_boundary checks that the index is in [0, .len()]
900        if self.is_char_boundary(mid) {
901            // SAFETY: just checked that `mid` is on a char boundary.
902            Some(unsafe { self.split_at_unchecked(mid) })
903        } else {
904            None
905        }
906    }
907
908    /// Divides one mutable string slice into two at an index.
909    ///
910    /// The argument, `mid`, should be a valid byte offset from the start of the
911    /// string. It must also be on the boundary of a UTF-8 code point. The
912    /// method returns `None` if that’s not the case.
913    ///
914    /// The two slices returned go from the start of the string slice to `mid`,
915    /// and from `mid` to the end of the string slice.
916    ///
917    /// To get immutable string slices instead, see the [`split_at_checked`] method.
918    ///
919    /// [`split_at_checked`]: str::split_at_checked
920    ///
921    /// # Examples
922    ///
923    /// ```
924    /// let mut s = "Per Martin-Löf".to_string();
925    /// if let Some((first, last)) = s.split_at_mut_checked(3) {
926    ///     first.make_ascii_uppercase();
927    ///     assert_eq!("PER", first);
928    ///     assert_eq!(" Martin-Löf", last);
929    /// }
930    /// assert_eq!("PER Martin-Löf", s);
931    ///
932    /// assert_eq!(None, s.split_at_mut_checked(13));  // Inside “ö”
933    /// assert_eq!(None, s.split_at_mut_checked(16));  // Beyond the string length
934    /// ```
935    #[inline]
936    #[must_use]
937    #[stable(feature = "split_at_checked", since = "1.80.0")]
938    #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
939    pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut str, &mut str)> {
940        // is_char_boundary checks that the index is in [0, .len()]
941        if self.is_char_boundary(mid) {
942            // SAFETY: just checked that `mid` is on a char boundary.
943            Some(unsafe { self.split_at_mut_unchecked(mid) })
944        } else {
945            None
946        }
947    }
948
949    /// Divides one string slice into two at an index.
950    ///
951    /// # Safety
952    ///
953    /// The caller must ensure that `mid` is a valid byte offset from the start
954    /// of the string and falls on the boundary of a UTF-8 code point.
955    const unsafe fn split_at_unchecked(&self, mid: usize) -> (&str, &str) {
956        let len = self.len();
957        let ptr = self.as_ptr();
958        // SAFETY: caller guarantees `mid` is on a char boundary.
959        unsafe {
960            (
961                from_utf8_unchecked(slice::from_raw_parts(ptr, mid)),
962                from_utf8_unchecked(slice::from_raw_parts(ptr.add(mid), len - mid)),
963            )
964        }
965    }
966
967    /// Divides one string slice into two at an index.
968    ///
969    /// # Safety
970    ///
971    /// The caller must ensure that `mid` is a valid byte offset from the start
972    /// of the string and falls on the boundary of a UTF-8 code point.
973    const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut str, &mut str) {
974        let len = self.len();
975        let ptr = self.as_mut_ptr();
976        // SAFETY: caller guarantees `mid` is on a char boundary.
977        unsafe {
978            (
979                from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)),
980                from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)),
981            )
982        }
983    }
984
985    /// Returns an iterator over the [`char`]s of a string slice.
986    ///
987    /// As a string slice consists of valid UTF-8, we can iterate through a
988    /// string slice by [`char`]. This method returns such an iterator.
989    ///
990    /// It's important to remember that [`char`] represents a Unicode Scalar
991    /// Value, and might not match your idea of what a 'character' is. Iteration
992    /// over grapheme clusters may be what you actually want. This functionality
993    /// is not provided by Rust's standard library, check crates.io instead.
994    ///
995    /// # Examples
996    ///
997    /// Basic usage:
998    ///
999    /// ```
1000    /// let word = "goodbye";
1001    ///
1002    /// let count = word.chars().count();
1003    /// assert_eq!(7, count);
1004    ///
1005    /// let mut chars = word.chars();
1006    ///
1007    /// assert_eq!(Some('g'), chars.next());
1008    /// assert_eq!(Some('o'), chars.next());
1009    /// assert_eq!(Some('o'), chars.next());
1010    /// assert_eq!(Some('d'), chars.next());
1011    /// assert_eq!(Some('b'), chars.next());
1012    /// assert_eq!(Some('y'), chars.next());
1013    /// assert_eq!(Some('e'), chars.next());
1014    ///
1015    /// assert_eq!(None, chars.next());
1016    /// ```
1017    ///
1018    /// Remember, [`char`]s might not match your intuition about characters:
1019    ///
1020    /// [`char`]: prim@char
1021    ///
1022    /// ```
1023    /// let y = "y̆";
1024    ///
1025    /// let mut chars = y.chars();
1026    ///
1027    /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
1028    /// assert_eq!(Some('\u{0306}'), chars.next());
1029    ///
1030    /// assert_eq!(None, chars.next());
1031    /// ```
1032    #[stable(feature = "rust1", since = "1.0.0")]
1033    #[inline]
1034    #[rustc_diagnostic_item = "str_chars"]
1035    pub fn chars(&self) -> Chars<'_> {
1036        Chars { iter: self.as_bytes().iter() }
1037    }
1038
1039    /// Returns an iterator over the [`char`]s of a string slice, and their
1040    /// positions.
1041    ///
1042    /// As a string slice consists of valid UTF-8, we can iterate through a
1043    /// string slice by [`char`]. This method returns an iterator of both
1044    /// these [`char`]s, as well as their byte positions.
1045    ///
1046    /// The iterator yields tuples. The position is first, the [`char`] is
1047    /// second.
1048    ///
1049    /// # Examples
1050    ///
1051    /// Basic usage:
1052    ///
1053    /// ```
1054    /// let word = "goodbye";
1055    ///
1056    /// let count = word.char_indices().count();
1057    /// assert_eq!(7, count);
1058    ///
1059    /// let mut char_indices = word.char_indices();
1060    ///
1061    /// assert_eq!(Some((0, 'g')), char_indices.next());
1062    /// assert_eq!(Some((1, 'o')), char_indices.next());
1063    /// assert_eq!(Some((2, 'o')), char_indices.next());
1064    /// assert_eq!(Some((3, 'd')), char_indices.next());
1065    /// assert_eq!(Some((4, 'b')), char_indices.next());
1066    /// assert_eq!(Some((5, 'y')), char_indices.next());
1067    /// assert_eq!(Some((6, 'e')), char_indices.next());
1068    ///
1069    /// assert_eq!(None, char_indices.next());
1070    /// ```
1071    ///
1072    /// Remember, [`char`]s might not match your intuition about characters:
1073    ///
1074    /// [`char`]: prim@char
1075    ///
1076    /// ```
1077    /// let yes = "y̆es";
1078    ///
1079    /// let mut char_indices = yes.char_indices();
1080    ///
1081    /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
1082    /// assert_eq!(Some((1, '\u{0306}')), char_indices.next());
1083    ///
1084    /// // note the 3 here - the previous character took up two bytes
1085    /// assert_eq!(Some((3, 'e')), char_indices.next());
1086    /// assert_eq!(Some((4, 's')), char_indices.next());
1087    ///
1088    /// assert_eq!(None, char_indices.next());
1089    /// ```
1090    #[stable(feature = "rust1", since = "1.0.0")]
1091    #[inline]
1092    pub fn char_indices(&self) -> CharIndices<'_> {
1093        CharIndices { front_offset: 0, iter: self.chars() }
1094    }
1095
1096    /// Returns an iterator over the bytes of a string slice.
1097    ///
1098    /// As a string slice consists of a sequence of bytes, we can iterate
1099    /// through a string slice by byte. This method returns such an iterator.
1100    ///
1101    /// # Examples
1102    ///
1103    /// ```
1104    /// let mut bytes = "bors".bytes();
1105    ///
1106    /// assert_eq!(Some(b'b'), bytes.next());
1107    /// assert_eq!(Some(b'o'), bytes.next());
1108    /// assert_eq!(Some(b'r'), bytes.next());
1109    /// assert_eq!(Some(b's'), bytes.next());
1110    ///
1111    /// assert_eq!(None, bytes.next());
1112    /// ```
1113    #[stable(feature = "rust1", since = "1.0.0")]
1114    #[inline]
1115    pub fn bytes(&self) -> Bytes<'_> {
1116        Bytes(self.as_bytes().iter().copied())
1117    }
1118
1119    /// Splits a string slice by whitespace.
1120    ///
1121    /// The iterator returned will return string slices that are sub-slices of
1122    /// the original string slice, separated by any amount of whitespace.
1123    ///
1124    /// 'Whitespace' is defined according to the terms of the Unicode Derived
1125    /// Core Property `White_Space`. If you only want to split on ASCII whitespace
1126    /// instead, use [`split_ascii_whitespace`].
1127    ///
1128    /// [`split_ascii_whitespace`]: str::split_ascii_whitespace
1129    ///
1130    /// # Examples
1131    ///
1132    /// Basic usage:
1133    ///
1134    /// ```
1135    /// let mut iter = "A few words".split_whitespace();
1136    ///
1137    /// assert_eq!(Some("A"), iter.next());
1138    /// assert_eq!(Some("few"), iter.next());
1139    /// assert_eq!(Some("words"), iter.next());
1140    ///
1141    /// assert_eq!(None, iter.next());
1142    /// ```
1143    ///
1144    /// All kinds of whitespace are considered:
1145    ///
1146    /// ```
1147    /// let mut iter = " Mary   had\ta\u{2009}little  \n\t lamb".split_whitespace();
1148    /// assert_eq!(Some("Mary"), iter.next());
1149    /// assert_eq!(Some("had"), iter.next());
1150    /// assert_eq!(Some("a"), iter.next());
1151    /// assert_eq!(Some("little"), iter.next());
1152    /// assert_eq!(Some("lamb"), iter.next());
1153    ///
1154    /// assert_eq!(None, iter.next());
1155    /// ```
1156    ///
1157    /// If the string is empty or all whitespace, the iterator yields no string slices:
1158    /// ```
1159    /// assert_eq!("".split_whitespace().next(), None);
1160    /// assert_eq!("   ".split_whitespace().next(), None);
1161    /// ```
1162    #[must_use = "this returns the split string as an iterator, \
1163                  without modifying the original"]
1164    #[stable(feature = "split_whitespace", since = "1.1.0")]
1165    #[rustc_diagnostic_item = "str_split_whitespace"]
1166    #[inline]
1167    pub fn split_whitespace(&self) -> SplitWhitespace<'_> {
1168        SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) }
1169    }
1170
1171    /// Splits a string slice by ASCII whitespace.
1172    ///
1173    /// The iterator returned will return string slices that are sub-slices of
1174    /// the original string slice, separated by any amount of ASCII whitespace.
1175    ///
1176    /// To split by Unicode `Whitespace` instead, use [`split_whitespace`].
1177    ///
1178    /// [`split_whitespace`]: str::split_whitespace
1179    ///
1180    /// # Examples
1181    ///
1182    /// Basic usage:
1183    ///
1184    /// ```
1185    /// let mut iter = "A few words".split_ascii_whitespace();
1186    ///
1187    /// assert_eq!(Some("A"), iter.next());
1188    /// assert_eq!(Some("few"), iter.next());
1189    /// assert_eq!(Some("words"), iter.next());
1190    ///
1191    /// assert_eq!(None, iter.next());
1192    /// ```
1193    ///
1194    /// All kinds of ASCII whitespace are considered:
1195    ///
1196    /// ```
1197    /// let mut iter = " Mary   had\ta little  \n\t lamb".split_ascii_whitespace();
1198    /// assert_eq!(Some("Mary"), iter.next());
1199    /// assert_eq!(Some("had"), iter.next());
1200    /// assert_eq!(Some("a"), iter.next());
1201    /// assert_eq!(Some("little"), iter.next());
1202    /// assert_eq!(Some("lamb"), iter.next());
1203    ///
1204    /// assert_eq!(None, iter.next());
1205    /// ```
1206    ///
1207    /// If the string is empty or all ASCII whitespace, the iterator yields no string slices:
1208    /// ```
1209    /// assert_eq!("".split_ascii_whitespace().next(), None);
1210    /// assert_eq!("   ".split_ascii_whitespace().next(), None);
1211    /// ```
1212    #[must_use = "this returns the split string as an iterator, \
1213                  without modifying the original"]
1214    #[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
1215    #[inline]
1216    pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> {
1217        let inner =
1218            self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr);
1219        SplitAsciiWhitespace { inner }
1220    }
1221
1222    /// Returns an iterator over the lines of a string, as string slices.
1223    ///
1224    /// Lines are split at line endings that are either newlines (`\n`) or
1225    /// sequences of a carriage return followed by a line feed (`\r\n`).
1226    ///
1227    /// Line terminators are not included in the lines returned by the iterator.
1228    ///
1229    /// Note that any carriage return (`\r`) not immediately followed by a
1230    /// line feed (`\n`) does not split a line. These carriage returns are
1231    /// thereby included in the produced lines.
1232    ///
1233    /// The final line ending is optional. A string that ends with a final line
1234    /// ending will return the same lines as an otherwise identical string
1235    /// without a final line ending.
1236    ///
1237    /// # Examples
1238    ///
1239    /// Basic usage:
1240    ///
1241    /// ```
1242    /// let text = "foo\r\nbar\n\nbaz\r";
1243    /// let mut lines = text.lines();
1244    ///
1245    /// assert_eq!(Some("foo"), lines.next());
1246    /// assert_eq!(Some("bar"), lines.next());
1247    /// assert_eq!(Some(""), lines.next());
1248    /// // Trailing carriage return is included in the last line
1249    /// assert_eq!(Some("baz\r"), lines.next());
1250    ///
1251    /// assert_eq!(None, lines.next());
1252    /// ```
1253    ///
1254    /// The final line does not require any ending:
1255    ///
1256    /// ```
1257    /// let text = "foo\nbar\n\r\nbaz";
1258    /// let mut lines = text.lines();
1259    ///
1260    /// assert_eq!(Some("foo"), lines.next());
1261    /// assert_eq!(Some("bar"), lines.next());
1262    /// assert_eq!(Some(""), lines.next());
1263    /// assert_eq!(Some("baz"), lines.next());
1264    ///
1265    /// assert_eq!(None, lines.next());
1266    /// ```
1267    #[stable(feature = "rust1", since = "1.0.0")]
1268    #[inline]
1269    pub fn lines(&self) -> Lines<'_> {
1270        Lines(self.split_inclusive('\n').map(LinesMap))
1271    }
1272
1273    /// Returns an iterator over the lines of a string.
1274    #[stable(feature = "rust1", since = "1.0.0")]
1275    #[deprecated(since = "1.4.0", note = "use lines() instead now", suggestion = "lines")]
1276    #[inline]
1277    #[allow(deprecated)]
1278    pub fn lines_any(&self) -> LinesAny<'_> {
1279        LinesAny(self.lines())
1280    }
1281
1282    /// Returns an iterator of `u16` over the string encoded
1283    /// as native endian UTF-16 (without byte-order mark).
1284    ///
1285    /// # Examples
1286    ///
1287    /// ```
1288    /// let text = "Zażółć gęślą jaźń";
1289    ///
1290    /// let utf8_len = text.len();
1291    /// let utf16_len = text.encode_utf16().count();
1292    ///
1293    /// assert!(utf16_len <= utf8_len);
1294    /// ```
1295    #[must_use = "this returns the encoded string as an iterator, \
1296                  without modifying the original"]
1297    #[stable(feature = "encode_utf16", since = "1.8.0")]
1298    pub fn encode_utf16(&self) -> EncodeUtf16<'_> {
1299        EncodeUtf16 { chars: self.chars(), extra: 0 }
1300    }
1301
1302    /// Returns `true` if the given pattern matches a sub-slice of
1303    /// this string slice.
1304    ///
1305    /// Returns `false` if it does not.
1306    ///
1307    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1308    /// function or closure that determines if a character matches.
1309    ///
1310    /// [`char`]: prim@char
1311    /// [pattern]: self::pattern
1312    ///
1313    /// # Examples
1314    ///
1315    /// ```
1316    /// let bananas = "bananas";
1317    ///
1318    /// assert!(bananas.contains("nana"));
1319    /// assert!(!bananas.contains("apples"));
1320    /// ```
1321    #[stable(feature = "rust1", since = "1.0.0")]
1322    #[inline]
1323    pub fn contains<P: Pattern>(&self, pat: P) -> bool {
1324        pat.is_contained_in(self)
1325    }
1326
1327    /// Returns `true` if the given pattern matches a prefix of this
1328    /// string slice.
1329    ///
1330    /// Returns `false` if it does not.
1331    ///
1332    /// The [pattern] can be a `&str`, in which case this function will return true if
1333    /// the `&str` is a prefix of this string slice.
1334    ///
1335    /// The [pattern] can also be a [`char`], a slice of [`char`]s, or a
1336    /// function or closure that determines if a character matches.
1337    /// These will only be checked against the first character of this string slice.
1338    /// Look at the second example below regarding behavior for slices of [`char`]s.
1339    ///
1340    /// [`char`]: prim@char
1341    /// [pattern]: self::pattern
1342    ///
1343    /// # Examples
1344    ///
1345    /// ```
1346    /// let bananas = "bananas";
1347    ///
1348    /// assert!(bananas.starts_with("bana"));
1349    /// assert!(!bananas.starts_with("nana"));
1350    /// ```
1351    ///
1352    /// ```
1353    /// let bananas = "bananas";
1354    ///
1355    /// // Note that both of these assert successfully.
1356    /// assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
1357    /// assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));
1358    /// ```
1359    #[stable(feature = "rust1", since = "1.0.0")]
1360    #[rustc_diagnostic_item = "str_starts_with"]
1361    pub fn starts_with<P: Pattern>(&self, pat: P) -> bool {
1362        pat.is_prefix_of(self)
1363    }
1364
1365    /// Returns `true` if the given pattern matches a suffix of this
1366    /// string slice.
1367    ///
1368    /// Returns `false` if it does not.
1369    ///
1370    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1371    /// function or closure that determines if a character matches.
1372    ///
1373    /// [`char`]: prim@char
1374    /// [pattern]: self::pattern
1375    ///
1376    /// # Examples
1377    ///
1378    /// ```
1379    /// let bananas = "bananas";
1380    ///
1381    /// assert!(bananas.ends_with("anas"));
1382    /// assert!(!bananas.ends_with("nana"));
1383    /// ```
1384    #[stable(feature = "rust1", since = "1.0.0")]
1385    #[rustc_diagnostic_item = "str_ends_with"]
1386    pub fn ends_with<P: Pattern>(&self, pat: P) -> bool
1387    where
1388        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1389    {
1390        pat.is_suffix_of(self)
1391    }
1392
1393    /// Returns the byte index of the first character of this string slice that
1394    /// matches the pattern.
1395    ///
1396    /// Returns [`None`] if the pattern doesn't match.
1397    ///
1398    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1399    /// function or closure that determines if a character matches.
1400    ///
1401    /// [`char`]: prim@char
1402    /// [pattern]: self::pattern
1403    ///
1404    /// # Examples
1405    ///
1406    /// Simple patterns:
1407    ///
1408    /// ```
1409    /// let s = "Löwe 老虎 Léopard Gepardi";
1410    ///
1411    /// assert_eq!(s.find('L'), Some(0));
1412    /// assert_eq!(s.find('é'), Some(14));
1413    /// assert_eq!(s.find("pard"), Some(17));
1414    /// ```
1415    ///
1416    /// More complex patterns using point-free style and closures:
1417    ///
1418    /// ```
1419    /// let s = "Löwe 老虎 Léopard";
1420    ///
1421    /// assert_eq!(s.find(char::is_whitespace), Some(5));
1422    /// assert_eq!(s.find(char::is_lowercase), Some(1));
1423    /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
1424    /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
1425    /// ```
1426    ///
1427    /// Not finding the pattern:
1428    ///
1429    /// ```
1430    /// let s = "Löwe 老虎 Léopard";
1431    /// let x: &[_] = &['1', '2'];
1432    ///
1433    /// assert_eq!(s.find(x), None);
1434    /// ```
1435    #[stable(feature = "rust1", since = "1.0.0")]
1436    #[inline]
1437    pub fn find<P: Pattern>(&self, pat: P) -> Option<usize> {
1438        pat.into_searcher(self).next_match().map(|(i, _)| i)
1439    }
1440
1441    /// Returns the byte index for the first character of the last match of the pattern in
1442    /// this string slice.
1443    ///
1444    /// Returns [`None`] if the pattern doesn't match.
1445    ///
1446    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1447    /// function or closure that determines if a character matches.
1448    ///
1449    /// [`char`]: prim@char
1450    /// [pattern]: self::pattern
1451    ///
1452    /// # Examples
1453    ///
1454    /// Simple patterns:
1455    ///
1456    /// ```
1457    /// let s = "Löwe 老虎 Léopard Gepardi";
1458    ///
1459    /// assert_eq!(s.rfind('L'), Some(13));
1460    /// assert_eq!(s.rfind('é'), Some(14));
1461    /// assert_eq!(s.rfind("pard"), Some(24));
1462    /// ```
1463    ///
1464    /// More complex patterns with closures:
1465    ///
1466    /// ```
1467    /// let s = "Löwe 老虎 Léopard";
1468    ///
1469    /// assert_eq!(s.rfind(char::is_whitespace), Some(12));
1470    /// assert_eq!(s.rfind(char::is_lowercase), Some(20));
1471    /// ```
1472    ///
1473    /// Not finding the pattern:
1474    ///
1475    /// ```
1476    /// let s = "Löwe 老虎 Léopard";
1477    /// let x: &[_] = &['1', '2'];
1478    ///
1479    /// assert_eq!(s.rfind(x), None);
1480    /// ```
1481    #[stable(feature = "rust1", since = "1.0.0")]
1482    #[inline]
1483    pub fn rfind<P: Pattern>(&self, pat: P) -> Option<usize>
1484    where
1485        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1486    {
1487        pat.into_searcher(self).next_match_back().map(|(i, _)| i)
1488    }
1489
1490    /// Returns an iterator over substrings of this string slice, separated by
1491    /// characters matched by a pattern.
1492    ///
1493    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1494    /// function or closure that determines if a character matches.
1495    ///
1496    /// [`char`]: prim@char
1497    /// [pattern]: self::pattern
1498    ///
1499    /// # Iterator behavior
1500    ///
1501    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1502    /// allows a reverse search and forward/reverse search yields the same
1503    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1504    ///
1505    /// If the pattern allows a reverse search but its results might differ
1506    /// from a forward search, the [`rsplit`] method can be used.
1507    ///
1508    /// [`rsplit`]: str::rsplit
1509    ///
1510    /// # Examples
1511    ///
1512    /// Simple patterns:
1513    ///
1514    /// ```
1515    /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
1516    /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
1517    ///
1518    /// let v: Vec<&str> = "".split('X').collect();
1519    /// assert_eq!(v, [""]);
1520    ///
1521    /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
1522    /// assert_eq!(v, ["lion", "", "tiger", "leopard"]);
1523    ///
1524    /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
1525    /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1526    ///
1527    /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
1528    /// assert_eq!(v, ["abc", "def", "ghi"]);
1529    ///
1530    /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
1531    /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1532    /// ```
1533    ///
1534    /// If the pattern is a slice of chars, split on each occurrence of any of the characters:
1535    ///
1536    /// ```
1537    /// let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
1538    /// assert_eq!(v, ["2020", "11", "03", "23", "59"]);
1539    /// ```
1540    ///
1541    /// A more complex pattern, using a closure:
1542    ///
1543    /// ```
1544    /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
1545    /// assert_eq!(v, ["abc", "def", "ghi"]);
1546    /// ```
1547    ///
1548    /// If a string contains multiple contiguous separators, you will end up
1549    /// with empty strings in the output:
1550    ///
1551    /// ```
1552    /// let x = "||||a||b|c".to_string();
1553    /// let d: Vec<_> = x.split('|').collect();
1554    ///
1555    /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1556    /// ```
1557    ///
1558    /// Contiguous separators are separated by the empty string.
1559    ///
1560    /// ```
1561    /// let x = "(///)".to_string();
1562    /// let d: Vec<_> = x.split('/').collect();
1563    ///
1564    /// assert_eq!(d, &["(", "", "", ")"]);
1565    /// ```
1566    ///
1567    /// Separators at the start or end of a string are neighbored
1568    /// by empty strings.
1569    ///
1570    /// ```
1571    /// let d: Vec<_> = "010".split("0").collect();
1572    /// assert_eq!(d, &["", "1", ""]);
1573    /// ```
1574    ///
1575    /// When the empty string is used as a separator, it separates
1576    /// every character in the string, along with the beginning
1577    /// and end of the string.
1578    ///
1579    /// ```
1580    /// let f: Vec<_> = "rust".split("").collect();
1581    /// assert_eq!(f, &["", "r", "u", "s", "t", ""]);
1582    /// ```
1583    ///
1584    /// Contiguous separators can lead to possibly surprising behavior
1585    /// when whitespace is used as the separator. This code is correct:
1586    ///
1587    /// ```
1588    /// let x = "    a  b c".to_string();
1589    /// let d: Vec<_> = x.split(' ').collect();
1590    ///
1591    /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1592    /// ```
1593    ///
1594    /// It does _not_ give you:
1595    ///
1596    /// ```,ignore
1597    /// assert_eq!(d, &["a", "b", "c"]);
1598    /// ```
1599    ///
1600    /// Use [`split_whitespace`] for this behavior.
1601    ///
1602    /// [`split_whitespace`]: str::split_whitespace
1603    #[stable(feature = "rust1", since = "1.0.0")]
1604    #[inline]
1605    pub fn split<P: Pattern>(&self, pat: P) -> Split<'_, P> {
1606        Split(SplitInternal {
1607            start: 0,
1608            end: self.len(),
1609            matcher: pat.into_searcher(self),
1610            allow_trailing_empty: true,
1611            finished: false,
1612        })
1613    }
1614
1615    /// Returns an iterator over substrings of this string slice, separated by
1616    /// characters matched by a pattern.
1617    ///
1618    /// Differs from the iterator produced by `split` in that `split_inclusive`
1619    /// leaves the matched part as the terminator of the substring.
1620    ///
1621    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1622    /// function or closure that determines if a character matches.
1623    ///
1624    /// [`char`]: prim@char
1625    /// [pattern]: self::pattern
1626    ///
1627    /// # Examples
1628    ///
1629    /// ```
1630    /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
1631    ///     .split_inclusive('\n').collect();
1632    /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
1633    /// ```
1634    ///
1635    /// If the last element of the string is matched,
1636    /// that element will be considered the terminator of the preceding substring.
1637    /// That substring will be the last item returned by the iterator.
1638    ///
1639    /// ```
1640    /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
1641    ///     .split_inclusive('\n').collect();
1642    /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
1643    /// ```
1644    #[stable(feature = "split_inclusive", since = "1.51.0")]
1645    #[inline]
1646    pub fn split_inclusive<P: Pattern>(&self, pat: P) -> SplitInclusive<'_, P> {
1647        SplitInclusive(SplitInternal {
1648            start: 0,
1649            end: self.len(),
1650            matcher: pat.into_searcher(self),
1651            allow_trailing_empty: false,
1652            finished: false,
1653        })
1654    }
1655
1656    /// Returns an iterator over substrings of the given string slice, separated
1657    /// by characters matched by a pattern and yielded in reverse order.
1658    ///
1659    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1660    /// function or closure that determines if a character matches.
1661    ///
1662    /// [`char`]: prim@char
1663    /// [pattern]: self::pattern
1664    ///
1665    /// # Iterator behavior
1666    ///
1667    /// The returned iterator requires that the pattern supports a reverse
1668    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
1669    /// search yields the same elements.
1670    ///
1671    /// For iterating from the front, the [`split`] method can be used.
1672    ///
1673    /// [`split`]: str::split
1674    ///
1675    /// # Examples
1676    ///
1677    /// Simple patterns:
1678    ///
1679    /// ```
1680    /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
1681    /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
1682    ///
1683    /// let v: Vec<&str> = "".rsplit('X').collect();
1684    /// assert_eq!(v, [""]);
1685    ///
1686    /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
1687    /// assert_eq!(v, ["leopard", "tiger", "", "lion"]);
1688    ///
1689    /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
1690    /// assert_eq!(v, ["leopard", "tiger", "lion"]);
1691    /// ```
1692    ///
1693    /// A more complex pattern, using a closure:
1694    ///
1695    /// ```
1696    /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
1697    /// assert_eq!(v, ["ghi", "def", "abc"]);
1698    /// ```
1699    #[stable(feature = "rust1", since = "1.0.0")]
1700    #[inline]
1701    pub fn rsplit<P: Pattern>(&self, pat: P) -> RSplit<'_, P>
1702    where
1703        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1704    {
1705        RSplit(self.split(pat).0)
1706    }
1707
1708    /// Returns an iterator over substrings of the given string slice, separated
1709    /// by characters matched by a pattern.
1710    ///
1711    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1712    /// function or closure that determines if a character matches.
1713    ///
1714    /// [`char`]: prim@char
1715    /// [pattern]: self::pattern
1716    ///
1717    /// Equivalent to [`split`], except that the trailing substring
1718    /// is skipped if empty.
1719    ///
1720    /// [`split`]: str::split
1721    ///
1722    /// This method can be used for string data that is _terminated_,
1723    /// rather than _separated_ by a pattern.
1724    ///
1725    /// # Iterator behavior
1726    ///
1727    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1728    /// allows a reverse search and forward/reverse search yields the same
1729    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1730    ///
1731    /// If the pattern allows a reverse search but its results might differ
1732    /// from a forward search, the [`rsplit_terminator`] method can be used.
1733    ///
1734    /// [`rsplit_terminator`]: str::rsplit_terminator
1735    ///
1736    /// # Examples
1737    ///
1738    /// ```
1739    /// let v: Vec<&str> = "A.B.".split_terminator('.').collect();
1740    /// assert_eq!(v, ["A", "B"]);
1741    ///
1742    /// let v: Vec<&str> = "A..B..".split_terminator(".").collect();
1743    /// assert_eq!(v, ["A", "", "B", ""]);
1744    ///
1745    /// let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
1746    /// assert_eq!(v, ["A", "B", "C", "D"]);
1747    /// ```
1748    #[stable(feature = "rust1", since = "1.0.0")]
1749    #[inline]
1750    pub fn split_terminator<P: Pattern>(&self, pat: P) -> SplitTerminator<'_, P> {
1751        SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 })
1752    }
1753
1754    /// Returns an iterator over substrings of `self`, separated by characters
1755    /// matched by a pattern and yielded in reverse order.
1756    ///
1757    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1758    /// function or closure that determines if a character matches.
1759    ///
1760    /// [`char`]: prim@char
1761    /// [pattern]: self::pattern
1762    ///
1763    /// Equivalent to [`split`], except that the trailing substring is
1764    /// skipped if empty.
1765    ///
1766    /// [`split`]: str::split
1767    ///
1768    /// This method can be used for string data that is _terminated_,
1769    /// rather than _separated_ by a pattern.
1770    ///
1771    /// # Iterator behavior
1772    ///
1773    /// The returned iterator requires that the pattern supports a
1774    /// reverse search, and it will be double ended if a forward/reverse
1775    /// search yields the same elements.
1776    ///
1777    /// For iterating from the front, the [`split_terminator`] method can be
1778    /// used.
1779    ///
1780    /// [`split_terminator`]: str::split_terminator
1781    ///
1782    /// # Examples
1783    ///
1784    /// ```
1785    /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
1786    /// assert_eq!(v, ["B", "A"]);
1787    ///
1788    /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
1789    /// assert_eq!(v, ["", "B", "", "A"]);
1790    ///
1791    /// let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
1792    /// assert_eq!(v, ["D", "C", "B", "A"]);
1793    /// ```
1794    #[stable(feature = "rust1", since = "1.0.0")]
1795    #[inline]
1796    pub fn rsplit_terminator<P: Pattern>(&self, pat: P) -> RSplitTerminator<'_, P>
1797    where
1798        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1799    {
1800        RSplitTerminator(self.split_terminator(pat).0)
1801    }
1802
1803    /// Returns an iterator over substrings of the given string slice, separated
1804    /// by a pattern, restricted to returning at most `n` items.
1805    ///
1806    /// If `n` substrings are returned, the last substring (the `n`th substring)
1807    /// will contain the remainder of the string.
1808    ///
1809    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1810    /// function or closure that determines if a character matches.
1811    ///
1812    /// [`char`]: prim@char
1813    /// [pattern]: self::pattern
1814    ///
1815    /// # Iterator behavior
1816    ///
1817    /// The returned iterator will not be double ended, because it is
1818    /// not efficient to support.
1819    ///
1820    /// If the pattern allows a reverse search, the [`rsplitn`] method can be
1821    /// used.
1822    ///
1823    /// [`rsplitn`]: str::rsplitn
1824    ///
1825    /// # Examples
1826    ///
1827    /// Simple patterns:
1828    ///
1829    /// ```
1830    /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
1831    /// assert_eq!(v, ["Mary", "had", "a little lambda"]);
1832    ///
1833    /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
1834    /// assert_eq!(v, ["lion", "", "tigerXleopard"]);
1835    ///
1836    /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
1837    /// assert_eq!(v, ["abcXdef"]);
1838    ///
1839    /// let v: Vec<&str> = "".splitn(1, 'X').collect();
1840    /// assert_eq!(v, [""]);
1841    /// ```
1842    ///
1843    /// A more complex pattern, using a closure:
1844    ///
1845    /// ```
1846    /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
1847    /// assert_eq!(v, ["abc", "defXghi"]);
1848    /// ```
1849    #[stable(feature = "rust1", since = "1.0.0")]
1850    #[inline]
1851    pub fn splitn<P: Pattern>(&self, n: usize, pat: P) -> SplitN<'_, P> {
1852        SplitN(SplitNInternal { iter: self.split(pat).0, count: n })
1853    }
1854
1855    /// Returns an iterator over substrings of this string slice, separated by a
1856    /// pattern, starting from the end of the string, restricted to returning at
1857    /// most `n` items.
1858    ///
1859    /// If `n` substrings are returned, the last substring (the `n`th substring)
1860    /// will contain the remainder of the string.
1861    ///
1862    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1863    /// function or closure that determines if a character matches.
1864    ///
1865    /// [`char`]: prim@char
1866    /// [pattern]: self::pattern
1867    ///
1868    /// # Iterator behavior
1869    ///
1870    /// The returned iterator will not be double ended, because it is not
1871    /// efficient to support.
1872    ///
1873    /// For splitting from the front, the [`splitn`] method can be used.
1874    ///
1875    /// [`splitn`]: str::splitn
1876    ///
1877    /// # Examples
1878    ///
1879    /// Simple patterns:
1880    ///
1881    /// ```
1882    /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
1883    /// assert_eq!(v, ["lamb", "little", "Mary had a"]);
1884    ///
1885    /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
1886    /// assert_eq!(v, ["leopard", "tiger", "lionX"]);
1887    ///
1888    /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
1889    /// assert_eq!(v, ["leopard", "lion::tiger"]);
1890    /// ```
1891    ///
1892    /// A more complex pattern, using a closure:
1893    ///
1894    /// ```
1895    /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
1896    /// assert_eq!(v, ["ghi", "abc1def"]);
1897    /// ```
1898    #[stable(feature = "rust1", since = "1.0.0")]
1899    #[inline]
1900    pub fn rsplitn<P: Pattern>(&self, n: usize, pat: P) -> RSplitN<'_, P>
1901    where
1902        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1903    {
1904        RSplitN(self.splitn(n, pat).0)
1905    }
1906
1907    /// Splits the string on the first occurrence of the specified delimiter and
1908    /// returns prefix before delimiter and suffix after delimiter.
1909    ///
1910    /// # Examples
1911    ///
1912    /// ```
1913    /// assert_eq!("cfg".split_once('='), None);
1914    /// assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
1915    /// assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
1916    /// assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
1917    /// ```
1918    #[stable(feature = "str_split_once", since = "1.52.0")]
1919    #[inline]
1920    pub fn split_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)> {
1921        let (start, end) = delimiter.into_searcher(self).next_match()?;
1922        // SAFETY: `Searcher` is known to return valid indices.
1923        unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
1924    }
1925
1926    /// Splits the string on the last occurrence of the specified delimiter and
1927    /// returns prefix before delimiter and suffix after delimiter.
1928    ///
1929    /// # Examples
1930    ///
1931    /// ```
1932    /// assert_eq!("cfg".rsplit_once('='), None);
1933    /// assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
1934    /// assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
1935    /// ```
1936    #[stable(feature = "str_split_once", since = "1.52.0")]
1937    #[inline]
1938    pub fn rsplit_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)>
1939    where
1940        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1941    {
1942        let (start, end) = delimiter.into_searcher(self).next_match_back()?;
1943        // SAFETY: `Searcher` is known to return valid indices.
1944        unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
1945    }
1946
1947    /// Returns an iterator over the disjoint matches of a pattern within the
1948    /// given string slice.
1949    ///
1950    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1951    /// function or closure that determines if a character matches.
1952    ///
1953    /// [`char`]: prim@char
1954    /// [pattern]: self::pattern
1955    ///
1956    /// # Iterator behavior
1957    ///
1958    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1959    /// allows a reverse search and forward/reverse search yields the same
1960    /// elements. This is true for, e.g., [`char`], but not for `&str`.
1961    ///
1962    /// If the pattern allows a reverse search but its results might differ
1963    /// from a forward search, the [`rmatches`] method can be used.
1964    ///
1965    /// [`rmatches`]: str::rmatches
1966    ///
1967    /// # Examples
1968    ///
1969    /// ```
1970    /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
1971    /// assert_eq!(v, ["abc", "abc", "abc"]);
1972    ///
1973    /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
1974    /// assert_eq!(v, ["1", "2", "3"]);
1975    /// ```
1976    #[stable(feature = "str_matches", since = "1.2.0")]
1977    #[inline]
1978    pub fn matches<P: Pattern>(&self, pat: P) -> Matches<'_, P> {
1979        Matches(MatchesInternal(pat.into_searcher(self)))
1980    }
1981
1982    /// Returns an iterator over the disjoint matches of a pattern within this
1983    /// string slice, yielded in reverse order.
1984    ///
1985    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1986    /// function or closure that determines if a character matches.
1987    ///
1988    /// [`char`]: prim@char
1989    /// [pattern]: self::pattern
1990    ///
1991    /// # Iterator behavior
1992    ///
1993    /// The returned iterator requires that the pattern supports a reverse
1994    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
1995    /// search yields the same elements.
1996    ///
1997    /// For iterating from the front, the [`matches`] method can be used.
1998    ///
1999    /// [`matches`]: str::matches
2000    ///
2001    /// # Examples
2002    ///
2003    /// ```
2004    /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
2005    /// assert_eq!(v, ["abc", "abc", "abc"]);
2006    ///
2007    /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
2008    /// assert_eq!(v, ["3", "2", "1"]);
2009    /// ```
2010    #[stable(feature = "str_matches", since = "1.2.0")]
2011    #[inline]
2012    pub fn rmatches<P: Pattern>(&self, pat: P) -> RMatches<'_, P>
2013    where
2014        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2015    {
2016        RMatches(self.matches(pat).0)
2017    }
2018
2019    /// Returns an iterator over the disjoint matches of a pattern within this string
2020    /// slice as well as the index that the match starts at.
2021    ///
2022    /// For matches of `pat` within `self` that overlap, only the indices
2023    /// corresponding to the first match are returned.
2024    ///
2025    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2026    /// function or closure that determines if a character matches.
2027    ///
2028    /// [`char`]: prim@char
2029    /// [pattern]: self::pattern
2030    ///
2031    /// # Iterator behavior
2032    ///
2033    /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2034    /// allows a reverse search and forward/reverse search yields the same
2035    /// elements. This is true for, e.g., [`char`], but not for `&str`.
2036    ///
2037    /// If the pattern allows a reverse search but its results might differ
2038    /// from a forward search, the [`rmatch_indices`] method can be used.
2039    ///
2040    /// [`rmatch_indices`]: str::rmatch_indices
2041    ///
2042    /// # Examples
2043    ///
2044    /// ```
2045    /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
2046    /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
2047    ///
2048    /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
2049    /// assert_eq!(v, [(1, "abc"), (4, "abc")]);
2050    ///
2051    /// let v: Vec<_> = "ababa".match_indices("aba").collect();
2052    /// assert_eq!(v, [(0, "aba")]); // only the first `aba`
2053    /// ```
2054    #[stable(feature = "str_match_indices", since = "1.5.0")]
2055    #[inline]
2056    pub fn match_indices<P: Pattern>(&self, pat: P) -> MatchIndices<'_, P> {
2057        MatchIndices(MatchIndicesInternal(pat.into_searcher(self)))
2058    }
2059
2060    /// Returns an iterator over the disjoint matches of a pattern within `self`,
2061    /// yielded in reverse order along with the index of the match.
2062    ///
2063    /// For matches of `pat` within `self` that overlap, only the indices
2064    /// corresponding to the last match are returned.
2065    ///
2066    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2067    /// function or closure that determines if a character matches.
2068    ///
2069    /// [`char`]: prim@char
2070    /// [pattern]: self::pattern
2071    ///
2072    /// # Iterator behavior
2073    ///
2074    /// The returned iterator requires that the pattern supports a reverse
2075    /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2076    /// search yields the same elements.
2077    ///
2078    /// For iterating from the front, the [`match_indices`] method can be used.
2079    ///
2080    /// [`match_indices`]: str::match_indices
2081    ///
2082    /// # Examples
2083    ///
2084    /// ```
2085    /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
2086    /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
2087    ///
2088    /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
2089    /// assert_eq!(v, [(4, "abc"), (1, "abc")]);
2090    ///
2091    /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
2092    /// assert_eq!(v, [(2, "aba")]); // only the last `aba`
2093    /// ```
2094    #[stable(feature = "str_match_indices", since = "1.5.0")]
2095    #[inline]
2096    pub fn rmatch_indices<P: Pattern>(&self, pat: P) -> RMatchIndices<'_, P>
2097    where
2098        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2099    {
2100        RMatchIndices(self.match_indices(pat).0)
2101    }
2102
2103    /// Returns a string slice with leading and trailing whitespace removed.
2104    ///
2105    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2106    /// Core Property `White_Space`, which includes newlines.
2107    ///
2108    /// # Examples
2109    ///
2110    /// ```
2111    /// let s = "\n Hello\tworld\t\n";
2112    ///
2113    /// assert_eq!("Hello\tworld", s.trim());
2114    /// ```
2115    #[inline]
2116    #[must_use = "this returns the trimmed string as a slice, \
2117                  without modifying the original"]
2118    #[stable(feature = "rust1", since = "1.0.0")]
2119    #[rustc_diagnostic_item = "str_trim"]
2120    pub fn trim(&self) -> &str {
2121        self.trim_matches(char::is_whitespace)
2122    }
2123
2124    /// Returns a string slice with leading whitespace removed.
2125    ///
2126    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2127    /// Core Property `White_Space`, which includes newlines.
2128    ///
2129    /// # Text directionality
2130    ///
2131    /// A string is a sequence of bytes. `start` in this context means the first
2132    /// position of that byte string; for a left-to-right language like English or
2133    /// Russian, this will be left side, and for right-to-left languages like
2134    /// Arabic or Hebrew, this will be the right side.
2135    ///
2136    /// # Examples
2137    ///
2138    /// Basic usage:
2139    ///
2140    /// ```
2141    /// let s = "\n Hello\tworld\t\n";
2142    /// assert_eq!("Hello\tworld\t\n", s.trim_start());
2143    /// ```
2144    ///
2145    /// Directionality:
2146    ///
2147    /// ```
2148    /// let s = "  English  ";
2149    /// assert!(Some('E') == s.trim_start().chars().next());
2150    ///
2151    /// let s = "  עברית  ";
2152    /// assert!(Some('ע') == s.trim_start().chars().next());
2153    /// ```
2154    #[inline]
2155    #[must_use = "this returns the trimmed string as a new slice, \
2156                  without modifying the original"]
2157    #[stable(feature = "trim_direction", since = "1.30.0")]
2158    #[rustc_diagnostic_item = "str_trim_start"]
2159    pub fn trim_start(&self) -> &str {
2160        self.trim_start_matches(char::is_whitespace)
2161    }
2162
2163    /// Returns a string slice with trailing whitespace removed.
2164    ///
2165    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2166    /// Core Property `White_Space`, which includes newlines.
2167    ///
2168    /// # Text directionality
2169    ///
2170    /// A string is a sequence of bytes. `end` in this context means the last
2171    /// position of that byte string; for a left-to-right language like English or
2172    /// Russian, this will be right side, and for right-to-left languages like
2173    /// Arabic or Hebrew, this will be the left side.
2174    ///
2175    /// # Examples
2176    ///
2177    /// Basic usage:
2178    ///
2179    /// ```
2180    /// let s = "\n Hello\tworld\t\n";
2181    /// assert_eq!("\n Hello\tworld", s.trim_end());
2182    /// ```
2183    ///
2184    /// Directionality:
2185    ///
2186    /// ```
2187    /// let s = "  English  ";
2188    /// assert!(Some('h') == s.trim_end().chars().rev().next());
2189    ///
2190    /// let s = "  עברית  ";
2191    /// assert!(Some('ת') == s.trim_end().chars().rev().next());
2192    /// ```
2193    #[inline]
2194    #[must_use = "this returns the trimmed string as a new slice, \
2195                  without modifying the original"]
2196    #[stable(feature = "trim_direction", since = "1.30.0")]
2197    #[rustc_diagnostic_item = "str_trim_end"]
2198    pub fn trim_end(&self) -> &str {
2199        self.trim_end_matches(char::is_whitespace)
2200    }
2201
2202    /// Returns a string slice with leading whitespace removed.
2203    ///
2204    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2205    /// Core Property `White_Space`.
2206    ///
2207    /// # Text directionality
2208    ///
2209    /// A string is a sequence of bytes. 'Left' in this context means the first
2210    /// position of that byte string; for a language like Arabic or Hebrew
2211    /// which are 'right to left' rather than 'left to right', this will be
2212    /// the _right_ side, not the left.
2213    ///
2214    /// # Examples
2215    ///
2216    /// Basic usage:
2217    ///
2218    /// ```
2219    /// let s = " Hello\tworld\t";
2220    ///
2221    /// assert_eq!("Hello\tworld\t", s.trim_left());
2222    /// ```
2223    ///
2224    /// Directionality:
2225    ///
2226    /// ```
2227    /// let s = "  English";
2228    /// assert!(Some('E') == s.trim_left().chars().next());
2229    ///
2230    /// let s = "  עברית";
2231    /// assert!(Some('ע') == s.trim_left().chars().next());
2232    /// ```
2233    #[must_use = "this returns the trimmed string as a new slice, \
2234                  without modifying the original"]
2235    #[inline]
2236    #[stable(feature = "rust1", since = "1.0.0")]
2237    #[deprecated(since = "1.33.0", note = "superseded by `trim_start`", suggestion = "trim_start")]
2238    pub fn trim_left(&self) -> &str {
2239        self.trim_start()
2240    }
2241
2242    /// Returns a string slice with trailing whitespace removed.
2243    ///
2244    /// 'Whitespace' is defined according to the terms of the Unicode Derived
2245    /// Core Property `White_Space`.
2246    ///
2247    /// # Text directionality
2248    ///
2249    /// A string is a sequence of bytes. 'Right' in this context means the last
2250    /// position of that byte string; for a language like Arabic or Hebrew
2251    /// which are 'right to left' rather than 'left to right', this will be
2252    /// the _left_ side, not the right.
2253    ///
2254    /// # Examples
2255    ///
2256    /// Basic usage:
2257    ///
2258    /// ```
2259    /// let s = " Hello\tworld\t";
2260    ///
2261    /// assert_eq!(" Hello\tworld", s.trim_right());
2262    /// ```
2263    ///
2264    /// Directionality:
2265    ///
2266    /// ```
2267    /// let s = "English  ";
2268    /// assert!(Some('h') == s.trim_right().chars().rev().next());
2269    ///
2270    /// let s = "עברית  ";
2271    /// assert!(Some('ת') == s.trim_right().chars().rev().next());
2272    /// ```
2273    #[must_use = "this returns the trimmed string as a new slice, \
2274                  without modifying the original"]
2275    #[inline]
2276    #[stable(feature = "rust1", since = "1.0.0")]
2277    #[deprecated(since = "1.33.0", note = "superseded by `trim_end`", suggestion = "trim_end")]
2278    pub fn trim_right(&self) -> &str {
2279        self.trim_end()
2280    }
2281
2282    /// Returns a string slice with all prefixes and suffixes that match a
2283    /// pattern repeatedly removed.
2284    ///
2285    /// The [pattern] can be a [`char`], a slice of [`char`]s, or a function
2286    /// or closure that determines if a character matches.
2287    ///
2288    /// [`char`]: prim@char
2289    /// [pattern]: self::pattern
2290    ///
2291    /// # Examples
2292    ///
2293    /// Simple patterns:
2294    ///
2295    /// ```
2296    /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
2297    /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
2298    ///
2299    /// let x: &[_] = &['1', '2'];
2300    /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
2301    /// ```
2302    ///
2303    /// A more complex pattern, using a closure:
2304    ///
2305    /// ```
2306    /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
2307    /// ```
2308    #[must_use = "this returns the trimmed string as a new slice, \
2309                  without modifying the original"]
2310    #[stable(feature = "rust1", since = "1.0.0")]
2311    pub fn trim_matches<P: Pattern>(&self, pat: P) -> &str
2312    where
2313        for<'a> P::Searcher<'a>: DoubleEndedSearcher<'a>,
2314    {
2315        let mut i = 0;
2316        let mut j = 0;
2317        let mut matcher = pat.into_searcher(self);
2318        if let Some((a, b)) = matcher.next_reject() {
2319            i = a;
2320            j = b; // Remember earliest known match, correct it below if
2321            // last match is different
2322        }
2323        if let Some((_, b)) = matcher.next_reject_back() {
2324            j = b;
2325        }
2326        // SAFETY: `Searcher` is known to return valid indices.
2327        unsafe { self.get_unchecked(i..j) }
2328    }
2329
2330    /// Returns a string slice with all prefixes that match a pattern
2331    /// repeatedly removed.
2332    ///
2333    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2334    /// function or closure that determines if a character matches.
2335    ///
2336    /// [`char`]: prim@char
2337    /// [pattern]: self::pattern
2338    ///
2339    /// # Text directionality
2340    ///
2341    /// A string is a sequence of bytes. `start` in this context means the first
2342    /// position of that byte string; for a left-to-right language like English or
2343    /// Russian, this will be left side, and for right-to-left languages like
2344    /// Arabic or Hebrew, this will be the right side.
2345    ///
2346    /// # Examples
2347    ///
2348    /// ```
2349    /// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
2350    /// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
2351    ///
2352    /// let x: &[_] = &['1', '2'];
2353    /// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
2354    /// ```
2355    #[must_use = "this returns the trimmed string as a new slice, \
2356                  without modifying the original"]
2357    #[stable(feature = "trim_direction", since = "1.30.0")]
2358    pub fn trim_start_matches<P: Pattern>(&self, pat: P) -> &str {
2359        let mut i = self.len();
2360        let mut matcher = pat.into_searcher(self);
2361        if let Some((a, _)) = matcher.next_reject() {
2362            i = a;
2363        }
2364        // SAFETY: `Searcher` is known to return valid indices.
2365        unsafe { self.get_unchecked(i..self.len()) }
2366    }
2367
2368    /// Returns a string slice with the prefix removed.
2369    ///
2370    /// If the string starts with the pattern `prefix`, returns the substring after the prefix,
2371    /// wrapped in `Some`. Unlike [`trim_start_matches`], this method removes the prefix exactly once.
2372    ///
2373    /// If the string does not start with `prefix`, returns `None`.
2374    ///
2375    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2376    /// function or closure that determines if a character matches.
2377    ///
2378    /// [`char`]: prim@char
2379    /// [pattern]: self::pattern
2380    /// [`trim_start_matches`]: Self::trim_start_matches
2381    ///
2382    /// # Examples
2383    ///
2384    /// ```
2385    /// assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
2386    /// assert_eq!("foo:bar".strip_prefix("bar"), None);
2387    /// assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
2388    /// ```
2389    #[must_use = "this returns the remaining substring as a new slice, \
2390                  without modifying the original"]
2391    #[stable(feature = "str_strip", since = "1.45.0")]
2392    pub fn strip_prefix<P: Pattern>(&self, prefix: P) -> Option<&str> {
2393        prefix.strip_prefix_of(self)
2394    }
2395
2396    /// Returns a string slice with the suffix removed.
2397    ///
2398    /// If the string ends with the pattern `suffix`, returns the substring before the suffix,
2399    /// wrapped in `Some`.  Unlike [`trim_end_matches`], this method removes the suffix exactly once.
2400    ///
2401    /// If the string does not end with `suffix`, returns `None`.
2402    ///
2403    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2404    /// function or closure that determines if a character matches.
2405    ///
2406    /// [`char`]: prim@char
2407    /// [pattern]: self::pattern
2408    /// [`trim_end_matches`]: Self::trim_end_matches
2409    ///
2410    /// # Examples
2411    ///
2412    /// ```
2413    /// assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
2414    /// assert_eq!("bar:foo".strip_suffix("bar"), None);
2415    /// assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
2416    /// ```
2417    #[must_use = "this returns the remaining substring as a new slice, \
2418                  without modifying the original"]
2419    #[stable(feature = "str_strip", since = "1.45.0")]
2420    pub fn strip_suffix<P: Pattern>(&self, suffix: P) -> Option<&str>
2421    where
2422        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2423    {
2424        suffix.strip_suffix_of(self)
2425    }
2426
2427    /// Returns a string slice with all suffixes that match a pattern
2428    /// repeatedly removed.
2429    ///
2430    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2431    /// function or closure that determines if a character matches.
2432    ///
2433    /// [`char`]: prim@char
2434    /// [pattern]: self::pattern
2435    ///
2436    /// # Text directionality
2437    ///
2438    /// A string is a sequence of bytes. `end` in this context means the last
2439    /// position of that byte string; for a left-to-right language like English or
2440    /// Russian, this will be right side, and for right-to-left languages like
2441    /// Arabic or Hebrew, this will be the left side.
2442    ///
2443    /// # Examples
2444    ///
2445    /// Simple patterns:
2446    ///
2447    /// ```
2448    /// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
2449    /// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
2450    ///
2451    /// let x: &[_] = &['1', '2'];
2452    /// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
2453    /// ```
2454    ///
2455    /// A more complex pattern, using a closure:
2456    ///
2457    /// ```
2458    /// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
2459    /// ```
2460    #[must_use = "this returns the trimmed string as a new slice, \
2461                  without modifying the original"]
2462    #[stable(feature = "trim_direction", since = "1.30.0")]
2463    pub fn trim_end_matches<P: Pattern>(&self, pat: P) -> &str
2464    where
2465        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2466    {
2467        let mut j = 0;
2468        let mut matcher = pat.into_searcher(self);
2469        if let Some((_, b)) = matcher.next_reject_back() {
2470            j = b;
2471        }
2472        // SAFETY: `Searcher` is known to return valid indices.
2473        unsafe { self.get_unchecked(0..j) }
2474    }
2475
2476    /// Returns a string slice with all prefixes that match a pattern
2477    /// repeatedly removed.
2478    ///
2479    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2480    /// function or closure that determines if a character matches.
2481    ///
2482    /// [`char`]: prim@char
2483    /// [pattern]: self::pattern
2484    ///
2485    /// # Text directionality
2486    ///
2487    /// A string is a sequence of bytes. 'Left' in this context means the first
2488    /// position of that byte string; for a language like Arabic or Hebrew
2489    /// which are 'right to left' rather than 'left to right', this will be
2490    /// the _right_ side, not the left.
2491    ///
2492    /// # Examples
2493    ///
2494    /// ```
2495    /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
2496    /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
2497    ///
2498    /// let x: &[_] = &['1', '2'];
2499    /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
2500    /// ```
2501    #[stable(feature = "rust1", since = "1.0.0")]
2502    #[deprecated(
2503        since = "1.33.0",
2504        note = "superseded by `trim_start_matches`",
2505        suggestion = "trim_start_matches"
2506    )]
2507    pub fn trim_left_matches<P: Pattern>(&self, pat: P) -> &str {
2508        self.trim_start_matches(pat)
2509    }
2510
2511    /// Returns a string slice with all suffixes that match a pattern
2512    /// repeatedly removed.
2513    ///
2514    /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2515    /// function or closure that determines if a character matches.
2516    ///
2517    /// [`char`]: prim@char
2518    /// [pattern]: self::pattern
2519    ///
2520    /// # Text directionality
2521    ///
2522    /// A string is a sequence of bytes. 'Right' in this context means the last
2523    /// position of that byte string; for a language like Arabic or Hebrew
2524    /// which are 'right to left' rather than 'left to right', this will be
2525    /// the _left_ side, not the right.
2526    ///
2527    /// # Examples
2528    ///
2529    /// Simple patterns:
2530    ///
2531    /// ```
2532    /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
2533    /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
2534    ///
2535    /// let x: &[_] = &['1', '2'];
2536    /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
2537    /// ```
2538    ///
2539    /// A more complex pattern, using a closure:
2540    ///
2541    /// ```
2542    /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
2543    /// ```
2544    #[stable(feature = "rust1", since = "1.0.0")]
2545    #[deprecated(
2546        since = "1.33.0",
2547        note = "superseded by `trim_end_matches`",
2548        suggestion = "trim_end_matches"
2549    )]
2550    pub fn trim_right_matches<P: Pattern>(&self, pat: P) -> &str
2551    where
2552        for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2553    {
2554        self.trim_end_matches(pat)
2555    }
2556
2557    /// Parses this string slice into another type.
2558    ///
2559    /// Because `parse` is so general, it can cause problems with type
2560    /// inference. As such, `parse` is one of the few times you'll see
2561    /// the syntax affectionately known as the 'turbofish': `::<>`. This
2562    /// helps the inference algorithm understand specifically which type
2563    /// you're trying to parse into.
2564    ///
2565    /// `parse` can parse into any type that implements the [`FromStr`] trait.
2566
2567    ///
2568    /// # Errors
2569    ///
2570    /// Will return [`Err`] if it's not possible to parse this string slice into
2571    /// the desired type.
2572    ///
2573    /// [`Err`]: FromStr::Err
2574    ///
2575    /// # Examples
2576    ///
2577    /// Basic usage:
2578    ///
2579    /// ```
2580    /// let four: u32 = "4".parse().unwrap();
2581    ///
2582    /// assert_eq!(4, four);
2583    /// ```
2584    ///
2585    /// Using the 'turbofish' instead of annotating `four`:
2586    ///
2587    /// ```
2588    /// let four = "4".parse::<u32>();
2589    ///
2590    /// assert_eq!(Ok(4), four);
2591    /// ```
2592    ///
2593    /// Failing to parse:
2594    ///
2595    /// ```
2596    /// let nope = "j".parse::<u32>();
2597    ///
2598    /// assert!(nope.is_err());
2599    /// ```
2600    #[inline]
2601    #[stable(feature = "rust1", since = "1.0.0")]
2602    pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> {
2603        FromStr::from_str(self)
2604    }
2605
2606    /// Checks if all characters in this string are within the ASCII range.
2607    ///
2608    /// # Examples
2609    ///
2610    /// ```
2611    /// let ascii = "hello!\n";
2612    /// let non_ascii = "Grüße, Jürgen ❤";
2613    ///
2614    /// assert!(ascii.is_ascii());
2615    /// assert!(!non_ascii.is_ascii());
2616    /// ```
2617    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2618    #[rustc_const_stable(feature = "const_slice_is_ascii", since = "1.74.0")]
2619    #[must_use]
2620    #[inline]
2621    pub const fn is_ascii(&self) -> bool {
2622        // We can treat each byte as character here: all multibyte characters
2623        // start with a byte that is not in the ASCII range, so we will stop
2624        // there already.
2625        self.as_bytes().is_ascii()
2626    }
2627
2628    /// If this string slice [`is_ascii`](Self::is_ascii), returns it as a slice
2629    /// of [ASCII characters](`ascii::Char`), otherwise returns `None`.
2630    #[unstable(feature = "ascii_char", issue = "110998")]
2631    #[must_use]
2632    #[inline]
2633    pub const fn as_ascii(&self) -> Option<&[ascii::Char]> {
2634        // Like in `is_ascii`, we can work on the bytes directly.
2635        self.as_bytes().as_ascii()
2636    }
2637
2638    /// Converts this string slice into a slice of [ASCII characters](ascii::Char),
2639    /// without checking whether they are valid.
2640    ///
2641    /// # Safety
2642    ///
2643    /// Every character in this string must be ASCII, or else this is UB.
2644    #[unstable(feature = "ascii_char", issue = "110998")]
2645    #[must_use]
2646    #[inline]
2647    pub const unsafe fn as_ascii_unchecked(&self) -> &[ascii::Char] {
2648        assert_unsafe_precondition!(
2649            check_library_ub,
2650            "as_ascii_unchecked requires that the string is valid ASCII",
2651            (it: &str = self) => it.is_ascii()
2652        );
2653
2654        // SAFETY: the caller promised that every byte of this string slice
2655        // is ASCII.
2656        unsafe { self.as_bytes().as_ascii_unchecked() }
2657    }
2658
2659    /// Checks that two strings are an ASCII case-insensitive match.
2660    ///
2661    /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
2662    /// but without allocating and copying temporaries.
2663    ///
2664    /// # Examples
2665    ///
2666    /// ```
2667    /// assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
2668    /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
2669    /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
2670    /// ```
2671    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2672    #[rustc_const_unstable(feature = "const_eq_ignore_ascii_case", issue = "131719")]
2673    #[must_use]
2674    #[inline]
2675    pub const fn eq_ignore_ascii_case(&self, other: &str) -> bool {
2676        self.as_bytes().eq_ignore_ascii_case(other.as_bytes())
2677    }
2678
2679    /// Converts this string to its ASCII upper case equivalent in-place.
2680    ///
2681    /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
2682    /// but non-ASCII letters are unchanged.
2683    ///
2684    /// To return a new uppercased value without modifying the existing one, use
2685    /// [`to_ascii_uppercase()`].
2686    ///
2687    /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
2688    ///
2689    /// # Examples
2690    ///
2691    /// ```
2692    /// let mut s = String::from("Grüße, Jürgen ❤");
2693    ///
2694    /// s.make_ascii_uppercase();
2695    ///
2696    /// assert_eq!("GRüßE, JüRGEN ❤", s);
2697    /// ```
2698    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2699    #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2700    #[inline]
2701    pub const fn make_ascii_uppercase(&mut self) {
2702        // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2703        let me = unsafe { self.as_bytes_mut() };
2704        me.make_ascii_uppercase()
2705    }
2706
2707    /// Converts this string to its ASCII lower case equivalent in-place.
2708    ///
2709    /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
2710    /// but non-ASCII letters are unchanged.
2711    ///
2712    /// To return a new lowercased value without modifying the existing one, use
2713    /// [`to_ascii_lowercase()`].
2714    ///
2715    /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
2716    ///
2717    /// # Examples
2718    ///
2719    /// ```
2720    /// let mut s = String::from("GRÜßE, JÜRGEN ❤");
2721    ///
2722    /// s.make_ascii_lowercase();
2723    ///
2724    /// assert_eq!("grÜße, jÜrgen ❤", s);
2725    /// ```
2726    #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2727    #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2728    #[inline]
2729    pub const fn make_ascii_lowercase(&mut self) {
2730        // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2731        let me = unsafe { self.as_bytes_mut() };
2732        me.make_ascii_lowercase()
2733    }
2734
2735    /// Returns a string slice with leading ASCII whitespace removed.
2736    ///
2737    /// 'Whitespace' refers to the definition used by
2738    /// [`u8::is_ascii_whitespace`].
2739    ///
2740    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2741    ///
2742    /// # Examples
2743    ///
2744    /// ```
2745    /// assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
2746    /// assert_eq!("  ".trim_ascii_start(), "");
2747    /// assert_eq!("".trim_ascii_start(), "");
2748    /// ```
2749    #[must_use = "this returns the trimmed string as a new slice, \
2750                  without modifying the original"]
2751    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2752    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2753    #[inline]
2754    pub const fn trim_ascii_start(&self) -> &str {
2755        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2756        // UTF-8.
2757        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_start()) }
2758    }
2759
2760    /// Returns a string slice with trailing ASCII whitespace removed.
2761    ///
2762    /// 'Whitespace' refers to the definition used by
2763    /// [`u8::is_ascii_whitespace`].
2764    ///
2765    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2766    ///
2767    /// # Examples
2768    ///
2769    /// ```
2770    /// assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
2771    /// assert_eq!("  ".trim_ascii_end(), "");
2772    /// assert_eq!("".trim_ascii_end(), "");
2773    /// ```
2774    #[must_use = "this returns the trimmed string as a new slice, \
2775                  without modifying the original"]
2776    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2777    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2778    #[inline]
2779    pub const fn trim_ascii_end(&self) -> &str {
2780        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2781        // UTF-8.
2782        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_end()) }
2783    }
2784
2785    /// Returns a string slice with leading and trailing ASCII whitespace
2786    /// removed.
2787    ///
2788    /// 'Whitespace' refers to the definition used by
2789    /// [`u8::is_ascii_whitespace`].
2790    ///
2791    /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2792    ///
2793    /// # Examples
2794    ///
2795    /// ```
2796    /// assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
2797    /// assert_eq!("  ".trim_ascii(), "");
2798    /// assert_eq!("".trim_ascii(), "");
2799    /// ```
2800    #[must_use = "this returns the trimmed string as a new slice, \
2801                  without modifying the original"]
2802    #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2803    #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2804    #[inline]
2805    pub const fn trim_ascii(&self) -> &str {
2806        // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2807        // UTF-8.
2808        unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii()) }
2809    }
2810
2811    /// Returns an iterator that escapes each char in `self` with [`char::escape_debug`].
2812    ///
2813    /// Note: only extended grapheme codepoints that begin the string will be
2814    /// escaped.
2815    ///
2816    /// # Examples
2817    ///
2818    /// As an iterator:
2819    ///
2820    /// ```
2821    /// for c in "❤\n!".escape_debug() {
2822    ///     print!("{c}");
2823    /// }
2824    /// println!();
2825    /// ```
2826    ///
2827    /// Using `println!` directly:
2828    ///
2829    /// ```
2830    /// println!("{}", "❤\n!".escape_debug());
2831    /// ```
2832    ///
2833    ///
2834    /// Both are equivalent to:
2835    ///
2836    /// ```
2837    /// println!("❤\\n!");
2838    /// ```
2839    ///
2840    /// Using `to_string`:
2841    ///
2842    /// ```
2843    /// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
2844    /// ```
2845    #[must_use = "this returns the escaped string as an iterator, \
2846                  without modifying the original"]
2847    #[stable(feature = "str_escape", since = "1.34.0")]
2848    pub fn escape_debug(&self) -> EscapeDebug<'_> {
2849        let mut chars = self.chars();
2850        EscapeDebug {
2851            inner: chars
2852                .next()
2853                .map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL))
2854                .into_iter()
2855                .flatten()
2856                .chain(chars.flat_map(CharEscapeDebugContinue)),
2857        }
2858    }
2859
2860    /// Returns an iterator that escapes each char in `self` with [`char::escape_default`].
2861    ///
2862    /// # Examples
2863    ///
2864    /// As an iterator:
2865    ///
2866    /// ```
2867    /// for c in "❤\n!".escape_default() {
2868    ///     print!("{c}");
2869    /// }
2870    /// println!();
2871    /// ```
2872    ///
2873    /// Using `println!` directly:
2874    ///
2875    /// ```
2876    /// println!("{}", "❤\n!".escape_default());
2877    /// ```
2878    ///
2879    ///
2880    /// Both are equivalent to:
2881    ///
2882    /// ```
2883    /// println!("\\u{{2764}}\\n!");
2884    /// ```
2885    ///
2886    /// Using `to_string`:
2887    ///
2888    /// ```
2889    /// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
2890    /// ```
2891    #[must_use = "this returns the escaped string as an iterator, \
2892                  without modifying the original"]
2893    #[stable(feature = "str_escape", since = "1.34.0")]
2894    pub fn escape_default(&self) -> EscapeDefault<'_> {
2895        EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) }
2896    }
2897
2898    /// Returns an iterator that escapes each char in `self` with [`char::escape_unicode`].
2899    ///
2900    /// # Examples
2901    ///
2902    /// As an iterator:
2903    ///
2904    /// ```
2905    /// for c in "❤\n!".escape_unicode() {
2906    ///     print!("{c}");
2907    /// }
2908    /// println!();
2909    /// ```
2910    ///
2911    /// Using `println!` directly:
2912    ///
2913    /// ```
2914    /// println!("{}", "❤\n!".escape_unicode());
2915    /// ```
2916    ///
2917    ///
2918    /// Both are equivalent to:
2919    ///
2920    /// ```
2921    /// println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
2922    /// ```
2923    ///
2924    /// Using `to_string`:
2925    ///
2926    /// ```
2927    /// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
2928    /// ```
2929    #[must_use = "this returns the escaped string as an iterator, \
2930                  without modifying the original"]
2931    #[stable(feature = "str_escape", since = "1.34.0")]
2932    pub fn escape_unicode(&self) -> EscapeUnicode<'_> {
2933        EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) }
2934    }
2935
2936    /// Returns the range that a substring points to.
2937    ///
2938    /// Returns `None` if `substr` does not point within `self`.
2939    ///
2940    /// Unlike [`str::find`], **this does not search through the string**.
2941    /// Instead, it uses pointer arithmetic to find where in the string
2942    /// `substr` is derived from.
2943    ///
2944    /// This is useful for extending [`str::split`] and similar methods.
2945    ///
2946    /// Note that this method may return false positives (typically either
2947    /// `Some(0..0)` or `Some(self.len()..self.len())`) if `substr` is a
2948    /// zero-length `str` that points at the beginning or end of another,
2949    /// independent, `str`.
2950    ///
2951    /// # Examples
2952    /// ```
2953    /// #![feature(substr_range)]
2954    ///
2955    /// let data = "a, b, b, a";
2956    /// let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());
2957    ///
2958    /// assert_eq!(iter.next(), Some(0..1));
2959    /// assert_eq!(iter.next(), Some(3..4));
2960    /// assert_eq!(iter.next(), Some(6..7));
2961    /// assert_eq!(iter.next(), Some(9..10));
2962    /// ```
2963    #[must_use]
2964    #[unstable(feature = "substr_range", issue = "126769")]
2965    pub fn substr_range(&self, substr: &str) -> Option<Range<usize>> {
2966        self.as_bytes().subslice_range(substr.as_bytes())
2967    }
2968
2969    /// Returns the same string as a string slice `&str`.
2970    ///
2971    /// This method is redundant when used directly on `&str`, but
2972    /// it helps dereferencing other string-like types to string slices,
2973    /// for example references to `Box<str>` or `Arc<str>`.
2974    #[inline]
2975    #[unstable(feature = "str_as_str", issue = "130366")]
2976    pub fn as_str(&self) -> &str {
2977        self
2978    }
2979}
2980
2981#[stable(feature = "rust1", since = "1.0.0")]
2982impl AsRef<[u8]> for str {
2983    #[inline]
2984    fn as_ref(&self) -> &[u8] {
2985        self.as_bytes()
2986    }
2987}
2988
2989#[stable(feature = "rust1", since = "1.0.0")]
2990impl Default for &str {
2991    /// Creates an empty str
2992    #[inline]
2993    fn default() -> Self {
2994        ""
2995    }
2996}
2997
2998#[stable(feature = "default_mut_str", since = "1.28.0")]
2999impl Default for &mut str {
3000    /// Creates an empty mutable str
3001    #[inline]
3002    fn default() -> Self {
3003        // SAFETY: The empty string is valid UTF-8.
3004        unsafe { from_utf8_unchecked_mut(&mut []) }
3005    }
3006}
3007
3008impl_fn_for_zst! {
3009    /// A nameable, cloneable fn type
3010    #[derive(Clone)]
3011    struct LinesMap impl<'a> Fn = |line: &'a str| -> &'a str {
3012        let Some(line) = line.strip_suffix('\n') else { return line };
3013        let Some(line) = line.strip_suffix('\r') else { return line };
3014        line
3015    };
3016
3017    #[derive(Clone)]
3018    struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug {
3019        c.escape_debug_ext(EscapeDebugExtArgs {
3020            escape_grapheme_extended: false,
3021            escape_single_quote: true,
3022            escape_double_quote: true
3023        })
3024    };
3025
3026    #[derive(Clone)]
3027    struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode {
3028        c.escape_unicode()
3029    };
3030    #[derive(Clone)]
3031    struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault {
3032        c.escape_default()
3033    };
3034
3035    #[derive(Clone)]
3036    struct IsWhitespace impl Fn = |c: char| -> bool {
3037        c.is_whitespace()
3038    };
3039
3040    #[derive(Clone)]
3041    struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool {
3042        byte.is_ascii_whitespace()
3043    };
3044
3045    #[derive(Clone)]
3046    struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool {
3047        !s.is_empty()
3048    };
3049
3050    #[derive(Clone)]
3051    struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool {
3052        !s.is_empty()
3053    };
3054
3055    #[derive(Clone)]
3056    struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str {
3057        // SAFETY: not safe
3058        unsafe { from_utf8_unchecked(bytes) }
3059    };
3060}
3061
3062// This is required to make `impl From<&str> for Box<dyn Error>` and `impl<E> From<E> for Box<dyn Error>` not overlap.
3063#[stable(feature = "error_in_core_neg_impl", since = "1.65.0")]
3064impl !crate::error::Error for &str {}