core/str/mod.rs
1//! String manipulation.
2//!
3//! For more details, see the [`std::str`] module.
4//!
5//! [`std::str`]: ../../std/str/index.html
6
7#![stable(feature = "rust1", since = "1.0.0")]
8
9mod converts;
10mod count;
11mod error;
12mod iter;
13mod traits;
14mod validations;
15
16use self::pattern::{DoubleEndedSearcher, Pattern, ReverseSearcher, Searcher};
17use crate::char::{self, EscapeDebugExtArgs};
18use crate::ops::Range;
19use crate::slice::{self, SliceIndex};
20use crate::ub_checks::assert_unsafe_precondition;
21use crate::{ascii, mem};
22
23pub mod pattern;
24
25mod lossy;
26#[unstable(feature = "str_from_raw_parts", issue = "119206")]
27pub use converts::{from_raw_parts, from_raw_parts_mut};
28#[stable(feature = "rust1", since = "1.0.0")]
29pub use converts::{from_utf8, from_utf8_unchecked};
30#[stable(feature = "str_mut_extras", since = "1.20.0")]
31pub use converts::{from_utf8_mut, from_utf8_unchecked_mut};
32#[stable(feature = "rust1", since = "1.0.0")]
33pub use error::{ParseBoolError, Utf8Error};
34#[stable(feature = "encode_utf16", since = "1.8.0")]
35pub use iter::EncodeUtf16;
36#[stable(feature = "rust1", since = "1.0.0")]
37#[allow(deprecated)]
38pub use iter::LinesAny;
39#[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
40pub use iter::SplitAsciiWhitespace;
41#[stable(feature = "split_inclusive", since = "1.51.0")]
42pub use iter::SplitInclusive;
43#[stable(feature = "rust1", since = "1.0.0")]
44pub use iter::{Bytes, CharIndices, Chars, Lines, SplitWhitespace};
45#[stable(feature = "str_escape", since = "1.34.0")]
46pub use iter::{EscapeDebug, EscapeDefault, EscapeUnicode};
47#[stable(feature = "str_match_indices", since = "1.5.0")]
48pub use iter::{MatchIndices, RMatchIndices};
49use iter::{MatchIndicesInternal, MatchesInternal, SplitInternal, SplitNInternal};
50#[stable(feature = "str_matches", since = "1.2.0")]
51pub use iter::{Matches, RMatches};
52#[stable(feature = "rust1", since = "1.0.0")]
53pub use iter::{RSplit, RSplitTerminator, Split, SplitTerminator};
54#[stable(feature = "rust1", since = "1.0.0")]
55pub use iter::{RSplitN, SplitN};
56#[stable(feature = "utf8_chunks", since = "1.79.0")]
57pub use lossy::{Utf8Chunk, Utf8Chunks};
58#[stable(feature = "rust1", since = "1.0.0")]
59pub use traits::FromStr;
60#[unstable(feature = "str_internals", issue = "none")]
61pub use validations::{next_code_point, utf8_char_width};
62
63#[inline(never)]
64#[cold]
65#[track_caller]
66#[rustc_allow_const_fn_unstable(const_eval_select)]
67#[cfg(not(feature = "panic_immediate_abort"))]
68const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
69 crate::intrinsics::const_eval_select((s, begin, end), slice_error_fail_ct, slice_error_fail_rt)
70}
71
72#[cfg(feature = "panic_immediate_abort")]
73const fn slice_error_fail(s: &str, begin: usize, end: usize) -> ! {
74 slice_error_fail_ct(s, begin, end)
75}
76
77#[track_caller]
78const fn slice_error_fail_ct(_: &str, _: usize, _: usize) -> ! {
79 panic!("failed to slice string");
80}
81
82#[track_caller]
83fn slice_error_fail_rt(s: &str, begin: usize, end: usize) -> ! {
84 const MAX_DISPLAY_LENGTH: usize = 256;
85 let trunc_len = s.floor_char_boundary(MAX_DISPLAY_LENGTH);
86 let s_trunc = &s[..trunc_len];
87 let ellipsis = if trunc_len < s.len() { "[...]" } else { "" };
88
89 // 1. out of bounds
90 if begin > s.len() || end > s.len() {
91 let oob_index = if begin > s.len() { begin } else { end };
92 panic!("byte index {oob_index} is out of bounds of `{s_trunc}`{ellipsis}");
93 }
94
95 // 2. begin <= end
96 assert!(
97 begin <= end,
98 "begin <= end ({} <= {}) when slicing `{}`{}",
99 begin,
100 end,
101 s_trunc,
102 ellipsis
103 );
104
105 // 3. character boundary
106 let index = if !s.is_char_boundary(begin) { begin } else { end };
107 // find the character
108 let char_start = s.floor_char_boundary(index);
109 // `char_start` must be less than len and a char boundary
110 let ch = s[char_start..].chars().next().unwrap();
111 let char_range = char_start..char_start + ch.len_utf8();
112 panic!(
113 "byte index {} is not a char boundary; it is inside {:?} (bytes {:?}) of `{}`{}",
114 index, ch, char_range, s_trunc, ellipsis
115 );
116}
117
118impl str {
119 /// Returns the length of `self`.
120 ///
121 /// This length is in bytes, not [`char`]s or graphemes. In other words,
122 /// it might not be what a human considers the length of the string.
123 ///
124 /// [`char`]: prim@char
125 ///
126 /// # Examples
127 ///
128 /// ```
129 /// let len = "foo".len();
130 /// assert_eq!(3, len);
131 ///
132 /// assert_eq!("ƒoo".len(), 4); // fancy f!
133 /// assert_eq!("ƒoo".chars().count(), 3);
134 /// ```
135 #[stable(feature = "rust1", since = "1.0.0")]
136 #[rustc_const_stable(feature = "const_str_len", since = "1.39.0")]
137 #[rustc_diagnostic_item = "str_len"]
138 #[rustc_no_implicit_autorefs]
139 #[must_use]
140 #[inline]
141 pub const fn len(&self) -> usize {
142 self.as_bytes().len()
143 }
144
145 /// Returns `true` if `self` has a length of zero bytes.
146 ///
147 /// # Examples
148 ///
149 /// ```
150 /// let s = "";
151 /// assert!(s.is_empty());
152 ///
153 /// let s = "not empty";
154 /// assert!(!s.is_empty());
155 /// ```
156 #[stable(feature = "rust1", since = "1.0.0")]
157 #[rustc_const_stable(feature = "const_str_is_empty", since = "1.39.0")]
158 #[rustc_no_implicit_autorefs]
159 #[must_use]
160 #[inline]
161 pub const fn is_empty(&self) -> bool {
162 self.len() == 0
163 }
164
165 /// Converts a slice of bytes to a string slice.
166 ///
167 /// A string slice ([`&str`]) is made of bytes ([`u8`]), and a byte slice
168 /// ([`&[u8]`][byteslice]) is made of bytes, so this function converts between
169 /// the two. Not all byte slices are valid string slices, however: [`&str`] requires
170 /// that it is valid UTF-8. `from_utf8()` checks to ensure that the bytes are valid
171 /// UTF-8, and then does the conversion.
172 ///
173 /// [`&str`]: str
174 /// [byteslice]: prim@slice
175 ///
176 /// If you are sure that the byte slice is valid UTF-8, and you don't want to
177 /// incur the overhead of the validity check, there is an unsafe version of
178 /// this function, [`from_utf8_unchecked`], which has the same
179 /// behavior but skips the check.
180 ///
181 /// If you need a `String` instead of a `&str`, consider
182 /// [`String::from_utf8`][string].
183 ///
184 /// [string]: ../std/string/struct.String.html#method.from_utf8
185 ///
186 /// Because you can stack-allocate a `[u8; N]`, and you can take a
187 /// [`&[u8]`][byteslice] of it, this function is one way to have a
188 /// stack-allocated string. There is an example of this in the
189 /// examples section below.
190 ///
191 /// [byteslice]: slice
192 ///
193 /// # Errors
194 ///
195 /// Returns `Err` if the slice is not UTF-8 with a description as to why the
196 /// provided slice is not UTF-8.
197 ///
198 /// # Examples
199 ///
200 /// Basic usage:
201 ///
202 /// ```
203 /// // some bytes, in a vector
204 /// let sparkle_heart = vec![240, 159, 146, 150];
205 ///
206 /// // We can use the ? (try) operator to check if the bytes are valid
207 /// let sparkle_heart = str::from_utf8(&sparkle_heart)?;
208 ///
209 /// assert_eq!("💖", sparkle_heart);
210 /// # Ok::<_, std::str::Utf8Error>(())
211 /// ```
212 ///
213 /// Incorrect bytes:
214 ///
215 /// ```
216 /// // some invalid bytes, in a vector
217 /// let sparkle_heart = vec![0, 159, 146, 150];
218 ///
219 /// assert!(str::from_utf8(&sparkle_heart).is_err());
220 /// ```
221 ///
222 /// See the docs for [`Utf8Error`] for more details on the kinds of
223 /// errors that can be returned.
224 ///
225 /// A "stack allocated string":
226 ///
227 /// ```
228 /// // some bytes, in a stack-allocated array
229 /// let sparkle_heart = [240, 159, 146, 150];
230 ///
231 /// // We know these bytes are valid, so just use `unwrap()`.
232 /// let sparkle_heart: &str = str::from_utf8(&sparkle_heart).unwrap();
233 ///
234 /// assert_eq!("💖", sparkle_heart);
235 /// ```
236 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
237 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
238 #[rustc_diagnostic_item = "str_inherent_from_utf8"]
239 pub const fn from_utf8(v: &[u8]) -> Result<&str, Utf8Error> {
240 converts::from_utf8(v)
241 }
242
243 /// Converts a mutable slice of bytes to a mutable string slice.
244 ///
245 /// # Examples
246 ///
247 /// Basic usage:
248 ///
249 /// ```
250 /// // "Hello, Rust!" as a mutable vector
251 /// let mut hellorust = vec![72, 101, 108, 108, 111, 44, 32, 82, 117, 115, 116, 33];
252 ///
253 /// // As we know these bytes are valid, we can use `unwrap()`
254 /// let outstr = str::from_utf8_mut(&mut hellorust).unwrap();
255 ///
256 /// assert_eq!("Hello, Rust!", outstr);
257 /// ```
258 ///
259 /// Incorrect bytes:
260 ///
261 /// ```
262 /// // Some invalid bytes in a mutable vector
263 /// let mut invalid = vec![128, 223];
264 ///
265 /// assert!(str::from_utf8_mut(&mut invalid).is_err());
266 /// ```
267 /// See the docs for [`Utf8Error`] for more details on the kinds of
268 /// errors that can be returned.
269 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
270 #[rustc_const_stable(feature = "const_str_from_utf8", since = "1.87.0")]
271 #[rustc_diagnostic_item = "str_inherent_from_utf8_mut"]
272 pub const fn from_utf8_mut(v: &mut [u8]) -> Result<&mut str, Utf8Error> {
273 converts::from_utf8_mut(v)
274 }
275
276 /// Converts a slice of bytes to a string slice without checking
277 /// that the string contains valid UTF-8.
278 ///
279 /// See the safe version, [`from_utf8`], for more information.
280 ///
281 /// # Safety
282 ///
283 /// The bytes passed in must be valid UTF-8.
284 ///
285 /// # Examples
286 ///
287 /// Basic usage:
288 ///
289 /// ```
290 /// // some bytes, in a vector
291 /// let sparkle_heart = vec![240, 159, 146, 150];
292 ///
293 /// let sparkle_heart = unsafe {
294 /// str::from_utf8_unchecked(&sparkle_heart)
295 /// };
296 ///
297 /// assert_eq!("💖", sparkle_heart);
298 /// ```
299 #[inline]
300 #[must_use]
301 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
302 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
303 #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked"]
304 pub const unsafe fn from_utf8_unchecked(v: &[u8]) -> &str {
305 // SAFETY: converts::from_utf8_unchecked has the same safety requirements as this function.
306 unsafe { converts::from_utf8_unchecked(v) }
307 }
308
309 /// Converts a slice of bytes to a string slice without checking
310 /// that the string contains valid UTF-8; mutable version.
311 ///
312 /// See the immutable version, [`from_utf8_unchecked()`] for documentation and safety requirements.
313 ///
314 /// # Examples
315 ///
316 /// Basic usage:
317 ///
318 /// ```
319 /// let mut heart = vec![240, 159, 146, 150];
320 /// let heart = unsafe { str::from_utf8_unchecked_mut(&mut heart) };
321 ///
322 /// assert_eq!("💖", heart);
323 /// ```
324 #[inline]
325 #[must_use]
326 #[stable(feature = "inherent_str_constructors", since = "1.87.0")]
327 #[rustc_const_stable(feature = "inherent_str_constructors", since = "1.87.0")]
328 #[rustc_diagnostic_item = "str_inherent_from_utf8_unchecked_mut"]
329 pub const unsafe fn from_utf8_unchecked_mut(v: &mut [u8]) -> &mut str {
330 // SAFETY: converts::from_utf8_unchecked_mut has the same safety requirements as this function.
331 unsafe { converts::from_utf8_unchecked_mut(v) }
332 }
333
334 /// Checks that `index`-th byte is the first byte in a UTF-8 code point
335 /// sequence or the end of the string.
336 ///
337 /// The start and end of the string (when `index == self.len()`) are
338 /// considered to be boundaries.
339 ///
340 /// Returns `false` if `index` is greater than `self.len()`.
341 ///
342 /// # Examples
343 ///
344 /// ```
345 /// let s = "Löwe 老虎 Léopard";
346 /// assert!(s.is_char_boundary(0));
347 /// // start of `老`
348 /// assert!(s.is_char_boundary(6));
349 /// assert!(s.is_char_boundary(s.len()));
350 ///
351 /// // second byte of `ö`
352 /// assert!(!s.is_char_boundary(2));
353 ///
354 /// // third byte of `老`
355 /// assert!(!s.is_char_boundary(8));
356 /// ```
357 #[must_use]
358 #[stable(feature = "is_char_boundary", since = "1.9.0")]
359 #[rustc_const_stable(feature = "const_is_char_boundary", since = "1.86.0")]
360 #[inline]
361 pub const fn is_char_boundary(&self, index: usize) -> bool {
362 // 0 is always ok.
363 // Test for 0 explicitly so that it can optimize out the check
364 // easily and skip reading string data for that case.
365 // Note that optimizing `self.get(..index)` relies on this.
366 if index == 0 {
367 return true;
368 }
369
370 if index >= self.len() {
371 // For `true` we have two options:
372 //
373 // - index == self.len()
374 // Empty strings are valid, so return true
375 // - index > self.len()
376 // In this case return false
377 //
378 // The check is placed exactly here, because it improves generated
379 // code on higher opt-levels. See PR #84751 for more details.
380 index == self.len()
381 } else {
382 self.as_bytes()[index].is_utf8_char_boundary()
383 }
384 }
385
386 /// Finds the closest `x` not exceeding `index` where [`is_char_boundary(x)`] is `true`.
387 ///
388 /// This method can help you truncate a string so that it's still valid UTF-8, but doesn't
389 /// exceed a given number of bytes. Note that this is done purely at the character level
390 /// and can still visually split graphemes, even though the underlying characters aren't
391 /// split. For example, the emoji 🧑🔬 (scientist) could be split so that the string only
392 /// includes 🧑 (person) instead.
393 ///
394 /// [`is_char_boundary(x)`]: Self::is_char_boundary
395 ///
396 /// # Examples
397 ///
398 /// ```
399 /// #![feature(round_char_boundary)]
400 /// let s = "❤️🧡💛💚💙💜";
401 /// assert_eq!(s.len(), 26);
402 /// assert!(!s.is_char_boundary(13));
403 ///
404 /// let closest = s.floor_char_boundary(13);
405 /// assert_eq!(closest, 10);
406 /// assert_eq!(&s[..closest], "❤️🧡");
407 /// ```
408 #[unstable(feature = "round_char_boundary", issue = "93743")]
409 #[inline]
410 pub fn floor_char_boundary(&self, index: usize) -> usize {
411 if index >= self.len() {
412 self.len()
413 } else {
414 let lower_bound = index.saturating_sub(3);
415 let new_index = self.as_bytes()[lower_bound..=index]
416 .iter()
417 .rposition(|b| b.is_utf8_char_boundary());
418
419 // SAFETY: we know that the character boundary will be within four bytes
420 unsafe { lower_bound + new_index.unwrap_unchecked() }
421 }
422 }
423
424 /// Finds the closest `x` not below `index` where [`is_char_boundary(x)`] is `true`.
425 ///
426 /// If `index` is greater than the length of the string, this returns the length of the string.
427 ///
428 /// This method is the natural complement to [`floor_char_boundary`]. See that method
429 /// for more details.
430 ///
431 /// [`floor_char_boundary`]: str::floor_char_boundary
432 /// [`is_char_boundary(x)`]: Self::is_char_boundary
433 ///
434 /// # Examples
435 ///
436 /// ```
437 /// #![feature(round_char_boundary)]
438 /// let s = "❤️🧡💛💚💙💜";
439 /// assert_eq!(s.len(), 26);
440 /// assert!(!s.is_char_boundary(13));
441 ///
442 /// let closest = s.ceil_char_boundary(13);
443 /// assert_eq!(closest, 14);
444 /// assert_eq!(&s[..closest], "❤️🧡💛");
445 /// ```
446 #[unstable(feature = "round_char_boundary", issue = "93743")]
447 #[inline]
448 pub fn ceil_char_boundary(&self, index: usize) -> usize {
449 if index > self.len() {
450 self.len()
451 } else {
452 let upper_bound = Ord::min(index + 4, self.len());
453 self.as_bytes()[index..upper_bound]
454 .iter()
455 .position(|b| b.is_utf8_char_boundary())
456 .map_or(upper_bound, |pos| pos + index)
457 }
458 }
459
460 /// Converts a string slice to a byte slice. To convert the byte slice back
461 /// into a string slice, use the [`from_utf8`] function.
462 ///
463 /// # Examples
464 ///
465 /// ```
466 /// let bytes = "bors".as_bytes();
467 /// assert_eq!(b"bors", bytes);
468 /// ```
469 #[stable(feature = "rust1", since = "1.0.0")]
470 #[rustc_const_stable(feature = "str_as_bytes", since = "1.39.0")]
471 #[must_use]
472 #[inline(always)]
473 #[allow(unused_attributes)]
474 pub const fn as_bytes(&self) -> &[u8] {
475 // SAFETY: const sound because we transmute two types with the same layout
476 unsafe { mem::transmute(self) }
477 }
478
479 /// Converts a mutable string slice to a mutable byte slice.
480 ///
481 /// # Safety
482 ///
483 /// The caller must ensure that the content of the slice is valid UTF-8
484 /// before the borrow ends and the underlying `str` is used.
485 ///
486 /// Use of a `str` whose contents are not valid UTF-8 is undefined behavior.
487 ///
488 /// # Examples
489 ///
490 /// Basic usage:
491 ///
492 /// ```
493 /// let mut s = String::from("Hello");
494 /// let bytes = unsafe { s.as_bytes_mut() };
495 ///
496 /// assert_eq!(b"Hello", bytes);
497 /// ```
498 ///
499 /// Mutability:
500 ///
501 /// ```
502 /// let mut s = String::from("🗻∈🌏");
503 ///
504 /// unsafe {
505 /// let bytes = s.as_bytes_mut();
506 ///
507 /// bytes[0] = 0xF0;
508 /// bytes[1] = 0x9F;
509 /// bytes[2] = 0x8D;
510 /// bytes[3] = 0x94;
511 /// }
512 ///
513 /// assert_eq!("🍔∈🌏", s);
514 /// ```
515 #[stable(feature = "str_mut_extras", since = "1.20.0")]
516 #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
517 #[must_use]
518 #[inline(always)]
519 pub const unsafe fn as_bytes_mut(&mut self) -> &mut [u8] {
520 // SAFETY: the cast from `&str` to `&[u8]` is safe since `str`
521 // has the same layout as `&[u8]` (only std can make this guarantee).
522 // The pointer dereference is safe since it comes from a mutable reference which
523 // is guaranteed to be valid for writes.
524 unsafe { &mut *(self as *mut str as *mut [u8]) }
525 }
526
527 /// Converts a string slice to a raw pointer.
528 ///
529 /// As string slices are a slice of bytes, the raw pointer points to a
530 /// [`u8`]. This pointer will be pointing to the first byte of the string
531 /// slice.
532 ///
533 /// The caller must ensure that the returned pointer is never written to.
534 /// If you need to mutate the contents of the string slice, use [`as_mut_ptr`].
535 ///
536 /// [`as_mut_ptr`]: str::as_mut_ptr
537 ///
538 /// # Examples
539 ///
540 /// ```
541 /// let s = "Hello";
542 /// let ptr = s.as_ptr();
543 /// ```
544 #[stable(feature = "rust1", since = "1.0.0")]
545 #[rustc_const_stable(feature = "rustc_str_as_ptr", since = "1.32.0")]
546 #[rustc_never_returns_null_ptr]
547 #[rustc_as_ptr]
548 #[must_use]
549 #[inline(always)]
550 pub const fn as_ptr(&self) -> *const u8 {
551 self as *const str as *const u8
552 }
553
554 /// Converts a mutable string slice to a raw pointer.
555 ///
556 /// As string slices are a slice of bytes, the raw pointer points to a
557 /// [`u8`]. This pointer will be pointing to the first byte of the string
558 /// slice.
559 ///
560 /// It is your responsibility to make sure that the string slice only gets
561 /// modified in a way that it remains valid UTF-8.
562 #[stable(feature = "str_as_mut_ptr", since = "1.36.0")]
563 #[rustc_const_stable(feature = "const_str_as_mut", since = "1.83.0")]
564 #[rustc_never_returns_null_ptr]
565 #[rustc_as_ptr]
566 #[must_use]
567 #[inline(always)]
568 pub const fn as_mut_ptr(&mut self) -> *mut u8 {
569 self as *mut str as *mut u8
570 }
571
572 /// Returns a subslice of `str`.
573 ///
574 /// This is the non-panicking alternative to indexing the `str`. Returns
575 /// [`None`] whenever equivalent indexing operation would panic.
576 ///
577 /// # Examples
578 ///
579 /// ```
580 /// let v = String::from("🗻∈🌏");
581 ///
582 /// assert_eq!(Some("🗻"), v.get(0..4));
583 ///
584 /// // indices not on UTF-8 sequence boundaries
585 /// assert!(v.get(1..).is_none());
586 /// assert!(v.get(..8).is_none());
587 ///
588 /// // out of bounds
589 /// assert!(v.get(..42).is_none());
590 /// ```
591 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
592 #[inline]
593 pub fn get<I: SliceIndex<str>>(&self, i: I) -> Option<&I::Output> {
594 i.get(self)
595 }
596
597 /// Returns a mutable subslice of `str`.
598 ///
599 /// This is the non-panicking alternative to indexing the `str`. Returns
600 /// [`None`] whenever equivalent indexing operation would panic.
601 ///
602 /// # Examples
603 ///
604 /// ```
605 /// let mut v = String::from("hello");
606 /// // correct length
607 /// assert!(v.get_mut(0..5).is_some());
608 /// // out of bounds
609 /// assert!(v.get_mut(..42).is_none());
610 /// assert_eq!(Some("he"), v.get_mut(0..2).map(|v| &*v));
611 ///
612 /// assert_eq!("hello", v);
613 /// {
614 /// let s = v.get_mut(0..2);
615 /// let s = s.map(|s| {
616 /// s.make_ascii_uppercase();
617 /// &*s
618 /// });
619 /// assert_eq!(Some("HE"), s);
620 /// }
621 /// assert_eq!("HEllo", v);
622 /// ```
623 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
624 #[inline]
625 pub fn get_mut<I: SliceIndex<str>>(&mut self, i: I) -> Option<&mut I::Output> {
626 i.get_mut(self)
627 }
628
629 /// Returns an unchecked subslice of `str`.
630 ///
631 /// This is the unchecked alternative to indexing the `str`.
632 ///
633 /// # Safety
634 ///
635 /// Callers of this function are responsible that these preconditions are
636 /// satisfied:
637 ///
638 /// * The starting index must not exceed the ending index;
639 /// * Indexes must be within bounds of the original slice;
640 /// * Indexes must lie on UTF-8 sequence boundaries.
641 ///
642 /// Failing that, the returned string slice may reference invalid memory or
643 /// violate the invariants communicated by the `str` type.
644 ///
645 /// # Examples
646 ///
647 /// ```
648 /// let v = "🗻∈🌏";
649 /// unsafe {
650 /// assert_eq!("🗻", v.get_unchecked(0..4));
651 /// assert_eq!("∈", v.get_unchecked(4..7));
652 /// assert_eq!("🌏", v.get_unchecked(7..11));
653 /// }
654 /// ```
655 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
656 #[inline]
657 pub unsafe fn get_unchecked<I: SliceIndex<str>>(&self, i: I) -> &I::Output {
658 // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
659 // the slice is dereferenceable because `self` is a safe reference.
660 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
661 unsafe { &*i.get_unchecked(self) }
662 }
663
664 /// Returns a mutable, unchecked subslice of `str`.
665 ///
666 /// This is the unchecked alternative to indexing the `str`.
667 ///
668 /// # Safety
669 ///
670 /// Callers of this function are responsible that these preconditions are
671 /// satisfied:
672 ///
673 /// * The starting index must not exceed the ending index;
674 /// * Indexes must be within bounds of the original slice;
675 /// * Indexes must lie on UTF-8 sequence boundaries.
676 ///
677 /// Failing that, the returned string slice may reference invalid memory or
678 /// violate the invariants communicated by the `str` type.
679 ///
680 /// # Examples
681 ///
682 /// ```
683 /// let mut v = String::from("🗻∈🌏");
684 /// unsafe {
685 /// assert_eq!("🗻", v.get_unchecked_mut(0..4));
686 /// assert_eq!("∈", v.get_unchecked_mut(4..7));
687 /// assert_eq!("🌏", v.get_unchecked_mut(7..11));
688 /// }
689 /// ```
690 #[stable(feature = "str_checked_slicing", since = "1.20.0")]
691 #[inline]
692 pub unsafe fn get_unchecked_mut<I: SliceIndex<str>>(&mut self, i: I) -> &mut I::Output {
693 // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
694 // the slice is dereferenceable because `self` is a safe reference.
695 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
696 unsafe { &mut *i.get_unchecked_mut(self) }
697 }
698
699 /// Creates a string slice from another string slice, bypassing safety
700 /// checks.
701 ///
702 /// This is generally not recommended, use with caution! For a safe
703 /// alternative see [`str`] and [`Index`].
704 ///
705 /// [`Index`]: crate::ops::Index
706 ///
707 /// This new slice goes from `begin` to `end`, including `begin` but
708 /// excluding `end`.
709 ///
710 /// To get a mutable string slice instead, see the
711 /// [`slice_mut_unchecked`] method.
712 ///
713 /// [`slice_mut_unchecked`]: str::slice_mut_unchecked
714 ///
715 /// # Safety
716 ///
717 /// Callers of this function are responsible that three preconditions are
718 /// satisfied:
719 ///
720 /// * `begin` must not exceed `end`.
721 /// * `begin` and `end` must be byte positions within the string slice.
722 /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
723 ///
724 /// # Examples
725 ///
726 /// ```
727 /// let s = "Löwe 老虎 Léopard";
728 ///
729 /// unsafe {
730 /// assert_eq!("Löwe 老虎 Léopard", s.slice_unchecked(0, 21));
731 /// }
732 ///
733 /// let s = "Hello, world!";
734 ///
735 /// unsafe {
736 /// assert_eq!("world", s.slice_unchecked(7, 12));
737 /// }
738 /// ```
739 #[stable(feature = "rust1", since = "1.0.0")]
740 #[deprecated(since = "1.29.0", note = "use `get_unchecked(begin..end)` instead")]
741 #[must_use]
742 #[inline]
743 pub unsafe fn slice_unchecked(&self, begin: usize, end: usize) -> &str {
744 // SAFETY: the caller must uphold the safety contract for `get_unchecked`;
745 // the slice is dereferenceable because `self` is a safe reference.
746 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
747 unsafe { &*(begin..end).get_unchecked(self) }
748 }
749
750 /// Creates a string slice from another string slice, bypassing safety
751 /// checks.
752 ///
753 /// This is generally not recommended, use with caution! For a safe
754 /// alternative see [`str`] and [`IndexMut`].
755 ///
756 /// [`IndexMut`]: crate::ops::IndexMut
757 ///
758 /// This new slice goes from `begin` to `end`, including `begin` but
759 /// excluding `end`.
760 ///
761 /// To get an immutable string slice instead, see the
762 /// [`slice_unchecked`] method.
763 ///
764 /// [`slice_unchecked`]: str::slice_unchecked
765 ///
766 /// # Safety
767 ///
768 /// Callers of this function are responsible that three preconditions are
769 /// satisfied:
770 ///
771 /// * `begin` must not exceed `end`.
772 /// * `begin` and `end` must be byte positions within the string slice.
773 /// * `begin` and `end` must lie on UTF-8 sequence boundaries.
774 #[stable(feature = "str_slice_mut", since = "1.5.0")]
775 #[deprecated(since = "1.29.0", note = "use `get_unchecked_mut(begin..end)` instead")]
776 #[inline]
777 pub unsafe fn slice_mut_unchecked(&mut self, begin: usize, end: usize) -> &mut str {
778 // SAFETY: the caller must uphold the safety contract for `get_unchecked_mut`;
779 // the slice is dereferenceable because `self` is a safe reference.
780 // The returned pointer is safe because impls of `SliceIndex` have to guarantee that it is.
781 unsafe { &mut *(begin..end).get_unchecked_mut(self) }
782 }
783
784 /// Divides one string slice into two at an index.
785 ///
786 /// The argument, `mid`, should be a byte offset from the start of the
787 /// string. It must also be on the boundary of a UTF-8 code point.
788 ///
789 /// The two slices returned go from the start of the string slice to `mid`,
790 /// and from `mid` to the end of the string slice.
791 ///
792 /// To get mutable string slices instead, see the [`split_at_mut`]
793 /// method.
794 ///
795 /// [`split_at_mut`]: str::split_at_mut
796 ///
797 /// # Panics
798 ///
799 /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
800 /// the end of the last code point of the string slice. For a non-panicking
801 /// alternative see [`split_at_checked`](str::split_at_checked).
802 ///
803 /// # Examples
804 ///
805 /// ```
806 /// let s = "Per Martin-Löf";
807 ///
808 /// let (first, last) = s.split_at(3);
809 ///
810 /// assert_eq!("Per", first);
811 /// assert_eq!(" Martin-Löf", last);
812 /// ```
813 #[inline]
814 #[must_use]
815 #[stable(feature = "str_split_at", since = "1.4.0")]
816 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
817 pub const fn split_at(&self, mid: usize) -> (&str, &str) {
818 match self.split_at_checked(mid) {
819 None => slice_error_fail(self, 0, mid),
820 Some(pair) => pair,
821 }
822 }
823
824 /// Divides one mutable string slice into two at an index.
825 ///
826 /// The argument, `mid`, should be a byte offset from the start of the
827 /// string. It must also be on the boundary of a UTF-8 code point.
828 ///
829 /// The two slices returned go from the start of the string slice to `mid`,
830 /// and from `mid` to the end of the string slice.
831 ///
832 /// To get immutable string slices instead, see the [`split_at`] method.
833 ///
834 /// [`split_at`]: str::split_at
835 ///
836 /// # Panics
837 ///
838 /// Panics if `mid` is not on a UTF-8 code point boundary, or if it is past
839 /// the end of the last code point of the string slice. For a non-panicking
840 /// alternative see [`split_at_mut_checked`](str::split_at_mut_checked).
841 ///
842 /// # Examples
843 ///
844 /// ```
845 /// let mut s = "Per Martin-Löf".to_string();
846 /// {
847 /// let (first, last) = s.split_at_mut(3);
848 /// first.make_ascii_uppercase();
849 /// assert_eq!("PER", first);
850 /// assert_eq!(" Martin-Löf", last);
851 /// }
852 /// assert_eq!("PER Martin-Löf", s);
853 /// ```
854 #[inline]
855 #[must_use]
856 #[stable(feature = "str_split_at", since = "1.4.0")]
857 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
858 pub const fn split_at_mut(&mut self, mid: usize) -> (&mut str, &mut str) {
859 // is_char_boundary checks that the index is in [0, .len()]
860 if self.is_char_boundary(mid) {
861 // SAFETY: just checked that `mid` is on a char boundary.
862 unsafe { self.split_at_mut_unchecked(mid) }
863 } else {
864 slice_error_fail(self, 0, mid)
865 }
866 }
867
868 /// Divides one string slice into two at an index.
869 ///
870 /// The argument, `mid`, should be a valid byte offset from the start of the
871 /// string. It must also be on the boundary of a UTF-8 code point. The
872 /// method returns `None` if that’s not the case.
873 ///
874 /// The two slices returned go from the start of the string slice to `mid`,
875 /// and from `mid` to the end of the string slice.
876 ///
877 /// To get mutable string slices instead, see the [`split_at_mut_checked`]
878 /// method.
879 ///
880 /// [`split_at_mut_checked`]: str::split_at_mut_checked
881 ///
882 /// # Examples
883 ///
884 /// ```
885 /// let s = "Per Martin-Löf";
886 ///
887 /// let (first, last) = s.split_at_checked(3).unwrap();
888 /// assert_eq!("Per", first);
889 /// assert_eq!(" Martin-Löf", last);
890 ///
891 /// assert_eq!(None, s.split_at_checked(13)); // Inside “ö”
892 /// assert_eq!(None, s.split_at_checked(16)); // Beyond the string length
893 /// ```
894 #[inline]
895 #[must_use]
896 #[stable(feature = "split_at_checked", since = "1.80.0")]
897 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
898 pub const fn split_at_checked(&self, mid: usize) -> Option<(&str, &str)> {
899 // is_char_boundary checks that the index is in [0, .len()]
900 if self.is_char_boundary(mid) {
901 // SAFETY: just checked that `mid` is on a char boundary.
902 Some(unsafe { self.split_at_unchecked(mid) })
903 } else {
904 None
905 }
906 }
907
908 /// Divides one mutable string slice into two at an index.
909 ///
910 /// The argument, `mid`, should be a valid byte offset from the start of the
911 /// string. It must also be on the boundary of a UTF-8 code point. The
912 /// method returns `None` if that’s not the case.
913 ///
914 /// The two slices returned go from the start of the string slice to `mid`,
915 /// and from `mid` to the end of the string slice.
916 ///
917 /// To get immutable string slices instead, see the [`split_at_checked`] method.
918 ///
919 /// [`split_at_checked`]: str::split_at_checked
920 ///
921 /// # Examples
922 ///
923 /// ```
924 /// let mut s = "Per Martin-Löf".to_string();
925 /// if let Some((first, last)) = s.split_at_mut_checked(3) {
926 /// first.make_ascii_uppercase();
927 /// assert_eq!("PER", first);
928 /// assert_eq!(" Martin-Löf", last);
929 /// }
930 /// assert_eq!("PER Martin-Löf", s);
931 ///
932 /// assert_eq!(None, s.split_at_mut_checked(13)); // Inside “ö”
933 /// assert_eq!(None, s.split_at_mut_checked(16)); // Beyond the string length
934 /// ```
935 #[inline]
936 #[must_use]
937 #[stable(feature = "split_at_checked", since = "1.80.0")]
938 #[rustc_const_stable(feature = "const_str_split_at", since = "1.86.0")]
939 pub const fn split_at_mut_checked(&mut self, mid: usize) -> Option<(&mut str, &mut str)> {
940 // is_char_boundary checks that the index is in [0, .len()]
941 if self.is_char_boundary(mid) {
942 // SAFETY: just checked that `mid` is on a char boundary.
943 Some(unsafe { self.split_at_mut_unchecked(mid) })
944 } else {
945 None
946 }
947 }
948
949 /// Divides one string slice into two at an index.
950 ///
951 /// # Safety
952 ///
953 /// The caller must ensure that `mid` is a valid byte offset from the start
954 /// of the string and falls on the boundary of a UTF-8 code point.
955 const unsafe fn split_at_unchecked(&self, mid: usize) -> (&str, &str) {
956 let len = self.len();
957 let ptr = self.as_ptr();
958 // SAFETY: caller guarantees `mid` is on a char boundary.
959 unsafe {
960 (
961 from_utf8_unchecked(slice::from_raw_parts(ptr, mid)),
962 from_utf8_unchecked(slice::from_raw_parts(ptr.add(mid), len - mid)),
963 )
964 }
965 }
966
967 /// Divides one string slice into two at an index.
968 ///
969 /// # Safety
970 ///
971 /// The caller must ensure that `mid` is a valid byte offset from the start
972 /// of the string and falls on the boundary of a UTF-8 code point.
973 const unsafe fn split_at_mut_unchecked(&mut self, mid: usize) -> (&mut str, &mut str) {
974 let len = self.len();
975 let ptr = self.as_mut_ptr();
976 // SAFETY: caller guarantees `mid` is on a char boundary.
977 unsafe {
978 (
979 from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr, mid)),
980 from_utf8_unchecked_mut(slice::from_raw_parts_mut(ptr.add(mid), len - mid)),
981 )
982 }
983 }
984
985 /// Returns an iterator over the [`char`]s of a string slice.
986 ///
987 /// As a string slice consists of valid UTF-8, we can iterate through a
988 /// string slice by [`char`]. This method returns such an iterator.
989 ///
990 /// It's important to remember that [`char`] represents a Unicode Scalar
991 /// Value, and might not match your idea of what a 'character' is. Iteration
992 /// over grapheme clusters may be what you actually want. This functionality
993 /// is not provided by Rust's standard library, check crates.io instead.
994 ///
995 /// # Examples
996 ///
997 /// Basic usage:
998 ///
999 /// ```
1000 /// let word = "goodbye";
1001 ///
1002 /// let count = word.chars().count();
1003 /// assert_eq!(7, count);
1004 ///
1005 /// let mut chars = word.chars();
1006 ///
1007 /// assert_eq!(Some('g'), chars.next());
1008 /// assert_eq!(Some('o'), chars.next());
1009 /// assert_eq!(Some('o'), chars.next());
1010 /// assert_eq!(Some('d'), chars.next());
1011 /// assert_eq!(Some('b'), chars.next());
1012 /// assert_eq!(Some('y'), chars.next());
1013 /// assert_eq!(Some('e'), chars.next());
1014 ///
1015 /// assert_eq!(None, chars.next());
1016 /// ```
1017 ///
1018 /// Remember, [`char`]s might not match your intuition about characters:
1019 ///
1020 /// [`char`]: prim@char
1021 ///
1022 /// ```
1023 /// let y = "y̆";
1024 ///
1025 /// let mut chars = y.chars();
1026 ///
1027 /// assert_eq!(Some('y'), chars.next()); // not 'y̆'
1028 /// assert_eq!(Some('\u{0306}'), chars.next());
1029 ///
1030 /// assert_eq!(None, chars.next());
1031 /// ```
1032 #[stable(feature = "rust1", since = "1.0.0")]
1033 #[inline]
1034 #[rustc_diagnostic_item = "str_chars"]
1035 pub fn chars(&self) -> Chars<'_> {
1036 Chars { iter: self.as_bytes().iter() }
1037 }
1038
1039 /// Returns an iterator over the [`char`]s of a string slice, and their
1040 /// positions.
1041 ///
1042 /// As a string slice consists of valid UTF-8, we can iterate through a
1043 /// string slice by [`char`]. This method returns an iterator of both
1044 /// these [`char`]s, as well as their byte positions.
1045 ///
1046 /// The iterator yields tuples. The position is first, the [`char`] is
1047 /// second.
1048 ///
1049 /// # Examples
1050 ///
1051 /// Basic usage:
1052 ///
1053 /// ```
1054 /// let word = "goodbye";
1055 ///
1056 /// let count = word.char_indices().count();
1057 /// assert_eq!(7, count);
1058 ///
1059 /// let mut char_indices = word.char_indices();
1060 ///
1061 /// assert_eq!(Some((0, 'g')), char_indices.next());
1062 /// assert_eq!(Some((1, 'o')), char_indices.next());
1063 /// assert_eq!(Some((2, 'o')), char_indices.next());
1064 /// assert_eq!(Some((3, 'd')), char_indices.next());
1065 /// assert_eq!(Some((4, 'b')), char_indices.next());
1066 /// assert_eq!(Some((5, 'y')), char_indices.next());
1067 /// assert_eq!(Some((6, 'e')), char_indices.next());
1068 ///
1069 /// assert_eq!(None, char_indices.next());
1070 /// ```
1071 ///
1072 /// Remember, [`char`]s might not match your intuition about characters:
1073 ///
1074 /// [`char`]: prim@char
1075 ///
1076 /// ```
1077 /// let yes = "y̆es";
1078 ///
1079 /// let mut char_indices = yes.char_indices();
1080 ///
1081 /// assert_eq!(Some((0, 'y')), char_indices.next()); // not (0, 'y̆')
1082 /// assert_eq!(Some((1, '\u{0306}')), char_indices.next());
1083 ///
1084 /// // note the 3 here - the previous character took up two bytes
1085 /// assert_eq!(Some((3, 'e')), char_indices.next());
1086 /// assert_eq!(Some((4, 's')), char_indices.next());
1087 ///
1088 /// assert_eq!(None, char_indices.next());
1089 /// ```
1090 #[stable(feature = "rust1", since = "1.0.0")]
1091 #[inline]
1092 pub fn char_indices(&self) -> CharIndices<'_> {
1093 CharIndices { front_offset: 0, iter: self.chars() }
1094 }
1095
1096 /// Returns an iterator over the bytes of a string slice.
1097 ///
1098 /// As a string slice consists of a sequence of bytes, we can iterate
1099 /// through a string slice by byte. This method returns such an iterator.
1100 ///
1101 /// # Examples
1102 ///
1103 /// ```
1104 /// let mut bytes = "bors".bytes();
1105 ///
1106 /// assert_eq!(Some(b'b'), bytes.next());
1107 /// assert_eq!(Some(b'o'), bytes.next());
1108 /// assert_eq!(Some(b'r'), bytes.next());
1109 /// assert_eq!(Some(b's'), bytes.next());
1110 ///
1111 /// assert_eq!(None, bytes.next());
1112 /// ```
1113 #[stable(feature = "rust1", since = "1.0.0")]
1114 #[inline]
1115 pub fn bytes(&self) -> Bytes<'_> {
1116 Bytes(self.as_bytes().iter().copied())
1117 }
1118
1119 /// Splits a string slice by whitespace.
1120 ///
1121 /// The iterator returned will return string slices that are sub-slices of
1122 /// the original string slice, separated by any amount of whitespace.
1123 ///
1124 /// 'Whitespace' is defined according to the terms of the Unicode Derived
1125 /// Core Property `White_Space`. If you only want to split on ASCII whitespace
1126 /// instead, use [`split_ascii_whitespace`].
1127 ///
1128 /// [`split_ascii_whitespace`]: str::split_ascii_whitespace
1129 ///
1130 /// # Examples
1131 ///
1132 /// Basic usage:
1133 ///
1134 /// ```
1135 /// let mut iter = "A few words".split_whitespace();
1136 ///
1137 /// assert_eq!(Some("A"), iter.next());
1138 /// assert_eq!(Some("few"), iter.next());
1139 /// assert_eq!(Some("words"), iter.next());
1140 ///
1141 /// assert_eq!(None, iter.next());
1142 /// ```
1143 ///
1144 /// All kinds of whitespace are considered:
1145 ///
1146 /// ```
1147 /// let mut iter = " Mary had\ta\u{2009}little \n\t lamb".split_whitespace();
1148 /// assert_eq!(Some("Mary"), iter.next());
1149 /// assert_eq!(Some("had"), iter.next());
1150 /// assert_eq!(Some("a"), iter.next());
1151 /// assert_eq!(Some("little"), iter.next());
1152 /// assert_eq!(Some("lamb"), iter.next());
1153 ///
1154 /// assert_eq!(None, iter.next());
1155 /// ```
1156 ///
1157 /// If the string is empty or all whitespace, the iterator yields no string slices:
1158 /// ```
1159 /// assert_eq!("".split_whitespace().next(), None);
1160 /// assert_eq!(" ".split_whitespace().next(), None);
1161 /// ```
1162 #[must_use = "this returns the split string as an iterator, \
1163 without modifying the original"]
1164 #[stable(feature = "split_whitespace", since = "1.1.0")]
1165 #[rustc_diagnostic_item = "str_split_whitespace"]
1166 #[inline]
1167 pub fn split_whitespace(&self) -> SplitWhitespace<'_> {
1168 SplitWhitespace { inner: self.split(IsWhitespace).filter(IsNotEmpty) }
1169 }
1170
1171 /// Splits a string slice by ASCII whitespace.
1172 ///
1173 /// The iterator returned will return string slices that are sub-slices of
1174 /// the original string slice, separated by any amount of ASCII whitespace.
1175 ///
1176 /// To split by Unicode `Whitespace` instead, use [`split_whitespace`].
1177 ///
1178 /// [`split_whitespace`]: str::split_whitespace
1179 ///
1180 /// # Examples
1181 ///
1182 /// Basic usage:
1183 ///
1184 /// ```
1185 /// let mut iter = "A few words".split_ascii_whitespace();
1186 ///
1187 /// assert_eq!(Some("A"), iter.next());
1188 /// assert_eq!(Some("few"), iter.next());
1189 /// assert_eq!(Some("words"), iter.next());
1190 ///
1191 /// assert_eq!(None, iter.next());
1192 /// ```
1193 ///
1194 /// All kinds of ASCII whitespace are considered:
1195 ///
1196 /// ```
1197 /// let mut iter = " Mary had\ta little \n\t lamb".split_ascii_whitespace();
1198 /// assert_eq!(Some("Mary"), iter.next());
1199 /// assert_eq!(Some("had"), iter.next());
1200 /// assert_eq!(Some("a"), iter.next());
1201 /// assert_eq!(Some("little"), iter.next());
1202 /// assert_eq!(Some("lamb"), iter.next());
1203 ///
1204 /// assert_eq!(None, iter.next());
1205 /// ```
1206 ///
1207 /// If the string is empty or all ASCII whitespace, the iterator yields no string slices:
1208 /// ```
1209 /// assert_eq!("".split_ascii_whitespace().next(), None);
1210 /// assert_eq!(" ".split_ascii_whitespace().next(), None);
1211 /// ```
1212 #[must_use = "this returns the split string as an iterator, \
1213 without modifying the original"]
1214 #[stable(feature = "split_ascii_whitespace", since = "1.34.0")]
1215 #[inline]
1216 pub fn split_ascii_whitespace(&self) -> SplitAsciiWhitespace<'_> {
1217 let inner =
1218 self.as_bytes().split(IsAsciiWhitespace).filter(BytesIsNotEmpty).map(UnsafeBytesToStr);
1219 SplitAsciiWhitespace { inner }
1220 }
1221
1222 /// Returns an iterator over the lines of a string, as string slices.
1223 ///
1224 /// Lines are split at line endings that are either newlines (`\n`) or
1225 /// sequences of a carriage return followed by a line feed (`\r\n`).
1226 ///
1227 /// Line terminators are not included in the lines returned by the iterator.
1228 ///
1229 /// Note that any carriage return (`\r`) not immediately followed by a
1230 /// line feed (`\n`) does not split a line. These carriage returns are
1231 /// thereby included in the produced lines.
1232 ///
1233 /// The final line ending is optional. A string that ends with a final line
1234 /// ending will return the same lines as an otherwise identical string
1235 /// without a final line ending.
1236 ///
1237 /// # Examples
1238 ///
1239 /// Basic usage:
1240 ///
1241 /// ```
1242 /// let text = "foo\r\nbar\n\nbaz\r";
1243 /// let mut lines = text.lines();
1244 ///
1245 /// assert_eq!(Some("foo"), lines.next());
1246 /// assert_eq!(Some("bar"), lines.next());
1247 /// assert_eq!(Some(""), lines.next());
1248 /// // Trailing carriage return is included in the last line
1249 /// assert_eq!(Some("baz\r"), lines.next());
1250 ///
1251 /// assert_eq!(None, lines.next());
1252 /// ```
1253 ///
1254 /// The final line does not require any ending:
1255 ///
1256 /// ```
1257 /// let text = "foo\nbar\n\r\nbaz";
1258 /// let mut lines = text.lines();
1259 ///
1260 /// assert_eq!(Some("foo"), lines.next());
1261 /// assert_eq!(Some("bar"), lines.next());
1262 /// assert_eq!(Some(""), lines.next());
1263 /// assert_eq!(Some("baz"), lines.next());
1264 ///
1265 /// assert_eq!(None, lines.next());
1266 /// ```
1267 #[stable(feature = "rust1", since = "1.0.0")]
1268 #[inline]
1269 pub fn lines(&self) -> Lines<'_> {
1270 Lines(self.split_inclusive('\n').map(LinesMap))
1271 }
1272
1273 /// Returns an iterator over the lines of a string.
1274 #[stable(feature = "rust1", since = "1.0.0")]
1275 #[deprecated(since = "1.4.0", note = "use lines() instead now", suggestion = "lines")]
1276 #[inline]
1277 #[allow(deprecated)]
1278 pub fn lines_any(&self) -> LinesAny<'_> {
1279 LinesAny(self.lines())
1280 }
1281
1282 /// Returns an iterator of `u16` over the string encoded
1283 /// as native endian UTF-16 (without byte-order mark).
1284 ///
1285 /// # Examples
1286 ///
1287 /// ```
1288 /// let text = "Zażółć gęślą jaźń";
1289 ///
1290 /// let utf8_len = text.len();
1291 /// let utf16_len = text.encode_utf16().count();
1292 ///
1293 /// assert!(utf16_len <= utf8_len);
1294 /// ```
1295 #[must_use = "this returns the encoded string as an iterator, \
1296 without modifying the original"]
1297 #[stable(feature = "encode_utf16", since = "1.8.0")]
1298 pub fn encode_utf16(&self) -> EncodeUtf16<'_> {
1299 EncodeUtf16 { chars: self.chars(), extra: 0 }
1300 }
1301
1302 /// Returns `true` if the given pattern matches a sub-slice of
1303 /// this string slice.
1304 ///
1305 /// Returns `false` if it does not.
1306 ///
1307 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1308 /// function or closure that determines if a character matches.
1309 ///
1310 /// [`char`]: prim@char
1311 /// [pattern]: self::pattern
1312 ///
1313 /// # Examples
1314 ///
1315 /// ```
1316 /// let bananas = "bananas";
1317 ///
1318 /// assert!(bananas.contains("nana"));
1319 /// assert!(!bananas.contains("apples"));
1320 /// ```
1321 #[stable(feature = "rust1", since = "1.0.0")]
1322 #[inline]
1323 pub fn contains<P: Pattern>(&self, pat: P) -> bool {
1324 pat.is_contained_in(self)
1325 }
1326
1327 /// Returns `true` if the given pattern matches a prefix of this
1328 /// string slice.
1329 ///
1330 /// Returns `false` if it does not.
1331 ///
1332 /// The [pattern] can be a `&str`, in which case this function will return true if
1333 /// the `&str` is a prefix of this string slice.
1334 ///
1335 /// The [pattern] can also be a [`char`], a slice of [`char`]s, or a
1336 /// function or closure that determines if a character matches.
1337 /// These will only be checked against the first character of this string slice.
1338 /// Look at the second example below regarding behavior for slices of [`char`]s.
1339 ///
1340 /// [`char`]: prim@char
1341 /// [pattern]: self::pattern
1342 ///
1343 /// # Examples
1344 ///
1345 /// ```
1346 /// let bananas = "bananas";
1347 ///
1348 /// assert!(bananas.starts_with("bana"));
1349 /// assert!(!bananas.starts_with("nana"));
1350 /// ```
1351 ///
1352 /// ```
1353 /// let bananas = "bananas";
1354 ///
1355 /// // Note that both of these assert successfully.
1356 /// assert!(bananas.starts_with(&['b', 'a', 'n', 'a']));
1357 /// assert!(bananas.starts_with(&['a', 'b', 'c', 'd']));
1358 /// ```
1359 #[stable(feature = "rust1", since = "1.0.0")]
1360 #[rustc_diagnostic_item = "str_starts_with"]
1361 pub fn starts_with<P: Pattern>(&self, pat: P) -> bool {
1362 pat.is_prefix_of(self)
1363 }
1364
1365 /// Returns `true` if the given pattern matches a suffix of this
1366 /// string slice.
1367 ///
1368 /// Returns `false` if it does not.
1369 ///
1370 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1371 /// function or closure that determines if a character matches.
1372 ///
1373 /// [`char`]: prim@char
1374 /// [pattern]: self::pattern
1375 ///
1376 /// # Examples
1377 ///
1378 /// ```
1379 /// let bananas = "bananas";
1380 ///
1381 /// assert!(bananas.ends_with("anas"));
1382 /// assert!(!bananas.ends_with("nana"));
1383 /// ```
1384 #[stable(feature = "rust1", since = "1.0.0")]
1385 #[rustc_diagnostic_item = "str_ends_with"]
1386 pub fn ends_with<P: Pattern>(&self, pat: P) -> bool
1387 where
1388 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1389 {
1390 pat.is_suffix_of(self)
1391 }
1392
1393 /// Returns the byte index of the first character of this string slice that
1394 /// matches the pattern.
1395 ///
1396 /// Returns [`None`] if the pattern doesn't match.
1397 ///
1398 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1399 /// function or closure that determines if a character matches.
1400 ///
1401 /// [`char`]: prim@char
1402 /// [pattern]: self::pattern
1403 ///
1404 /// # Examples
1405 ///
1406 /// Simple patterns:
1407 ///
1408 /// ```
1409 /// let s = "Löwe 老虎 Léopard Gepardi";
1410 ///
1411 /// assert_eq!(s.find('L'), Some(0));
1412 /// assert_eq!(s.find('é'), Some(14));
1413 /// assert_eq!(s.find("pard"), Some(17));
1414 /// ```
1415 ///
1416 /// More complex patterns using point-free style and closures:
1417 ///
1418 /// ```
1419 /// let s = "Löwe 老虎 Léopard";
1420 ///
1421 /// assert_eq!(s.find(char::is_whitespace), Some(5));
1422 /// assert_eq!(s.find(char::is_lowercase), Some(1));
1423 /// assert_eq!(s.find(|c: char| c.is_whitespace() || c.is_lowercase()), Some(1));
1424 /// assert_eq!(s.find(|c: char| (c < 'o') && (c > 'a')), Some(4));
1425 /// ```
1426 ///
1427 /// Not finding the pattern:
1428 ///
1429 /// ```
1430 /// let s = "Löwe 老虎 Léopard";
1431 /// let x: &[_] = &['1', '2'];
1432 ///
1433 /// assert_eq!(s.find(x), None);
1434 /// ```
1435 #[stable(feature = "rust1", since = "1.0.0")]
1436 #[inline]
1437 pub fn find<P: Pattern>(&self, pat: P) -> Option<usize> {
1438 pat.into_searcher(self).next_match().map(|(i, _)| i)
1439 }
1440
1441 /// Returns the byte index for the first character of the last match of the pattern in
1442 /// this string slice.
1443 ///
1444 /// Returns [`None`] if the pattern doesn't match.
1445 ///
1446 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1447 /// function or closure that determines if a character matches.
1448 ///
1449 /// [`char`]: prim@char
1450 /// [pattern]: self::pattern
1451 ///
1452 /// # Examples
1453 ///
1454 /// Simple patterns:
1455 ///
1456 /// ```
1457 /// let s = "Löwe 老虎 Léopard Gepardi";
1458 ///
1459 /// assert_eq!(s.rfind('L'), Some(13));
1460 /// assert_eq!(s.rfind('é'), Some(14));
1461 /// assert_eq!(s.rfind("pard"), Some(24));
1462 /// ```
1463 ///
1464 /// More complex patterns with closures:
1465 ///
1466 /// ```
1467 /// let s = "Löwe 老虎 Léopard";
1468 ///
1469 /// assert_eq!(s.rfind(char::is_whitespace), Some(12));
1470 /// assert_eq!(s.rfind(char::is_lowercase), Some(20));
1471 /// ```
1472 ///
1473 /// Not finding the pattern:
1474 ///
1475 /// ```
1476 /// let s = "Löwe 老虎 Léopard";
1477 /// let x: &[_] = &['1', '2'];
1478 ///
1479 /// assert_eq!(s.rfind(x), None);
1480 /// ```
1481 #[stable(feature = "rust1", since = "1.0.0")]
1482 #[inline]
1483 pub fn rfind<P: Pattern>(&self, pat: P) -> Option<usize>
1484 where
1485 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1486 {
1487 pat.into_searcher(self).next_match_back().map(|(i, _)| i)
1488 }
1489
1490 /// Returns an iterator over substrings of this string slice, separated by
1491 /// characters matched by a pattern.
1492 ///
1493 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1494 /// function or closure that determines if a character matches.
1495 ///
1496 /// [`char`]: prim@char
1497 /// [pattern]: self::pattern
1498 ///
1499 /// # Iterator behavior
1500 ///
1501 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1502 /// allows a reverse search and forward/reverse search yields the same
1503 /// elements. This is true for, e.g., [`char`], but not for `&str`.
1504 ///
1505 /// If the pattern allows a reverse search but its results might differ
1506 /// from a forward search, the [`rsplit`] method can be used.
1507 ///
1508 /// [`rsplit`]: str::rsplit
1509 ///
1510 /// # Examples
1511 ///
1512 /// Simple patterns:
1513 ///
1514 /// ```
1515 /// let v: Vec<&str> = "Mary had a little lamb".split(' ').collect();
1516 /// assert_eq!(v, ["Mary", "had", "a", "little", "lamb"]);
1517 ///
1518 /// let v: Vec<&str> = "".split('X').collect();
1519 /// assert_eq!(v, [""]);
1520 ///
1521 /// let v: Vec<&str> = "lionXXtigerXleopard".split('X').collect();
1522 /// assert_eq!(v, ["lion", "", "tiger", "leopard"]);
1523 ///
1524 /// let v: Vec<&str> = "lion::tiger::leopard".split("::").collect();
1525 /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1526 ///
1527 /// let v: Vec<&str> = "abc1def2ghi".split(char::is_numeric).collect();
1528 /// assert_eq!(v, ["abc", "def", "ghi"]);
1529 ///
1530 /// let v: Vec<&str> = "lionXtigerXleopard".split(char::is_uppercase).collect();
1531 /// assert_eq!(v, ["lion", "tiger", "leopard"]);
1532 /// ```
1533 ///
1534 /// If the pattern is a slice of chars, split on each occurrence of any of the characters:
1535 ///
1536 /// ```
1537 /// let v: Vec<&str> = "2020-11-03 23:59".split(&['-', ' ', ':', '@'][..]).collect();
1538 /// assert_eq!(v, ["2020", "11", "03", "23", "59"]);
1539 /// ```
1540 ///
1541 /// A more complex pattern, using a closure:
1542 ///
1543 /// ```
1544 /// let v: Vec<&str> = "abc1defXghi".split(|c| c == '1' || c == 'X').collect();
1545 /// assert_eq!(v, ["abc", "def", "ghi"]);
1546 /// ```
1547 ///
1548 /// If a string contains multiple contiguous separators, you will end up
1549 /// with empty strings in the output:
1550 ///
1551 /// ```
1552 /// let x = "||||a||b|c".to_string();
1553 /// let d: Vec<_> = x.split('|').collect();
1554 ///
1555 /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1556 /// ```
1557 ///
1558 /// Contiguous separators are separated by the empty string.
1559 ///
1560 /// ```
1561 /// let x = "(///)".to_string();
1562 /// let d: Vec<_> = x.split('/').collect();
1563 ///
1564 /// assert_eq!(d, &["(", "", "", ")"]);
1565 /// ```
1566 ///
1567 /// Separators at the start or end of a string are neighbored
1568 /// by empty strings.
1569 ///
1570 /// ```
1571 /// let d: Vec<_> = "010".split("0").collect();
1572 /// assert_eq!(d, &["", "1", ""]);
1573 /// ```
1574 ///
1575 /// When the empty string is used as a separator, it separates
1576 /// every character in the string, along with the beginning
1577 /// and end of the string.
1578 ///
1579 /// ```
1580 /// let f: Vec<_> = "rust".split("").collect();
1581 /// assert_eq!(f, &["", "r", "u", "s", "t", ""]);
1582 /// ```
1583 ///
1584 /// Contiguous separators can lead to possibly surprising behavior
1585 /// when whitespace is used as the separator. This code is correct:
1586 ///
1587 /// ```
1588 /// let x = " a b c".to_string();
1589 /// let d: Vec<_> = x.split(' ').collect();
1590 ///
1591 /// assert_eq!(d, &["", "", "", "", "a", "", "b", "c"]);
1592 /// ```
1593 ///
1594 /// It does _not_ give you:
1595 ///
1596 /// ```,ignore
1597 /// assert_eq!(d, &["a", "b", "c"]);
1598 /// ```
1599 ///
1600 /// Use [`split_whitespace`] for this behavior.
1601 ///
1602 /// [`split_whitespace`]: str::split_whitespace
1603 #[stable(feature = "rust1", since = "1.0.0")]
1604 #[inline]
1605 pub fn split<P: Pattern>(&self, pat: P) -> Split<'_, P> {
1606 Split(SplitInternal {
1607 start: 0,
1608 end: self.len(),
1609 matcher: pat.into_searcher(self),
1610 allow_trailing_empty: true,
1611 finished: false,
1612 })
1613 }
1614
1615 /// Returns an iterator over substrings of this string slice, separated by
1616 /// characters matched by a pattern.
1617 ///
1618 /// Differs from the iterator produced by `split` in that `split_inclusive`
1619 /// leaves the matched part as the terminator of the substring.
1620 ///
1621 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1622 /// function or closure that determines if a character matches.
1623 ///
1624 /// [`char`]: prim@char
1625 /// [pattern]: self::pattern
1626 ///
1627 /// # Examples
1628 ///
1629 /// ```
1630 /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb."
1631 /// .split_inclusive('\n').collect();
1632 /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb."]);
1633 /// ```
1634 ///
1635 /// If the last element of the string is matched,
1636 /// that element will be considered the terminator of the preceding substring.
1637 /// That substring will be the last item returned by the iterator.
1638 ///
1639 /// ```
1640 /// let v: Vec<&str> = "Mary had a little lamb\nlittle lamb\nlittle lamb.\n"
1641 /// .split_inclusive('\n').collect();
1642 /// assert_eq!(v, ["Mary had a little lamb\n", "little lamb\n", "little lamb.\n"]);
1643 /// ```
1644 #[stable(feature = "split_inclusive", since = "1.51.0")]
1645 #[inline]
1646 pub fn split_inclusive<P: Pattern>(&self, pat: P) -> SplitInclusive<'_, P> {
1647 SplitInclusive(SplitInternal {
1648 start: 0,
1649 end: self.len(),
1650 matcher: pat.into_searcher(self),
1651 allow_trailing_empty: false,
1652 finished: false,
1653 })
1654 }
1655
1656 /// Returns an iterator over substrings of the given string slice, separated
1657 /// by characters matched by a pattern and yielded in reverse order.
1658 ///
1659 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1660 /// function or closure that determines if a character matches.
1661 ///
1662 /// [`char`]: prim@char
1663 /// [pattern]: self::pattern
1664 ///
1665 /// # Iterator behavior
1666 ///
1667 /// The returned iterator requires that the pattern supports a reverse
1668 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
1669 /// search yields the same elements.
1670 ///
1671 /// For iterating from the front, the [`split`] method can be used.
1672 ///
1673 /// [`split`]: str::split
1674 ///
1675 /// # Examples
1676 ///
1677 /// Simple patterns:
1678 ///
1679 /// ```
1680 /// let v: Vec<&str> = "Mary had a little lamb".rsplit(' ').collect();
1681 /// assert_eq!(v, ["lamb", "little", "a", "had", "Mary"]);
1682 ///
1683 /// let v: Vec<&str> = "".rsplit('X').collect();
1684 /// assert_eq!(v, [""]);
1685 ///
1686 /// let v: Vec<&str> = "lionXXtigerXleopard".rsplit('X').collect();
1687 /// assert_eq!(v, ["leopard", "tiger", "", "lion"]);
1688 ///
1689 /// let v: Vec<&str> = "lion::tiger::leopard".rsplit("::").collect();
1690 /// assert_eq!(v, ["leopard", "tiger", "lion"]);
1691 /// ```
1692 ///
1693 /// A more complex pattern, using a closure:
1694 ///
1695 /// ```
1696 /// let v: Vec<&str> = "abc1defXghi".rsplit(|c| c == '1' || c == 'X').collect();
1697 /// assert_eq!(v, ["ghi", "def", "abc"]);
1698 /// ```
1699 #[stable(feature = "rust1", since = "1.0.0")]
1700 #[inline]
1701 pub fn rsplit<P: Pattern>(&self, pat: P) -> RSplit<'_, P>
1702 where
1703 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1704 {
1705 RSplit(self.split(pat).0)
1706 }
1707
1708 /// Returns an iterator over substrings of the given string slice, separated
1709 /// by characters matched by a pattern.
1710 ///
1711 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1712 /// function or closure that determines if a character matches.
1713 ///
1714 /// [`char`]: prim@char
1715 /// [pattern]: self::pattern
1716 ///
1717 /// Equivalent to [`split`], except that the trailing substring
1718 /// is skipped if empty.
1719 ///
1720 /// [`split`]: str::split
1721 ///
1722 /// This method can be used for string data that is _terminated_,
1723 /// rather than _separated_ by a pattern.
1724 ///
1725 /// # Iterator behavior
1726 ///
1727 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1728 /// allows a reverse search and forward/reverse search yields the same
1729 /// elements. This is true for, e.g., [`char`], but not for `&str`.
1730 ///
1731 /// If the pattern allows a reverse search but its results might differ
1732 /// from a forward search, the [`rsplit_terminator`] method can be used.
1733 ///
1734 /// [`rsplit_terminator`]: str::rsplit_terminator
1735 ///
1736 /// # Examples
1737 ///
1738 /// ```
1739 /// let v: Vec<&str> = "A.B.".split_terminator('.').collect();
1740 /// assert_eq!(v, ["A", "B"]);
1741 ///
1742 /// let v: Vec<&str> = "A..B..".split_terminator(".").collect();
1743 /// assert_eq!(v, ["A", "", "B", ""]);
1744 ///
1745 /// let v: Vec<&str> = "A.B:C.D".split_terminator(&['.', ':'][..]).collect();
1746 /// assert_eq!(v, ["A", "B", "C", "D"]);
1747 /// ```
1748 #[stable(feature = "rust1", since = "1.0.0")]
1749 #[inline]
1750 pub fn split_terminator<P: Pattern>(&self, pat: P) -> SplitTerminator<'_, P> {
1751 SplitTerminator(SplitInternal { allow_trailing_empty: false, ..self.split(pat).0 })
1752 }
1753
1754 /// Returns an iterator over substrings of `self`, separated by characters
1755 /// matched by a pattern and yielded in reverse order.
1756 ///
1757 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1758 /// function or closure that determines if a character matches.
1759 ///
1760 /// [`char`]: prim@char
1761 /// [pattern]: self::pattern
1762 ///
1763 /// Equivalent to [`split`], except that the trailing substring is
1764 /// skipped if empty.
1765 ///
1766 /// [`split`]: str::split
1767 ///
1768 /// This method can be used for string data that is _terminated_,
1769 /// rather than _separated_ by a pattern.
1770 ///
1771 /// # Iterator behavior
1772 ///
1773 /// The returned iterator requires that the pattern supports a
1774 /// reverse search, and it will be double ended if a forward/reverse
1775 /// search yields the same elements.
1776 ///
1777 /// For iterating from the front, the [`split_terminator`] method can be
1778 /// used.
1779 ///
1780 /// [`split_terminator`]: str::split_terminator
1781 ///
1782 /// # Examples
1783 ///
1784 /// ```
1785 /// let v: Vec<&str> = "A.B.".rsplit_terminator('.').collect();
1786 /// assert_eq!(v, ["B", "A"]);
1787 ///
1788 /// let v: Vec<&str> = "A..B..".rsplit_terminator(".").collect();
1789 /// assert_eq!(v, ["", "B", "", "A"]);
1790 ///
1791 /// let v: Vec<&str> = "A.B:C.D".rsplit_terminator(&['.', ':'][..]).collect();
1792 /// assert_eq!(v, ["D", "C", "B", "A"]);
1793 /// ```
1794 #[stable(feature = "rust1", since = "1.0.0")]
1795 #[inline]
1796 pub fn rsplit_terminator<P: Pattern>(&self, pat: P) -> RSplitTerminator<'_, P>
1797 where
1798 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1799 {
1800 RSplitTerminator(self.split_terminator(pat).0)
1801 }
1802
1803 /// Returns an iterator over substrings of the given string slice, separated
1804 /// by a pattern, restricted to returning at most `n` items.
1805 ///
1806 /// If `n` substrings are returned, the last substring (the `n`th substring)
1807 /// will contain the remainder of the string.
1808 ///
1809 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1810 /// function or closure that determines if a character matches.
1811 ///
1812 /// [`char`]: prim@char
1813 /// [pattern]: self::pattern
1814 ///
1815 /// # Iterator behavior
1816 ///
1817 /// The returned iterator will not be double ended, because it is
1818 /// not efficient to support.
1819 ///
1820 /// If the pattern allows a reverse search, the [`rsplitn`] method can be
1821 /// used.
1822 ///
1823 /// [`rsplitn`]: str::rsplitn
1824 ///
1825 /// # Examples
1826 ///
1827 /// Simple patterns:
1828 ///
1829 /// ```
1830 /// let v: Vec<&str> = "Mary had a little lambda".splitn(3, ' ').collect();
1831 /// assert_eq!(v, ["Mary", "had", "a little lambda"]);
1832 ///
1833 /// let v: Vec<&str> = "lionXXtigerXleopard".splitn(3, "X").collect();
1834 /// assert_eq!(v, ["lion", "", "tigerXleopard"]);
1835 ///
1836 /// let v: Vec<&str> = "abcXdef".splitn(1, 'X').collect();
1837 /// assert_eq!(v, ["abcXdef"]);
1838 ///
1839 /// let v: Vec<&str> = "".splitn(1, 'X').collect();
1840 /// assert_eq!(v, [""]);
1841 /// ```
1842 ///
1843 /// A more complex pattern, using a closure:
1844 ///
1845 /// ```
1846 /// let v: Vec<&str> = "abc1defXghi".splitn(2, |c| c == '1' || c == 'X').collect();
1847 /// assert_eq!(v, ["abc", "defXghi"]);
1848 /// ```
1849 #[stable(feature = "rust1", since = "1.0.0")]
1850 #[inline]
1851 pub fn splitn<P: Pattern>(&self, n: usize, pat: P) -> SplitN<'_, P> {
1852 SplitN(SplitNInternal { iter: self.split(pat).0, count: n })
1853 }
1854
1855 /// Returns an iterator over substrings of this string slice, separated by a
1856 /// pattern, starting from the end of the string, restricted to returning at
1857 /// most `n` items.
1858 ///
1859 /// If `n` substrings are returned, the last substring (the `n`th substring)
1860 /// will contain the remainder of the string.
1861 ///
1862 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1863 /// function or closure that determines if a character matches.
1864 ///
1865 /// [`char`]: prim@char
1866 /// [pattern]: self::pattern
1867 ///
1868 /// # Iterator behavior
1869 ///
1870 /// The returned iterator will not be double ended, because it is not
1871 /// efficient to support.
1872 ///
1873 /// For splitting from the front, the [`splitn`] method can be used.
1874 ///
1875 /// [`splitn`]: str::splitn
1876 ///
1877 /// # Examples
1878 ///
1879 /// Simple patterns:
1880 ///
1881 /// ```
1882 /// let v: Vec<&str> = "Mary had a little lamb".rsplitn(3, ' ').collect();
1883 /// assert_eq!(v, ["lamb", "little", "Mary had a"]);
1884 ///
1885 /// let v: Vec<&str> = "lionXXtigerXleopard".rsplitn(3, 'X').collect();
1886 /// assert_eq!(v, ["leopard", "tiger", "lionX"]);
1887 ///
1888 /// let v: Vec<&str> = "lion::tiger::leopard".rsplitn(2, "::").collect();
1889 /// assert_eq!(v, ["leopard", "lion::tiger"]);
1890 /// ```
1891 ///
1892 /// A more complex pattern, using a closure:
1893 ///
1894 /// ```
1895 /// let v: Vec<&str> = "abc1defXghi".rsplitn(2, |c| c == '1' || c == 'X').collect();
1896 /// assert_eq!(v, ["ghi", "abc1def"]);
1897 /// ```
1898 #[stable(feature = "rust1", since = "1.0.0")]
1899 #[inline]
1900 pub fn rsplitn<P: Pattern>(&self, n: usize, pat: P) -> RSplitN<'_, P>
1901 where
1902 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1903 {
1904 RSplitN(self.splitn(n, pat).0)
1905 }
1906
1907 /// Splits the string on the first occurrence of the specified delimiter and
1908 /// returns prefix before delimiter and suffix after delimiter.
1909 ///
1910 /// # Examples
1911 ///
1912 /// ```
1913 /// assert_eq!("cfg".split_once('='), None);
1914 /// assert_eq!("cfg=".split_once('='), Some(("cfg", "")));
1915 /// assert_eq!("cfg=foo".split_once('='), Some(("cfg", "foo")));
1916 /// assert_eq!("cfg=foo=bar".split_once('='), Some(("cfg", "foo=bar")));
1917 /// ```
1918 #[stable(feature = "str_split_once", since = "1.52.0")]
1919 #[inline]
1920 pub fn split_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)> {
1921 let (start, end) = delimiter.into_searcher(self).next_match()?;
1922 // SAFETY: `Searcher` is known to return valid indices.
1923 unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
1924 }
1925
1926 /// Splits the string on the last occurrence of the specified delimiter and
1927 /// returns prefix before delimiter and suffix after delimiter.
1928 ///
1929 /// # Examples
1930 ///
1931 /// ```
1932 /// assert_eq!("cfg".rsplit_once('='), None);
1933 /// assert_eq!("cfg=foo".rsplit_once('='), Some(("cfg", "foo")));
1934 /// assert_eq!("cfg=foo=bar".rsplit_once('='), Some(("cfg=foo", "bar")));
1935 /// ```
1936 #[stable(feature = "str_split_once", since = "1.52.0")]
1937 #[inline]
1938 pub fn rsplit_once<P: Pattern>(&self, delimiter: P) -> Option<(&'_ str, &'_ str)>
1939 where
1940 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
1941 {
1942 let (start, end) = delimiter.into_searcher(self).next_match_back()?;
1943 // SAFETY: `Searcher` is known to return valid indices.
1944 unsafe { Some((self.get_unchecked(..start), self.get_unchecked(end..))) }
1945 }
1946
1947 /// Returns an iterator over the disjoint matches of a pattern within the
1948 /// given string slice.
1949 ///
1950 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1951 /// function or closure that determines if a character matches.
1952 ///
1953 /// [`char`]: prim@char
1954 /// [pattern]: self::pattern
1955 ///
1956 /// # Iterator behavior
1957 ///
1958 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
1959 /// allows a reverse search and forward/reverse search yields the same
1960 /// elements. This is true for, e.g., [`char`], but not for `&str`.
1961 ///
1962 /// If the pattern allows a reverse search but its results might differ
1963 /// from a forward search, the [`rmatches`] method can be used.
1964 ///
1965 /// [`rmatches`]: str::rmatches
1966 ///
1967 /// # Examples
1968 ///
1969 /// ```
1970 /// let v: Vec<&str> = "abcXXXabcYYYabc".matches("abc").collect();
1971 /// assert_eq!(v, ["abc", "abc", "abc"]);
1972 ///
1973 /// let v: Vec<&str> = "1abc2abc3".matches(char::is_numeric).collect();
1974 /// assert_eq!(v, ["1", "2", "3"]);
1975 /// ```
1976 #[stable(feature = "str_matches", since = "1.2.0")]
1977 #[inline]
1978 pub fn matches<P: Pattern>(&self, pat: P) -> Matches<'_, P> {
1979 Matches(MatchesInternal(pat.into_searcher(self)))
1980 }
1981
1982 /// Returns an iterator over the disjoint matches of a pattern within this
1983 /// string slice, yielded in reverse order.
1984 ///
1985 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
1986 /// function or closure that determines if a character matches.
1987 ///
1988 /// [`char`]: prim@char
1989 /// [pattern]: self::pattern
1990 ///
1991 /// # Iterator behavior
1992 ///
1993 /// The returned iterator requires that the pattern supports a reverse
1994 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
1995 /// search yields the same elements.
1996 ///
1997 /// For iterating from the front, the [`matches`] method can be used.
1998 ///
1999 /// [`matches`]: str::matches
2000 ///
2001 /// # Examples
2002 ///
2003 /// ```
2004 /// let v: Vec<&str> = "abcXXXabcYYYabc".rmatches("abc").collect();
2005 /// assert_eq!(v, ["abc", "abc", "abc"]);
2006 ///
2007 /// let v: Vec<&str> = "1abc2abc3".rmatches(char::is_numeric).collect();
2008 /// assert_eq!(v, ["3", "2", "1"]);
2009 /// ```
2010 #[stable(feature = "str_matches", since = "1.2.0")]
2011 #[inline]
2012 pub fn rmatches<P: Pattern>(&self, pat: P) -> RMatches<'_, P>
2013 where
2014 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2015 {
2016 RMatches(self.matches(pat).0)
2017 }
2018
2019 /// Returns an iterator over the disjoint matches of a pattern within this string
2020 /// slice as well as the index that the match starts at.
2021 ///
2022 /// For matches of `pat` within `self` that overlap, only the indices
2023 /// corresponding to the first match are returned.
2024 ///
2025 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2026 /// function or closure that determines if a character matches.
2027 ///
2028 /// [`char`]: prim@char
2029 /// [pattern]: self::pattern
2030 ///
2031 /// # Iterator behavior
2032 ///
2033 /// The returned iterator will be a [`DoubleEndedIterator`] if the pattern
2034 /// allows a reverse search and forward/reverse search yields the same
2035 /// elements. This is true for, e.g., [`char`], but not for `&str`.
2036 ///
2037 /// If the pattern allows a reverse search but its results might differ
2038 /// from a forward search, the [`rmatch_indices`] method can be used.
2039 ///
2040 /// [`rmatch_indices`]: str::rmatch_indices
2041 ///
2042 /// # Examples
2043 ///
2044 /// ```
2045 /// let v: Vec<_> = "abcXXXabcYYYabc".match_indices("abc").collect();
2046 /// assert_eq!(v, [(0, "abc"), (6, "abc"), (12, "abc")]);
2047 ///
2048 /// let v: Vec<_> = "1abcabc2".match_indices("abc").collect();
2049 /// assert_eq!(v, [(1, "abc"), (4, "abc")]);
2050 ///
2051 /// let v: Vec<_> = "ababa".match_indices("aba").collect();
2052 /// assert_eq!(v, [(0, "aba")]); // only the first `aba`
2053 /// ```
2054 #[stable(feature = "str_match_indices", since = "1.5.0")]
2055 #[inline]
2056 pub fn match_indices<P: Pattern>(&self, pat: P) -> MatchIndices<'_, P> {
2057 MatchIndices(MatchIndicesInternal(pat.into_searcher(self)))
2058 }
2059
2060 /// Returns an iterator over the disjoint matches of a pattern within `self`,
2061 /// yielded in reverse order along with the index of the match.
2062 ///
2063 /// For matches of `pat` within `self` that overlap, only the indices
2064 /// corresponding to the last match are returned.
2065 ///
2066 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2067 /// function or closure that determines if a character matches.
2068 ///
2069 /// [`char`]: prim@char
2070 /// [pattern]: self::pattern
2071 ///
2072 /// # Iterator behavior
2073 ///
2074 /// The returned iterator requires that the pattern supports a reverse
2075 /// search, and it will be a [`DoubleEndedIterator`] if a forward/reverse
2076 /// search yields the same elements.
2077 ///
2078 /// For iterating from the front, the [`match_indices`] method can be used.
2079 ///
2080 /// [`match_indices`]: str::match_indices
2081 ///
2082 /// # Examples
2083 ///
2084 /// ```
2085 /// let v: Vec<_> = "abcXXXabcYYYabc".rmatch_indices("abc").collect();
2086 /// assert_eq!(v, [(12, "abc"), (6, "abc"), (0, "abc")]);
2087 ///
2088 /// let v: Vec<_> = "1abcabc2".rmatch_indices("abc").collect();
2089 /// assert_eq!(v, [(4, "abc"), (1, "abc")]);
2090 ///
2091 /// let v: Vec<_> = "ababa".rmatch_indices("aba").collect();
2092 /// assert_eq!(v, [(2, "aba")]); // only the last `aba`
2093 /// ```
2094 #[stable(feature = "str_match_indices", since = "1.5.0")]
2095 #[inline]
2096 pub fn rmatch_indices<P: Pattern>(&self, pat: P) -> RMatchIndices<'_, P>
2097 where
2098 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2099 {
2100 RMatchIndices(self.match_indices(pat).0)
2101 }
2102
2103 /// Returns a string slice with leading and trailing whitespace removed.
2104 ///
2105 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2106 /// Core Property `White_Space`, which includes newlines.
2107 ///
2108 /// # Examples
2109 ///
2110 /// ```
2111 /// let s = "\n Hello\tworld\t\n";
2112 ///
2113 /// assert_eq!("Hello\tworld", s.trim());
2114 /// ```
2115 #[inline]
2116 #[must_use = "this returns the trimmed string as a slice, \
2117 without modifying the original"]
2118 #[stable(feature = "rust1", since = "1.0.0")]
2119 #[rustc_diagnostic_item = "str_trim"]
2120 pub fn trim(&self) -> &str {
2121 self.trim_matches(char::is_whitespace)
2122 }
2123
2124 /// Returns a string slice with leading whitespace removed.
2125 ///
2126 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2127 /// Core Property `White_Space`, which includes newlines.
2128 ///
2129 /// # Text directionality
2130 ///
2131 /// A string is a sequence of bytes. `start` in this context means the first
2132 /// position of that byte string; for a left-to-right language like English or
2133 /// Russian, this will be left side, and for right-to-left languages like
2134 /// Arabic or Hebrew, this will be the right side.
2135 ///
2136 /// # Examples
2137 ///
2138 /// Basic usage:
2139 ///
2140 /// ```
2141 /// let s = "\n Hello\tworld\t\n";
2142 /// assert_eq!("Hello\tworld\t\n", s.trim_start());
2143 /// ```
2144 ///
2145 /// Directionality:
2146 ///
2147 /// ```
2148 /// let s = " English ";
2149 /// assert!(Some('E') == s.trim_start().chars().next());
2150 ///
2151 /// let s = " עברית ";
2152 /// assert!(Some('ע') == s.trim_start().chars().next());
2153 /// ```
2154 #[inline]
2155 #[must_use = "this returns the trimmed string as a new slice, \
2156 without modifying the original"]
2157 #[stable(feature = "trim_direction", since = "1.30.0")]
2158 #[rustc_diagnostic_item = "str_trim_start"]
2159 pub fn trim_start(&self) -> &str {
2160 self.trim_start_matches(char::is_whitespace)
2161 }
2162
2163 /// Returns a string slice with trailing whitespace removed.
2164 ///
2165 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2166 /// Core Property `White_Space`, which includes newlines.
2167 ///
2168 /// # Text directionality
2169 ///
2170 /// A string is a sequence of bytes. `end` in this context means the last
2171 /// position of that byte string; for a left-to-right language like English or
2172 /// Russian, this will be right side, and for right-to-left languages like
2173 /// Arabic or Hebrew, this will be the left side.
2174 ///
2175 /// # Examples
2176 ///
2177 /// Basic usage:
2178 ///
2179 /// ```
2180 /// let s = "\n Hello\tworld\t\n";
2181 /// assert_eq!("\n Hello\tworld", s.trim_end());
2182 /// ```
2183 ///
2184 /// Directionality:
2185 ///
2186 /// ```
2187 /// let s = " English ";
2188 /// assert!(Some('h') == s.trim_end().chars().rev().next());
2189 ///
2190 /// let s = " עברית ";
2191 /// assert!(Some('ת') == s.trim_end().chars().rev().next());
2192 /// ```
2193 #[inline]
2194 #[must_use = "this returns the trimmed string as a new slice, \
2195 without modifying the original"]
2196 #[stable(feature = "trim_direction", since = "1.30.0")]
2197 #[rustc_diagnostic_item = "str_trim_end"]
2198 pub fn trim_end(&self) -> &str {
2199 self.trim_end_matches(char::is_whitespace)
2200 }
2201
2202 /// Returns a string slice with leading whitespace removed.
2203 ///
2204 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2205 /// Core Property `White_Space`.
2206 ///
2207 /// # Text directionality
2208 ///
2209 /// A string is a sequence of bytes. 'Left' in this context means the first
2210 /// position of that byte string; for a language like Arabic or Hebrew
2211 /// which are 'right to left' rather than 'left to right', this will be
2212 /// the _right_ side, not the left.
2213 ///
2214 /// # Examples
2215 ///
2216 /// Basic usage:
2217 ///
2218 /// ```
2219 /// let s = " Hello\tworld\t";
2220 ///
2221 /// assert_eq!("Hello\tworld\t", s.trim_left());
2222 /// ```
2223 ///
2224 /// Directionality:
2225 ///
2226 /// ```
2227 /// let s = " English";
2228 /// assert!(Some('E') == s.trim_left().chars().next());
2229 ///
2230 /// let s = " עברית";
2231 /// assert!(Some('ע') == s.trim_left().chars().next());
2232 /// ```
2233 #[must_use = "this returns the trimmed string as a new slice, \
2234 without modifying the original"]
2235 #[inline]
2236 #[stable(feature = "rust1", since = "1.0.0")]
2237 #[deprecated(since = "1.33.0", note = "superseded by `trim_start`", suggestion = "trim_start")]
2238 pub fn trim_left(&self) -> &str {
2239 self.trim_start()
2240 }
2241
2242 /// Returns a string slice with trailing whitespace removed.
2243 ///
2244 /// 'Whitespace' is defined according to the terms of the Unicode Derived
2245 /// Core Property `White_Space`.
2246 ///
2247 /// # Text directionality
2248 ///
2249 /// A string is a sequence of bytes. 'Right' in this context means the last
2250 /// position of that byte string; for a language like Arabic or Hebrew
2251 /// which are 'right to left' rather than 'left to right', this will be
2252 /// the _left_ side, not the right.
2253 ///
2254 /// # Examples
2255 ///
2256 /// Basic usage:
2257 ///
2258 /// ```
2259 /// let s = " Hello\tworld\t";
2260 ///
2261 /// assert_eq!(" Hello\tworld", s.trim_right());
2262 /// ```
2263 ///
2264 /// Directionality:
2265 ///
2266 /// ```
2267 /// let s = "English ";
2268 /// assert!(Some('h') == s.trim_right().chars().rev().next());
2269 ///
2270 /// let s = "עברית ";
2271 /// assert!(Some('ת') == s.trim_right().chars().rev().next());
2272 /// ```
2273 #[must_use = "this returns the trimmed string as a new slice, \
2274 without modifying the original"]
2275 #[inline]
2276 #[stable(feature = "rust1", since = "1.0.0")]
2277 #[deprecated(since = "1.33.0", note = "superseded by `trim_end`", suggestion = "trim_end")]
2278 pub fn trim_right(&self) -> &str {
2279 self.trim_end()
2280 }
2281
2282 /// Returns a string slice with all prefixes and suffixes that match a
2283 /// pattern repeatedly removed.
2284 ///
2285 /// The [pattern] can be a [`char`], a slice of [`char`]s, or a function
2286 /// or closure that determines if a character matches.
2287 ///
2288 /// [`char`]: prim@char
2289 /// [pattern]: self::pattern
2290 ///
2291 /// # Examples
2292 ///
2293 /// Simple patterns:
2294 ///
2295 /// ```
2296 /// assert_eq!("11foo1bar11".trim_matches('1'), "foo1bar");
2297 /// assert_eq!("123foo1bar123".trim_matches(char::is_numeric), "foo1bar");
2298 ///
2299 /// let x: &[_] = &['1', '2'];
2300 /// assert_eq!("12foo1bar12".trim_matches(x), "foo1bar");
2301 /// ```
2302 ///
2303 /// A more complex pattern, using a closure:
2304 ///
2305 /// ```
2306 /// assert_eq!("1foo1barXX".trim_matches(|c| c == '1' || c == 'X'), "foo1bar");
2307 /// ```
2308 #[must_use = "this returns the trimmed string as a new slice, \
2309 without modifying the original"]
2310 #[stable(feature = "rust1", since = "1.0.0")]
2311 pub fn trim_matches<P: Pattern>(&self, pat: P) -> &str
2312 where
2313 for<'a> P::Searcher<'a>: DoubleEndedSearcher<'a>,
2314 {
2315 let mut i = 0;
2316 let mut j = 0;
2317 let mut matcher = pat.into_searcher(self);
2318 if let Some((a, b)) = matcher.next_reject() {
2319 i = a;
2320 j = b; // Remember earliest known match, correct it below if
2321 // last match is different
2322 }
2323 if let Some((_, b)) = matcher.next_reject_back() {
2324 j = b;
2325 }
2326 // SAFETY: `Searcher` is known to return valid indices.
2327 unsafe { self.get_unchecked(i..j) }
2328 }
2329
2330 /// Returns a string slice with all prefixes that match a pattern
2331 /// repeatedly removed.
2332 ///
2333 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2334 /// function or closure that determines if a character matches.
2335 ///
2336 /// [`char`]: prim@char
2337 /// [pattern]: self::pattern
2338 ///
2339 /// # Text directionality
2340 ///
2341 /// A string is a sequence of bytes. `start` in this context means the first
2342 /// position of that byte string; for a left-to-right language like English or
2343 /// Russian, this will be left side, and for right-to-left languages like
2344 /// Arabic or Hebrew, this will be the right side.
2345 ///
2346 /// # Examples
2347 ///
2348 /// ```
2349 /// assert_eq!("11foo1bar11".trim_start_matches('1'), "foo1bar11");
2350 /// assert_eq!("123foo1bar123".trim_start_matches(char::is_numeric), "foo1bar123");
2351 ///
2352 /// let x: &[_] = &['1', '2'];
2353 /// assert_eq!("12foo1bar12".trim_start_matches(x), "foo1bar12");
2354 /// ```
2355 #[must_use = "this returns the trimmed string as a new slice, \
2356 without modifying the original"]
2357 #[stable(feature = "trim_direction", since = "1.30.0")]
2358 pub fn trim_start_matches<P: Pattern>(&self, pat: P) -> &str {
2359 let mut i = self.len();
2360 let mut matcher = pat.into_searcher(self);
2361 if let Some((a, _)) = matcher.next_reject() {
2362 i = a;
2363 }
2364 // SAFETY: `Searcher` is known to return valid indices.
2365 unsafe { self.get_unchecked(i..self.len()) }
2366 }
2367
2368 /// Returns a string slice with the prefix removed.
2369 ///
2370 /// If the string starts with the pattern `prefix`, returns the substring after the prefix,
2371 /// wrapped in `Some`. Unlike [`trim_start_matches`], this method removes the prefix exactly once.
2372 ///
2373 /// If the string does not start with `prefix`, returns `None`.
2374 ///
2375 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2376 /// function or closure that determines if a character matches.
2377 ///
2378 /// [`char`]: prim@char
2379 /// [pattern]: self::pattern
2380 /// [`trim_start_matches`]: Self::trim_start_matches
2381 ///
2382 /// # Examples
2383 ///
2384 /// ```
2385 /// assert_eq!("foo:bar".strip_prefix("foo:"), Some("bar"));
2386 /// assert_eq!("foo:bar".strip_prefix("bar"), None);
2387 /// assert_eq!("foofoo".strip_prefix("foo"), Some("foo"));
2388 /// ```
2389 #[must_use = "this returns the remaining substring as a new slice, \
2390 without modifying the original"]
2391 #[stable(feature = "str_strip", since = "1.45.0")]
2392 pub fn strip_prefix<P: Pattern>(&self, prefix: P) -> Option<&str> {
2393 prefix.strip_prefix_of(self)
2394 }
2395
2396 /// Returns a string slice with the suffix removed.
2397 ///
2398 /// If the string ends with the pattern `suffix`, returns the substring before the suffix,
2399 /// wrapped in `Some`. Unlike [`trim_end_matches`], this method removes the suffix exactly once.
2400 ///
2401 /// If the string does not end with `suffix`, returns `None`.
2402 ///
2403 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2404 /// function or closure that determines if a character matches.
2405 ///
2406 /// [`char`]: prim@char
2407 /// [pattern]: self::pattern
2408 /// [`trim_end_matches`]: Self::trim_end_matches
2409 ///
2410 /// # Examples
2411 ///
2412 /// ```
2413 /// assert_eq!("bar:foo".strip_suffix(":foo"), Some("bar"));
2414 /// assert_eq!("bar:foo".strip_suffix("bar"), None);
2415 /// assert_eq!("foofoo".strip_suffix("foo"), Some("foo"));
2416 /// ```
2417 #[must_use = "this returns the remaining substring as a new slice, \
2418 without modifying the original"]
2419 #[stable(feature = "str_strip", since = "1.45.0")]
2420 pub fn strip_suffix<P: Pattern>(&self, suffix: P) -> Option<&str>
2421 where
2422 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2423 {
2424 suffix.strip_suffix_of(self)
2425 }
2426
2427 /// Returns a string slice with all suffixes that match a pattern
2428 /// repeatedly removed.
2429 ///
2430 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2431 /// function or closure that determines if a character matches.
2432 ///
2433 /// [`char`]: prim@char
2434 /// [pattern]: self::pattern
2435 ///
2436 /// # Text directionality
2437 ///
2438 /// A string is a sequence of bytes. `end` in this context means the last
2439 /// position of that byte string; for a left-to-right language like English or
2440 /// Russian, this will be right side, and for right-to-left languages like
2441 /// Arabic or Hebrew, this will be the left side.
2442 ///
2443 /// # Examples
2444 ///
2445 /// Simple patterns:
2446 ///
2447 /// ```
2448 /// assert_eq!("11foo1bar11".trim_end_matches('1'), "11foo1bar");
2449 /// assert_eq!("123foo1bar123".trim_end_matches(char::is_numeric), "123foo1bar");
2450 ///
2451 /// let x: &[_] = &['1', '2'];
2452 /// assert_eq!("12foo1bar12".trim_end_matches(x), "12foo1bar");
2453 /// ```
2454 ///
2455 /// A more complex pattern, using a closure:
2456 ///
2457 /// ```
2458 /// assert_eq!("1fooX".trim_end_matches(|c| c == '1' || c == 'X'), "1foo");
2459 /// ```
2460 #[must_use = "this returns the trimmed string as a new slice, \
2461 without modifying the original"]
2462 #[stable(feature = "trim_direction", since = "1.30.0")]
2463 pub fn trim_end_matches<P: Pattern>(&self, pat: P) -> &str
2464 where
2465 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2466 {
2467 let mut j = 0;
2468 let mut matcher = pat.into_searcher(self);
2469 if let Some((_, b)) = matcher.next_reject_back() {
2470 j = b;
2471 }
2472 // SAFETY: `Searcher` is known to return valid indices.
2473 unsafe { self.get_unchecked(0..j) }
2474 }
2475
2476 /// Returns a string slice with all prefixes that match a pattern
2477 /// repeatedly removed.
2478 ///
2479 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2480 /// function or closure that determines if a character matches.
2481 ///
2482 /// [`char`]: prim@char
2483 /// [pattern]: self::pattern
2484 ///
2485 /// # Text directionality
2486 ///
2487 /// A string is a sequence of bytes. 'Left' in this context means the first
2488 /// position of that byte string; for a language like Arabic or Hebrew
2489 /// which are 'right to left' rather than 'left to right', this will be
2490 /// the _right_ side, not the left.
2491 ///
2492 /// # Examples
2493 ///
2494 /// ```
2495 /// assert_eq!("11foo1bar11".trim_left_matches('1'), "foo1bar11");
2496 /// assert_eq!("123foo1bar123".trim_left_matches(char::is_numeric), "foo1bar123");
2497 ///
2498 /// let x: &[_] = &['1', '2'];
2499 /// assert_eq!("12foo1bar12".trim_left_matches(x), "foo1bar12");
2500 /// ```
2501 #[stable(feature = "rust1", since = "1.0.0")]
2502 #[deprecated(
2503 since = "1.33.0",
2504 note = "superseded by `trim_start_matches`",
2505 suggestion = "trim_start_matches"
2506 )]
2507 pub fn trim_left_matches<P: Pattern>(&self, pat: P) -> &str {
2508 self.trim_start_matches(pat)
2509 }
2510
2511 /// Returns a string slice with all suffixes that match a pattern
2512 /// repeatedly removed.
2513 ///
2514 /// The [pattern] can be a `&str`, [`char`], a slice of [`char`]s, or a
2515 /// function or closure that determines if a character matches.
2516 ///
2517 /// [`char`]: prim@char
2518 /// [pattern]: self::pattern
2519 ///
2520 /// # Text directionality
2521 ///
2522 /// A string is a sequence of bytes. 'Right' in this context means the last
2523 /// position of that byte string; for a language like Arabic or Hebrew
2524 /// which are 'right to left' rather than 'left to right', this will be
2525 /// the _left_ side, not the right.
2526 ///
2527 /// # Examples
2528 ///
2529 /// Simple patterns:
2530 ///
2531 /// ```
2532 /// assert_eq!("11foo1bar11".trim_right_matches('1'), "11foo1bar");
2533 /// assert_eq!("123foo1bar123".trim_right_matches(char::is_numeric), "123foo1bar");
2534 ///
2535 /// let x: &[_] = &['1', '2'];
2536 /// assert_eq!("12foo1bar12".trim_right_matches(x), "12foo1bar");
2537 /// ```
2538 ///
2539 /// A more complex pattern, using a closure:
2540 ///
2541 /// ```
2542 /// assert_eq!("1fooX".trim_right_matches(|c| c == '1' || c == 'X'), "1foo");
2543 /// ```
2544 #[stable(feature = "rust1", since = "1.0.0")]
2545 #[deprecated(
2546 since = "1.33.0",
2547 note = "superseded by `trim_end_matches`",
2548 suggestion = "trim_end_matches"
2549 )]
2550 pub fn trim_right_matches<P: Pattern>(&self, pat: P) -> &str
2551 where
2552 for<'a> P::Searcher<'a>: ReverseSearcher<'a>,
2553 {
2554 self.trim_end_matches(pat)
2555 }
2556
2557 /// Parses this string slice into another type.
2558 ///
2559 /// Because `parse` is so general, it can cause problems with type
2560 /// inference. As such, `parse` is one of the few times you'll see
2561 /// the syntax affectionately known as the 'turbofish': `::<>`. This
2562 /// helps the inference algorithm understand specifically which type
2563 /// you're trying to parse into.
2564 ///
2565 /// `parse` can parse into any type that implements the [`FromStr`] trait.
2566
2567 ///
2568 /// # Errors
2569 ///
2570 /// Will return [`Err`] if it's not possible to parse this string slice into
2571 /// the desired type.
2572 ///
2573 /// [`Err`]: FromStr::Err
2574 ///
2575 /// # Examples
2576 ///
2577 /// Basic usage:
2578 ///
2579 /// ```
2580 /// let four: u32 = "4".parse().unwrap();
2581 ///
2582 /// assert_eq!(4, four);
2583 /// ```
2584 ///
2585 /// Using the 'turbofish' instead of annotating `four`:
2586 ///
2587 /// ```
2588 /// let four = "4".parse::<u32>();
2589 ///
2590 /// assert_eq!(Ok(4), four);
2591 /// ```
2592 ///
2593 /// Failing to parse:
2594 ///
2595 /// ```
2596 /// let nope = "j".parse::<u32>();
2597 ///
2598 /// assert!(nope.is_err());
2599 /// ```
2600 #[inline]
2601 #[stable(feature = "rust1", since = "1.0.0")]
2602 pub fn parse<F: FromStr>(&self) -> Result<F, F::Err> {
2603 FromStr::from_str(self)
2604 }
2605
2606 /// Checks if all characters in this string are within the ASCII range.
2607 ///
2608 /// # Examples
2609 ///
2610 /// ```
2611 /// let ascii = "hello!\n";
2612 /// let non_ascii = "Grüße, Jürgen ❤";
2613 ///
2614 /// assert!(ascii.is_ascii());
2615 /// assert!(!non_ascii.is_ascii());
2616 /// ```
2617 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2618 #[rustc_const_stable(feature = "const_slice_is_ascii", since = "1.74.0")]
2619 #[must_use]
2620 #[inline]
2621 pub const fn is_ascii(&self) -> bool {
2622 // We can treat each byte as character here: all multibyte characters
2623 // start with a byte that is not in the ASCII range, so we will stop
2624 // there already.
2625 self.as_bytes().is_ascii()
2626 }
2627
2628 /// If this string slice [`is_ascii`](Self::is_ascii), returns it as a slice
2629 /// of [ASCII characters](`ascii::Char`), otherwise returns `None`.
2630 #[unstable(feature = "ascii_char", issue = "110998")]
2631 #[must_use]
2632 #[inline]
2633 pub const fn as_ascii(&self) -> Option<&[ascii::Char]> {
2634 // Like in `is_ascii`, we can work on the bytes directly.
2635 self.as_bytes().as_ascii()
2636 }
2637
2638 /// Converts this string slice into a slice of [ASCII characters](ascii::Char),
2639 /// without checking whether they are valid.
2640 ///
2641 /// # Safety
2642 ///
2643 /// Every character in this string must be ASCII, or else this is UB.
2644 #[unstable(feature = "ascii_char", issue = "110998")]
2645 #[must_use]
2646 #[inline]
2647 pub const unsafe fn as_ascii_unchecked(&self) -> &[ascii::Char] {
2648 assert_unsafe_precondition!(
2649 check_library_ub,
2650 "as_ascii_unchecked requires that the string is valid ASCII",
2651 (it: &str = self) => it.is_ascii()
2652 );
2653
2654 // SAFETY: the caller promised that every byte of this string slice
2655 // is ASCII.
2656 unsafe { self.as_bytes().as_ascii_unchecked() }
2657 }
2658
2659 /// Checks that two strings are an ASCII case-insensitive match.
2660 ///
2661 /// Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`,
2662 /// but without allocating and copying temporaries.
2663 ///
2664 /// # Examples
2665 ///
2666 /// ```
2667 /// assert!("Ferris".eq_ignore_ascii_case("FERRIS"));
2668 /// assert!("Ferrös".eq_ignore_ascii_case("FERRöS"));
2669 /// assert!(!"Ferrös".eq_ignore_ascii_case("FERRÖS"));
2670 /// ```
2671 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2672 #[rustc_const_unstable(feature = "const_eq_ignore_ascii_case", issue = "131719")]
2673 #[must_use]
2674 #[inline]
2675 pub const fn eq_ignore_ascii_case(&self, other: &str) -> bool {
2676 self.as_bytes().eq_ignore_ascii_case(other.as_bytes())
2677 }
2678
2679 /// Converts this string to its ASCII upper case equivalent in-place.
2680 ///
2681 /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z',
2682 /// but non-ASCII letters are unchanged.
2683 ///
2684 /// To return a new uppercased value without modifying the existing one, use
2685 /// [`to_ascii_uppercase()`].
2686 ///
2687 /// [`to_ascii_uppercase()`]: #method.to_ascii_uppercase
2688 ///
2689 /// # Examples
2690 ///
2691 /// ```
2692 /// let mut s = String::from("Grüße, Jürgen ❤");
2693 ///
2694 /// s.make_ascii_uppercase();
2695 ///
2696 /// assert_eq!("GRüßE, JüRGEN ❤", s);
2697 /// ```
2698 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2699 #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2700 #[inline]
2701 pub const fn make_ascii_uppercase(&mut self) {
2702 // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2703 let me = unsafe { self.as_bytes_mut() };
2704 me.make_ascii_uppercase()
2705 }
2706
2707 /// Converts this string to its ASCII lower case equivalent in-place.
2708 ///
2709 /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z',
2710 /// but non-ASCII letters are unchanged.
2711 ///
2712 /// To return a new lowercased value without modifying the existing one, use
2713 /// [`to_ascii_lowercase()`].
2714 ///
2715 /// [`to_ascii_lowercase()`]: #method.to_ascii_lowercase
2716 ///
2717 /// # Examples
2718 ///
2719 /// ```
2720 /// let mut s = String::from("GRÜßE, JÜRGEN ❤");
2721 ///
2722 /// s.make_ascii_lowercase();
2723 ///
2724 /// assert_eq!("grÜße, jÜrgen ❤", s);
2725 /// ```
2726 #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")]
2727 #[rustc_const_stable(feature = "const_make_ascii", since = "1.84.0")]
2728 #[inline]
2729 pub const fn make_ascii_lowercase(&mut self) {
2730 // SAFETY: changing ASCII letters only does not invalidate UTF-8.
2731 let me = unsafe { self.as_bytes_mut() };
2732 me.make_ascii_lowercase()
2733 }
2734
2735 /// Returns a string slice with leading ASCII whitespace removed.
2736 ///
2737 /// 'Whitespace' refers to the definition used by
2738 /// [`u8::is_ascii_whitespace`].
2739 ///
2740 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2741 ///
2742 /// # Examples
2743 ///
2744 /// ```
2745 /// assert_eq!(" \t \u{3000}hello world\n".trim_ascii_start(), "\u{3000}hello world\n");
2746 /// assert_eq!(" ".trim_ascii_start(), "");
2747 /// assert_eq!("".trim_ascii_start(), "");
2748 /// ```
2749 #[must_use = "this returns the trimmed string as a new slice, \
2750 without modifying the original"]
2751 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2752 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2753 #[inline]
2754 pub const fn trim_ascii_start(&self) -> &str {
2755 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2756 // UTF-8.
2757 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_start()) }
2758 }
2759
2760 /// Returns a string slice with trailing ASCII whitespace removed.
2761 ///
2762 /// 'Whitespace' refers to the definition used by
2763 /// [`u8::is_ascii_whitespace`].
2764 ///
2765 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2766 ///
2767 /// # Examples
2768 ///
2769 /// ```
2770 /// assert_eq!("\r hello world\u{3000}\n ".trim_ascii_end(), "\r hello world\u{3000}");
2771 /// assert_eq!(" ".trim_ascii_end(), "");
2772 /// assert_eq!("".trim_ascii_end(), "");
2773 /// ```
2774 #[must_use = "this returns the trimmed string as a new slice, \
2775 without modifying the original"]
2776 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2777 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2778 #[inline]
2779 pub const fn trim_ascii_end(&self) -> &str {
2780 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2781 // UTF-8.
2782 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii_end()) }
2783 }
2784
2785 /// Returns a string slice with leading and trailing ASCII whitespace
2786 /// removed.
2787 ///
2788 /// 'Whitespace' refers to the definition used by
2789 /// [`u8::is_ascii_whitespace`].
2790 ///
2791 /// [`u8::is_ascii_whitespace`]: u8::is_ascii_whitespace
2792 ///
2793 /// # Examples
2794 ///
2795 /// ```
2796 /// assert_eq!("\r hello world\n ".trim_ascii(), "hello world");
2797 /// assert_eq!(" ".trim_ascii(), "");
2798 /// assert_eq!("".trim_ascii(), "");
2799 /// ```
2800 #[must_use = "this returns the trimmed string as a new slice, \
2801 without modifying the original"]
2802 #[stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2803 #[rustc_const_stable(feature = "byte_slice_trim_ascii", since = "1.80.0")]
2804 #[inline]
2805 pub const fn trim_ascii(&self) -> &str {
2806 // SAFETY: Removing ASCII characters from a `&str` does not invalidate
2807 // UTF-8.
2808 unsafe { core::str::from_utf8_unchecked(self.as_bytes().trim_ascii()) }
2809 }
2810
2811 /// Returns an iterator that escapes each char in `self` with [`char::escape_debug`].
2812 ///
2813 /// Note: only extended grapheme codepoints that begin the string will be
2814 /// escaped.
2815 ///
2816 /// # Examples
2817 ///
2818 /// As an iterator:
2819 ///
2820 /// ```
2821 /// for c in "❤\n!".escape_debug() {
2822 /// print!("{c}");
2823 /// }
2824 /// println!();
2825 /// ```
2826 ///
2827 /// Using `println!` directly:
2828 ///
2829 /// ```
2830 /// println!("{}", "❤\n!".escape_debug());
2831 /// ```
2832 ///
2833 ///
2834 /// Both are equivalent to:
2835 ///
2836 /// ```
2837 /// println!("❤\\n!");
2838 /// ```
2839 ///
2840 /// Using `to_string`:
2841 ///
2842 /// ```
2843 /// assert_eq!("❤\n!".escape_debug().to_string(), "❤\\n!");
2844 /// ```
2845 #[must_use = "this returns the escaped string as an iterator, \
2846 without modifying the original"]
2847 #[stable(feature = "str_escape", since = "1.34.0")]
2848 pub fn escape_debug(&self) -> EscapeDebug<'_> {
2849 let mut chars = self.chars();
2850 EscapeDebug {
2851 inner: chars
2852 .next()
2853 .map(|first| first.escape_debug_ext(EscapeDebugExtArgs::ESCAPE_ALL))
2854 .into_iter()
2855 .flatten()
2856 .chain(chars.flat_map(CharEscapeDebugContinue)),
2857 }
2858 }
2859
2860 /// Returns an iterator that escapes each char in `self` with [`char::escape_default`].
2861 ///
2862 /// # Examples
2863 ///
2864 /// As an iterator:
2865 ///
2866 /// ```
2867 /// for c in "❤\n!".escape_default() {
2868 /// print!("{c}");
2869 /// }
2870 /// println!();
2871 /// ```
2872 ///
2873 /// Using `println!` directly:
2874 ///
2875 /// ```
2876 /// println!("{}", "❤\n!".escape_default());
2877 /// ```
2878 ///
2879 ///
2880 /// Both are equivalent to:
2881 ///
2882 /// ```
2883 /// println!("\\u{{2764}}\\n!");
2884 /// ```
2885 ///
2886 /// Using `to_string`:
2887 ///
2888 /// ```
2889 /// assert_eq!("❤\n!".escape_default().to_string(), "\\u{2764}\\n!");
2890 /// ```
2891 #[must_use = "this returns the escaped string as an iterator, \
2892 without modifying the original"]
2893 #[stable(feature = "str_escape", since = "1.34.0")]
2894 pub fn escape_default(&self) -> EscapeDefault<'_> {
2895 EscapeDefault { inner: self.chars().flat_map(CharEscapeDefault) }
2896 }
2897
2898 /// Returns an iterator that escapes each char in `self` with [`char::escape_unicode`].
2899 ///
2900 /// # Examples
2901 ///
2902 /// As an iterator:
2903 ///
2904 /// ```
2905 /// for c in "❤\n!".escape_unicode() {
2906 /// print!("{c}");
2907 /// }
2908 /// println!();
2909 /// ```
2910 ///
2911 /// Using `println!` directly:
2912 ///
2913 /// ```
2914 /// println!("{}", "❤\n!".escape_unicode());
2915 /// ```
2916 ///
2917 ///
2918 /// Both are equivalent to:
2919 ///
2920 /// ```
2921 /// println!("\\u{{2764}}\\u{{a}}\\u{{21}}");
2922 /// ```
2923 ///
2924 /// Using `to_string`:
2925 ///
2926 /// ```
2927 /// assert_eq!("❤\n!".escape_unicode().to_string(), "\\u{2764}\\u{a}\\u{21}");
2928 /// ```
2929 #[must_use = "this returns the escaped string as an iterator, \
2930 without modifying the original"]
2931 #[stable(feature = "str_escape", since = "1.34.0")]
2932 pub fn escape_unicode(&self) -> EscapeUnicode<'_> {
2933 EscapeUnicode { inner: self.chars().flat_map(CharEscapeUnicode) }
2934 }
2935
2936 /// Returns the range that a substring points to.
2937 ///
2938 /// Returns `None` if `substr` does not point within `self`.
2939 ///
2940 /// Unlike [`str::find`], **this does not search through the string**.
2941 /// Instead, it uses pointer arithmetic to find where in the string
2942 /// `substr` is derived from.
2943 ///
2944 /// This is useful for extending [`str::split`] and similar methods.
2945 ///
2946 /// Note that this method may return false positives (typically either
2947 /// `Some(0..0)` or `Some(self.len()..self.len())`) if `substr` is a
2948 /// zero-length `str` that points at the beginning or end of another,
2949 /// independent, `str`.
2950 ///
2951 /// # Examples
2952 /// ```
2953 /// #![feature(substr_range)]
2954 ///
2955 /// let data = "a, b, b, a";
2956 /// let mut iter = data.split(", ").map(|s| data.substr_range(s).unwrap());
2957 ///
2958 /// assert_eq!(iter.next(), Some(0..1));
2959 /// assert_eq!(iter.next(), Some(3..4));
2960 /// assert_eq!(iter.next(), Some(6..7));
2961 /// assert_eq!(iter.next(), Some(9..10));
2962 /// ```
2963 #[must_use]
2964 #[unstable(feature = "substr_range", issue = "126769")]
2965 pub fn substr_range(&self, substr: &str) -> Option<Range<usize>> {
2966 self.as_bytes().subslice_range(substr.as_bytes())
2967 }
2968
2969 /// Returns the same string as a string slice `&str`.
2970 ///
2971 /// This method is redundant when used directly on `&str`, but
2972 /// it helps dereferencing other string-like types to string slices,
2973 /// for example references to `Box<str>` or `Arc<str>`.
2974 #[inline]
2975 #[unstable(feature = "str_as_str", issue = "130366")]
2976 pub fn as_str(&self) -> &str {
2977 self
2978 }
2979}
2980
2981#[stable(feature = "rust1", since = "1.0.0")]
2982impl AsRef<[u8]> for str {
2983 #[inline]
2984 fn as_ref(&self) -> &[u8] {
2985 self.as_bytes()
2986 }
2987}
2988
2989#[stable(feature = "rust1", since = "1.0.0")]
2990impl Default for &str {
2991 /// Creates an empty str
2992 #[inline]
2993 fn default() -> Self {
2994 ""
2995 }
2996}
2997
2998#[stable(feature = "default_mut_str", since = "1.28.0")]
2999impl Default for &mut str {
3000 /// Creates an empty mutable str
3001 #[inline]
3002 fn default() -> Self {
3003 // SAFETY: The empty string is valid UTF-8.
3004 unsafe { from_utf8_unchecked_mut(&mut []) }
3005 }
3006}
3007
3008impl_fn_for_zst! {
3009 /// A nameable, cloneable fn type
3010 #[derive(Clone)]
3011 struct LinesMap impl<'a> Fn = |line: &'a str| -> &'a str {
3012 let Some(line) = line.strip_suffix('\n') else { return line };
3013 let Some(line) = line.strip_suffix('\r') else { return line };
3014 line
3015 };
3016
3017 #[derive(Clone)]
3018 struct CharEscapeDebugContinue impl Fn = |c: char| -> char::EscapeDebug {
3019 c.escape_debug_ext(EscapeDebugExtArgs {
3020 escape_grapheme_extended: false,
3021 escape_single_quote: true,
3022 escape_double_quote: true
3023 })
3024 };
3025
3026 #[derive(Clone)]
3027 struct CharEscapeUnicode impl Fn = |c: char| -> char::EscapeUnicode {
3028 c.escape_unicode()
3029 };
3030 #[derive(Clone)]
3031 struct CharEscapeDefault impl Fn = |c: char| -> char::EscapeDefault {
3032 c.escape_default()
3033 };
3034
3035 #[derive(Clone)]
3036 struct IsWhitespace impl Fn = |c: char| -> bool {
3037 c.is_whitespace()
3038 };
3039
3040 #[derive(Clone)]
3041 struct IsAsciiWhitespace impl Fn = |byte: &u8| -> bool {
3042 byte.is_ascii_whitespace()
3043 };
3044
3045 #[derive(Clone)]
3046 struct IsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b str| -> bool {
3047 !s.is_empty()
3048 };
3049
3050 #[derive(Clone)]
3051 struct BytesIsNotEmpty impl<'a, 'b> Fn = |s: &'a &'b [u8]| -> bool {
3052 !s.is_empty()
3053 };
3054
3055 #[derive(Clone)]
3056 struct UnsafeBytesToStr impl<'a> Fn = |bytes: &'a [u8]| -> &'a str {
3057 // SAFETY: not safe
3058 unsafe { from_utf8_unchecked(bytes) }
3059 };
3060}
3061
3062// This is required to make `impl From<&str> for Box<dyn Error>` and `impl<E> From<E> for Box<dyn Error>` not overlap.
3063#[stable(feature = "error_in_core_neg_impl", since = "1.65.0")]
3064impl !crate::error::Error for &str {}