core/ptr/non_null.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
use crate::cmp::Ordering;
use crate::marker::Unsize;
use crate::mem::{MaybeUninit, SizedTypeProperties};
use crate::num::NonZero;
use crate::ops::{CoerceUnsized, DispatchFromDyn};
use crate::pin::PinCoerceUnsized;
use crate::ptr::Unique;
use crate::slice::{self, SliceIndex};
use crate::ub_checks::assert_unsafe_precondition;
use crate::{fmt, hash, intrinsics, ptr};
/// `*mut T` but non-zero and [covariant].
///
/// This is often the correct thing to use when building data structures using
/// raw pointers, but is ultimately more dangerous to use because of its additional
/// properties. If you're not sure if you should use `NonNull<T>`, just use `*mut T`!
///
/// Unlike `*mut T`, the pointer must always be non-null, even if the pointer
/// is never dereferenced. This is so that enums may use this forbidden value
/// as a discriminant -- `Option<NonNull<T>>` has the same size as `*mut T`.
/// However the pointer may still dangle if it isn't dereferenced.
///
/// Unlike `*mut T`, `NonNull<T>` was chosen to be covariant over `T`. This makes it
/// possible to use `NonNull<T>` when building covariant types, but introduces the
/// risk of unsoundness if used in a type that shouldn't actually be covariant.
/// (The opposite choice was made for `*mut T` even though technically the unsoundness
/// could only be caused by calling unsafe functions.)
///
/// Covariance is correct for most safe abstractions, such as `Box`, `Rc`, `Arc`, `Vec`,
/// and `LinkedList`. This is the case because they provide a public API that follows the
/// normal shared XOR mutable rules of Rust.
///
/// If your type cannot safely be covariant, you must ensure it contains some
/// additional field to provide invariance. Often this field will be a [`PhantomData`]
/// type like `PhantomData<Cell<T>>` or `PhantomData<&'a mut T>`.
///
/// Notice that `NonNull<T>` has a `From` instance for `&T`. However, this does
/// not change the fact that mutating through a (pointer derived from a) shared
/// reference is undefined behavior unless the mutation happens inside an
/// [`UnsafeCell<T>`]. The same goes for creating a mutable reference from a shared
/// reference. When using this `From` instance without an `UnsafeCell<T>`,
/// it is your responsibility to ensure that `as_mut` is never called, and `as_ptr`
/// is never used for mutation.
///
/// # Representation
///
/// Thanks to the [null pointer optimization],
/// `NonNull<T>` and `Option<NonNull<T>>`
/// are guaranteed to have the same size and alignment:
///
/// ```
/// # use std::mem::{size_of, align_of};
/// use std::ptr::NonNull;
///
/// assert_eq!(size_of::<NonNull<i16>>(), size_of::<Option<NonNull<i16>>>());
/// assert_eq!(align_of::<NonNull<i16>>(), align_of::<Option<NonNull<i16>>>());
///
/// assert_eq!(size_of::<NonNull<str>>(), size_of::<Option<NonNull<str>>>());
/// assert_eq!(align_of::<NonNull<str>>(), align_of::<Option<NonNull<str>>>());
/// ```
///
/// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
/// [`PhantomData`]: crate::marker::PhantomData
/// [`UnsafeCell<T>`]: crate::cell::UnsafeCell
/// [null pointer optimization]: crate::option#representation
#[stable(feature = "nonnull", since = "1.25.0")]
#[repr(transparent)]
#[rustc_layout_scalar_valid_range_start(1)]
#[rustc_nonnull_optimization_guaranteed]
#[rustc_diagnostic_item = "NonNull"]
pub struct NonNull<T: ?Sized> {
pointer: *const T,
}
/// `NonNull` pointers are not `Send` because the data they reference may be aliased.
// N.B., this impl is unnecessary, but should provide better error messages.
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> !Send for NonNull<T> {}
/// `NonNull` pointers are not `Sync` because the data they reference may be aliased.
// N.B., this impl is unnecessary, but should provide better error messages.
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> !Sync for NonNull<T> {}
impl<T: Sized> NonNull<T> {
/// Creates a new `NonNull` that is dangling, but well-aligned.
///
/// This is useful for initializing types which lazily allocate, like
/// `Vec::new` does.
///
/// Note that the pointer value may potentially represent a valid pointer to
/// a `T`, which means this must not be used as a "not yet initialized"
/// sentinel value. Types that lazily allocate must track initialization by
/// some other means.
///
/// # Examples
///
/// ```
/// use std::ptr::NonNull;
///
/// let ptr = NonNull::<u32>::dangling();
/// // Important: don't try to access the value of `ptr` without
/// // initializing it first! The pointer is not null but isn't valid either!
/// ```
#[stable(feature = "nonnull", since = "1.25.0")]
#[rustc_const_stable(feature = "const_nonnull_dangling", since = "1.36.0")]
#[must_use]
#[inline]
pub const fn dangling() -> Self {
// SAFETY: ptr::dangling_mut() returns a non-null well-aligned pointer.
unsafe {
let ptr = crate::ptr::dangling_mut::<T>();
NonNull::new_unchecked(ptr)
}
}
/// Returns a shared references to the value. In contrast to [`as_ref`], this does not require
/// that the value has to be initialized.
///
/// For the mutable counterpart see [`as_uninit_mut`].
///
/// [`as_ref`]: NonNull::as_ref
/// [`as_uninit_mut`]: NonNull::as_uninit_mut
///
/// # Safety
///
/// When calling this method, you have to ensure that
/// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
/// Note that because the created reference is to `MaybeUninit<T>`, the
/// source pointer can point to uninitialized memory.
#[inline]
#[must_use]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
pub const unsafe fn as_uninit_ref<'a>(self) -> &'a MaybeUninit<T> {
// SAFETY: the caller must guarantee that `self` meets all the
// requirements for a reference.
unsafe { &*self.cast().as_ptr() }
}
/// Returns a unique references to the value. In contrast to [`as_mut`], this does not require
/// that the value has to be initialized.
///
/// For the shared counterpart see [`as_uninit_ref`].
///
/// [`as_mut`]: NonNull::as_mut
/// [`as_uninit_ref`]: NonNull::as_uninit_ref
///
/// # Safety
///
/// When calling this method, you have to ensure that
/// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
/// Note that because the created reference is to `MaybeUninit<T>`, the
/// source pointer can point to uninitialized memory.
#[inline]
#[must_use]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
pub const unsafe fn as_uninit_mut<'a>(self) -> &'a mut MaybeUninit<T> {
// SAFETY: the caller must guarantee that `self` meets all the
// requirements for a reference.
unsafe { &mut *self.cast().as_ptr() }
}
}
impl<T: ?Sized> NonNull<T> {
/// Creates a new `NonNull`.
///
/// # Safety
///
/// `ptr` must be non-null.
///
/// # Examples
///
/// ```
/// use std::ptr::NonNull;
///
/// let mut x = 0u32;
/// let ptr = unsafe { NonNull::new_unchecked(&mut x as *mut _) };
/// ```
///
/// *Incorrect* usage of this function:
///
/// ```rust,no_run
/// use std::ptr::NonNull;
///
/// // NEVER DO THAT!!! This is undefined behavior. ⚠️
/// let ptr = unsafe { NonNull::<u32>::new_unchecked(std::ptr::null_mut()) };
/// ```
#[stable(feature = "nonnull", since = "1.25.0")]
#[rustc_const_stable(feature = "const_nonnull_new_unchecked", since = "1.25.0")]
#[inline]
pub const unsafe fn new_unchecked(ptr: *mut T) -> Self {
// SAFETY: the caller must guarantee that `ptr` is non-null.
unsafe {
assert_unsafe_precondition!(
check_language_ub,
"NonNull::new_unchecked requires that the pointer is non-null",
(ptr: *mut () = ptr as *mut ()) => !ptr.is_null()
);
NonNull { pointer: ptr as _ }
}
}
/// Creates a new `NonNull` if `ptr` is non-null.
///
/// # Examples
///
/// ```
/// use std::ptr::NonNull;
///
/// let mut x = 0u32;
/// let ptr = NonNull::<u32>::new(&mut x as *mut _).expect("ptr is null!");
///
/// if let Some(ptr) = NonNull::<u32>::new(std::ptr::null_mut()) {
/// unreachable!();
/// }
/// ```
#[stable(feature = "nonnull", since = "1.25.0")]
#[rustc_const_unstable(feature = "const_nonnull_new", issue = "93235")]
#[inline]
pub const fn new(ptr: *mut T) -> Option<Self> {
if !ptr.is_null() {
// SAFETY: The pointer is already checked and is not null
Some(unsafe { Self::new_unchecked(ptr) })
} else {
None
}
}
/// Converts a reference to a `NonNull` pointer.
#[unstable(feature = "non_null_from_ref", issue = "130823")]
#[inline]
pub const fn from_ref(r: &T) -> Self {
// SAFETY: A reference cannot be null.
unsafe { NonNull { pointer: r as *const T } }
}
/// Converts a mutable reference to a `NonNull` pointer.
#[unstable(feature = "non_null_from_ref", issue = "130823")]
#[inline]
pub const fn from_mut(r: &mut T) -> Self {
// SAFETY: A mutable reference cannot be null.
unsafe { NonNull { pointer: r as *mut T } }
}
/// Performs the same functionality as [`std::ptr::from_raw_parts`], except that a
/// `NonNull` pointer is returned, as opposed to a raw `*const` pointer.
///
/// See the documentation of [`std::ptr::from_raw_parts`] for more details.
///
/// [`std::ptr::from_raw_parts`]: crate::ptr::from_raw_parts
#[unstable(feature = "ptr_metadata", issue = "81513")]
#[inline]
pub const fn from_raw_parts(
data_pointer: NonNull<()>,
metadata: <T as super::Pointee>::Metadata,
) -> NonNull<T> {
// SAFETY: The result of `ptr::from::raw_parts_mut` is non-null because `data_pointer` is.
unsafe {
NonNull::new_unchecked(super::from_raw_parts_mut(data_pointer.as_ptr(), metadata))
}
}
/// Decompose a (possibly wide) pointer into its data pointer and metadata components.
///
/// The pointer can be later reconstructed with [`NonNull::from_raw_parts`].
#[unstable(feature = "ptr_metadata", issue = "81513")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn to_raw_parts(self) -> (NonNull<()>, <T as super::Pointee>::Metadata) {
(self.cast(), super::metadata(self.as_ptr()))
}
/// Gets the "address" portion of the pointer.
///
/// For more details see the equivalent method on a raw pointer, [`pointer::addr`].
///
/// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
#[must_use]
#[inline]
#[stable(feature = "strict_provenance", since = "CURRENT_RUSTC_VERSION")]
pub fn addr(self) -> NonZero<usize> {
// SAFETY: The pointer is guaranteed by the type to be non-null,
// meaning that the address will be non-zero.
unsafe { NonZero::new_unchecked(self.pointer.addr()) }
}
/// Creates a new pointer with the given address and the [provenance][crate::ptr#provenance] of
/// `self`.
///
/// For more details see the equivalent method on a raw pointer, [`pointer::with_addr`].
///
/// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
#[must_use]
#[inline]
#[stable(feature = "strict_provenance", since = "CURRENT_RUSTC_VERSION")]
pub fn with_addr(self, addr: NonZero<usize>) -> Self {
// SAFETY: The result of `ptr::from::with_addr` is non-null because `addr` is guaranteed to be non-zero.
unsafe { NonNull::new_unchecked(self.pointer.with_addr(addr.get()) as *mut _) }
}
/// Creates a new pointer by mapping `self`'s address to a new one, preserving the
/// [provenance][crate::ptr#provenance] of `self`.
///
/// For more details see the equivalent method on a raw pointer, [`pointer::map_addr`].
///
/// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
#[must_use]
#[inline]
#[stable(feature = "strict_provenance", since = "CURRENT_RUSTC_VERSION")]
pub fn map_addr(self, f: impl FnOnce(NonZero<usize>) -> NonZero<usize>) -> Self {
self.with_addr(f(self.addr()))
}
/// Acquires the underlying `*mut` pointer.
///
/// # Examples
///
/// ```
/// use std::ptr::NonNull;
///
/// let mut x = 0u32;
/// let ptr = NonNull::new(&mut x).expect("ptr is null!");
///
/// let x_value = unsafe { *ptr.as_ptr() };
/// assert_eq!(x_value, 0);
///
/// unsafe { *ptr.as_ptr() += 2; }
/// let x_value = unsafe { *ptr.as_ptr() };
/// assert_eq!(x_value, 2);
/// ```
#[stable(feature = "nonnull", since = "1.25.0")]
#[rustc_const_stable(feature = "const_nonnull_as_ptr", since = "1.32.0")]
#[rustc_never_returns_null_ptr]
#[must_use]
#[inline(always)]
pub const fn as_ptr(self) -> *mut T {
self.pointer as *mut T
}
/// Returns a shared reference to the value. If the value may be uninitialized, [`as_uninit_ref`]
/// must be used instead.
///
/// For the mutable counterpart see [`as_mut`].
///
/// [`as_uninit_ref`]: NonNull::as_uninit_ref
/// [`as_mut`]: NonNull::as_mut
///
/// # Safety
///
/// When calling this method, you have to ensure that
/// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
///
/// # Examples
///
/// ```
/// use std::ptr::NonNull;
///
/// let mut x = 0u32;
/// let ptr = NonNull::new(&mut x as *mut _).expect("ptr is null!");
///
/// let ref_x = unsafe { ptr.as_ref() };
/// println!("{ref_x}");
/// ```
///
/// [the module documentation]: crate::ptr#safety
#[stable(feature = "nonnull", since = "1.25.0")]
#[rustc_const_stable(feature = "const_nonnull_as_ref", since = "1.73.0")]
#[must_use]
#[inline(always)]
pub const unsafe fn as_ref<'a>(&self) -> &'a T {
// SAFETY: the caller must guarantee that `self` meets all the
// requirements for a reference.
// `cast_const` avoids a mutable raw pointer deref.
unsafe { &*self.as_ptr().cast_const() }
}
/// Returns a unique reference to the value. If the value may be uninitialized, [`as_uninit_mut`]
/// must be used instead.
///
/// For the shared counterpart see [`as_ref`].
///
/// [`as_uninit_mut`]: NonNull::as_uninit_mut
/// [`as_ref`]: NonNull::as_ref
///
/// # Safety
///
/// When calling this method, you have to ensure that
/// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
/// # Examples
///
/// ```
/// use std::ptr::NonNull;
///
/// let mut x = 0u32;
/// let mut ptr = NonNull::new(&mut x).expect("null pointer");
///
/// let x_ref = unsafe { ptr.as_mut() };
/// assert_eq!(*x_ref, 0);
/// *x_ref += 2;
/// assert_eq!(*x_ref, 2);
/// ```
///
/// [the module documentation]: crate::ptr#safety
#[stable(feature = "nonnull", since = "1.25.0")]
#[rustc_const_stable(feature = "const_ptr_as_ref", since = "1.83.0")]
#[must_use]
#[inline(always)]
pub const unsafe fn as_mut<'a>(&mut self) -> &'a mut T {
// SAFETY: the caller must guarantee that `self` meets all the
// requirements for a mutable reference.
unsafe { &mut *self.as_ptr() }
}
/// Casts to a pointer of another type.
///
/// # Examples
///
/// ```
/// use std::ptr::NonNull;
///
/// let mut x = 0u32;
/// let ptr = NonNull::new(&mut x as *mut _).expect("null pointer");
///
/// let casted_ptr = ptr.cast::<i8>();
/// let raw_ptr: *mut i8 = casted_ptr.as_ptr();
/// ```
#[stable(feature = "nonnull_cast", since = "1.27.0")]
#[rustc_const_stable(feature = "const_nonnull_cast", since = "1.36.0")]
#[must_use = "this returns the result of the operation, \
without modifying the original"]
#[inline]
pub const fn cast<U>(self) -> NonNull<U> {
// SAFETY: `self` is a `NonNull` pointer which is necessarily non-null
unsafe { NonNull { pointer: self.as_ptr() as *mut U } }
}
/// Adds an offset to a pointer.
///
/// `count` is in units of T; e.g., a `count` of 3 represents a pointer
/// offset of `3 * size_of::<T>()` bytes.
///
/// # Safety
///
/// If any of the following conditions are violated, the result is Undefined Behavior:
///
/// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
///
/// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
/// [allocated object], and the entire memory range between `self` and the result must be in
/// bounds of that allocated object. In particular, this range must not "wrap around" the edge
/// of the address space.
///
/// Allocated objects can never be larger than `isize::MAX` bytes, so if the computed offset
/// stays in bounds of the allocated object, it is guaranteed to satisfy the first requirement.
/// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
/// safe.
///
/// [allocated object]: crate::ptr#allocated-object
///
/// # Examples
///
/// ```
/// use std::ptr::NonNull;
///
/// let mut s = [1, 2, 3];
/// let ptr: NonNull<u32> = NonNull::new(s.as_mut_ptr()).unwrap();
///
/// unsafe {
/// println!("{}", ptr.offset(1).read());
/// println!("{}", ptr.offset(2).read());
/// }
/// ```
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
#[must_use = "returns a new pointer rather than modifying its argument"]
#[stable(feature = "non_null_convenience", since = "1.80.0")]
#[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
pub const unsafe fn offset(self, count: isize) -> Self
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `offset`.
// Additionally safety contract of `offset` guarantees that the resulting pointer is
// pointing to an allocation, there can't be an allocation at null, thus it's safe to
// construct `NonNull`.
unsafe { NonNull { pointer: intrinsics::offset(self.pointer, count) } }
}
/// Calculates the offset from a pointer in bytes.
///
/// `count` is in units of **bytes**.
///
/// This is purely a convenience for casting to a `u8` pointer and
/// using [offset][pointer::offset] on it. See that method for documentation
/// and safety requirements.
///
/// For non-`Sized` pointees this operation changes only the data pointer,
/// leaving the metadata untouched.
#[must_use]
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
#[stable(feature = "non_null_convenience", since = "1.80.0")]
#[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
pub const unsafe fn byte_offset(self, count: isize) -> Self {
// SAFETY: the caller must uphold the safety contract for `offset` and `byte_offset` has
// the same safety contract.
// Additionally safety contract of `offset` guarantees that the resulting pointer is
// pointing to an allocation, there can't be an allocation at null, thus it's safe to
// construct `NonNull`.
unsafe { NonNull { pointer: self.pointer.byte_offset(count) } }
}
/// Adds an offset to a pointer (convenience for `.offset(count as isize)`).
///
/// `count` is in units of T; e.g., a `count` of 3 represents a pointer
/// offset of `3 * size_of::<T>()` bytes.
///
/// # Safety
///
/// If any of the following conditions are violated, the result is Undefined Behavior:
///
/// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
///
/// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
/// [allocated object], and the entire memory range between `self` and the result must be in
/// bounds of that allocated object. In particular, this range must not "wrap around" the edge
/// of the address space.
///
/// Allocated objects can never be larger than `isize::MAX` bytes, so if the computed offset
/// stays in bounds of the allocated object, it is guaranteed to satisfy the first requirement.
/// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
/// safe.
///
/// [allocated object]: crate::ptr#allocated-object
///
/// # Examples
///
/// ```
/// use std::ptr::NonNull;
///
/// let s: &str = "123";
/// let ptr: NonNull<u8> = NonNull::new(s.as_ptr().cast_mut()).unwrap();
///
/// unsafe {
/// println!("{}", ptr.add(1).read() as char);
/// println!("{}", ptr.add(2).read() as char);
/// }
/// ```
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
#[must_use = "returns a new pointer rather than modifying its argument"]
#[stable(feature = "non_null_convenience", since = "1.80.0")]
#[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
pub const unsafe fn add(self, count: usize) -> Self
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `offset`.
// Additionally safety contract of `offset` guarantees that the resulting pointer is
// pointing to an allocation, there can't be an allocation at null, thus it's safe to
// construct `NonNull`.
unsafe { NonNull { pointer: intrinsics::offset(self.pointer, count) } }
}
/// Calculates the offset from a pointer in bytes (convenience for `.byte_offset(count as isize)`).
///
/// `count` is in units of bytes.
///
/// This is purely a convenience for casting to a `u8` pointer and
/// using [`add`][NonNull::add] on it. See that method for documentation
/// and safety requirements.
///
/// For non-`Sized` pointees this operation changes only the data pointer,
/// leaving the metadata untouched.
#[must_use]
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
#[stable(feature = "non_null_convenience", since = "1.80.0")]
#[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
pub const unsafe fn byte_add(self, count: usize) -> Self {
// SAFETY: the caller must uphold the safety contract for `add` and `byte_add` has the same
// safety contract.
// Additionally safety contract of `add` guarantees that the resulting pointer is pointing
// to an allocation, there can't be an allocation at null, thus it's safe to construct
// `NonNull`.
unsafe { NonNull { pointer: self.pointer.byte_add(count) } }
}
/// Subtracts an offset from a pointer (convenience for
/// `.offset((count as isize).wrapping_neg())`).
///
/// `count` is in units of T; e.g., a `count` of 3 represents a pointer
/// offset of `3 * size_of::<T>()` bytes.
///
/// # Safety
///
/// If any of the following conditions are violated, the result is Undefined Behavior:
///
/// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
///
/// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
/// [allocated object], and the entire memory range between `self` and the result must be in
/// bounds of that allocated object. In particular, this range must not "wrap around" the edge
/// of the address space.
///
/// Allocated objects can never be larger than `isize::MAX` bytes, so if the computed offset
/// stays in bounds of the allocated object, it is guaranteed to satisfy the first requirement.
/// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
/// safe.
///
/// [allocated object]: crate::ptr#allocated-object
///
/// # Examples
///
/// ```
/// use std::ptr::NonNull;
///
/// let s: &str = "123";
///
/// unsafe {
/// let end: NonNull<u8> = NonNull::new(s.as_ptr().cast_mut()).unwrap().add(3);
/// println!("{}", end.sub(1).read() as char);
/// println!("{}", end.sub(2).read() as char);
/// }
/// ```
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
#[must_use = "returns a new pointer rather than modifying its argument"]
#[stable(feature = "non_null_convenience", since = "1.80.0")]
#[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
#[cfg_attr(bootstrap, rustc_allow_const_fn_unstable(unchecked_neg))]
pub const unsafe fn sub(self, count: usize) -> Self
where
T: Sized,
{
if T::IS_ZST {
// Pointer arithmetic does nothing when the pointee is a ZST.
self
} else {
// SAFETY: the caller must uphold the safety contract for `offset`.
// Because the pointee is *not* a ZST, that means that `count` is
// at most `isize::MAX`, and thus the negation cannot overflow.
unsafe { self.offset((count as isize).unchecked_neg()) }
}
}
/// Calculates the offset from a pointer in bytes (convenience for
/// `.byte_offset((count as isize).wrapping_neg())`).
///
/// `count` is in units of bytes.
///
/// This is purely a convenience for casting to a `u8` pointer and
/// using [`sub`][NonNull::sub] on it. See that method for documentation
/// and safety requirements.
///
/// For non-`Sized` pointees this operation changes only the data pointer,
/// leaving the metadata untouched.
#[must_use]
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
#[stable(feature = "non_null_convenience", since = "1.80.0")]
#[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
pub const unsafe fn byte_sub(self, count: usize) -> Self {
// SAFETY: the caller must uphold the safety contract for `sub` and `byte_sub` has the same
// safety contract.
// Additionally safety contract of `sub` guarantees that the resulting pointer is pointing
// to an allocation, there can't be an allocation at null, thus it's safe to construct
// `NonNull`.
unsafe { NonNull { pointer: self.pointer.byte_sub(count) } }
}
/// Calculates the distance between two pointers within the same allocation. The returned value is in
/// units of T: the distance in bytes divided by `mem::size_of::<T>()`.
///
/// This is equivalent to `(self as isize - origin as isize) / (mem::size_of::<T>() as isize)`,
/// except that it has a lot more opportunities for UB, in exchange for the compiler
/// better understanding what you are doing.
///
/// The primary motivation of this method is for computing the `len` of an array/slice
/// of `T` that you are currently representing as a "start" and "end" pointer
/// (and "end" is "one past the end" of the array).
/// In that case, `end.offset_from(start)` gets you the length of the array.
///
/// All of the following safety requirements are trivially satisfied for this usecase.
///
/// [`offset`]: #method.offset
///
/// # Safety
///
/// If any of the following conditions are violated, the result is Undefined Behavior:
///
/// * `self` and `origin` must either
///
/// * point to the same address, or
/// * both be *derived from* a pointer to the same [allocated object], and the memory range between
/// the two pointers must be in bounds of that object. (See below for an example.)
///
/// * The distance between the pointers, in bytes, must be an exact multiple
/// of the size of `T`.
///
/// As a consequence, the absolute distance between the pointers, in bytes, computed on
/// mathematical integers (without "wrapping around"), cannot overflow an `isize`. This is
/// implied by the in-bounds requirement, and the fact that no allocated object can be larger
/// than `isize::MAX` bytes.
///
/// The requirement for pointers to be derived from the same allocated object is primarily
/// needed for `const`-compatibility: the distance between pointers into *different* allocated
/// objects is not known at compile-time. However, the requirement also exists at
/// runtime and may be exploited by optimizations. If you wish to compute the difference between
/// pointers that are not guaranteed to be from the same allocation, use `(self as isize -
/// origin as isize) / mem::size_of::<T>()`.
// FIXME: recommend `addr()` instead of `as usize` once that is stable.
///
/// [`add`]: #method.add
/// [allocated object]: crate::ptr#allocated-object
///
/// # Panics
///
/// This function panics if `T` is a Zero-Sized Type ("ZST").
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use std::ptr::NonNull;
///
/// let a = [0; 5];
/// let ptr1: NonNull<u32> = NonNull::from(&a[1]);
/// let ptr2: NonNull<u32> = NonNull::from(&a[3]);
/// unsafe {
/// assert_eq!(ptr2.offset_from(ptr1), 2);
/// assert_eq!(ptr1.offset_from(ptr2), -2);
/// assert_eq!(ptr1.offset(2), ptr2);
/// assert_eq!(ptr2.offset(-2), ptr1);
/// }
/// ```
///
/// *Incorrect* usage:
///
/// ```rust,no_run
/// use std::ptr::NonNull;
///
/// let ptr1 = NonNull::new(Box::into_raw(Box::new(0u8))).unwrap();
/// let ptr2 = NonNull::new(Box::into_raw(Box::new(1u8))).unwrap();
/// let diff = (ptr2.addr().get() as isize).wrapping_sub(ptr1.addr().get() as isize);
/// // Make ptr2_other an "alias" of ptr2.add(1), but derived from ptr1.
/// let diff_plus_1 = diff.wrapping_add(1);
/// let ptr2_other = NonNull::new(ptr1.as_ptr().wrapping_byte_offset(diff_plus_1)).unwrap();
/// assert_eq!(ptr2.addr(), ptr2_other.addr());
/// // Since ptr2_other and ptr2 are derived from pointers to different objects,
/// // computing their offset is undefined behavior, even though
/// // they point to addresses that are in-bounds of the same object!
///
/// let one = unsafe { ptr2_other.offset_from(ptr2) }; // Undefined Behavior! ⚠️
/// ```
#[inline]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
#[stable(feature = "non_null_convenience", since = "1.80.0")]
#[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
pub const unsafe fn offset_from(self, origin: NonNull<T>) -> isize
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `offset_from`.
unsafe { self.pointer.offset_from(origin.pointer) }
}
/// Calculates the distance between two pointers within the same allocation. The returned value is in
/// units of **bytes**.
///
/// This is purely a convenience for casting to a `u8` pointer and
/// using [`offset_from`][NonNull::offset_from] on it. See that method for
/// documentation and safety requirements.
///
/// For non-`Sized` pointees this operation considers only the data pointers,
/// ignoring the metadata.
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
#[stable(feature = "non_null_convenience", since = "1.80.0")]
#[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
pub const unsafe fn byte_offset_from<U: ?Sized>(self, origin: NonNull<U>) -> isize {
// SAFETY: the caller must uphold the safety contract for `byte_offset_from`.
unsafe { self.pointer.byte_offset_from(origin.pointer) }
}
// N.B. `wrapping_offset``, `wrapping_add`, etc are not implemented because they can wrap to null
/// Calculates the distance between two pointers within the same allocation, *where it's known that
/// `self` is equal to or greater than `origin`*. The returned value is in
/// units of T: the distance in bytes is divided by `mem::size_of::<T>()`.
///
/// This computes the same value that [`offset_from`](#method.offset_from)
/// would compute, but with the added precondition that the offset is
/// guaranteed to be non-negative. This method is equivalent to
/// `usize::try_from(self.offset_from(origin)).unwrap_unchecked()`,
/// but it provides slightly more information to the optimizer, which can
/// sometimes allow it to optimize slightly better with some backends.
///
/// This method can be though of as recovering the `count` that was passed
/// to [`add`](#method.add) (or, with the parameters in the other order,
/// to [`sub`](#method.sub)). The following are all equivalent, assuming
/// that their safety preconditions are met:
/// ```rust
/// # #![feature(ptr_sub_ptr)]
/// # unsafe fn blah(ptr: std::ptr::NonNull<u32>, origin: std::ptr::NonNull<u32>, count: usize) -> bool {
/// ptr.sub_ptr(origin) == count
/// # &&
/// origin.add(count) == ptr
/// # &&
/// ptr.sub(count) == origin
/// # }
/// ```
///
/// # Safety
///
/// - The distance between the pointers must be non-negative (`self >= origin`)
///
/// - *All* the safety conditions of [`offset_from`](#method.offset_from)
/// apply to this method as well; see it for the full details.
///
/// Importantly, despite the return type of this method being able to represent
/// a larger offset, it's still *not permitted* to pass pointers which differ
/// by more than `isize::MAX` *bytes*. As such, the result of this method will
/// always be less than or equal to `isize::MAX as usize`.
///
/// # Panics
///
/// This function panics if `T` is a Zero-Sized Type ("ZST").
///
/// # Examples
///
/// ```
/// #![feature(ptr_sub_ptr)]
/// use std::ptr::NonNull;
///
/// let a = [0; 5];
/// let ptr1: NonNull<u32> = NonNull::from(&a[1]);
/// let ptr2: NonNull<u32> = NonNull::from(&a[3]);
/// unsafe {
/// assert_eq!(ptr2.sub_ptr(ptr1), 2);
/// assert_eq!(ptr1.add(2), ptr2);
/// assert_eq!(ptr2.sub(2), ptr1);
/// assert_eq!(ptr2.sub_ptr(ptr2), 0);
/// }
///
/// // This would be incorrect, as the pointers are not correctly ordered:
/// // ptr1.sub_ptr(ptr2)
/// ```
#[inline]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
#[unstable(feature = "ptr_sub_ptr", issue = "95892")]
#[rustc_const_unstable(feature = "const_ptr_sub_ptr", issue = "95892")]
pub const unsafe fn sub_ptr(self, subtracted: NonNull<T>) -> usize
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `sub_ptr`.
unsafe { self.pointer.sub_ptr(subtracted.pointer) }
}
/// Calculates the distance between two pointers within the same allocation, *where it's known that
/// `self` is equal to or greater than `origin`*. The returned value is in
/// units of **bytes**.
///
/// This is purely a convenience for casting to a `u8` pointer and
/// using [`sub_ptr`][NonNull::sub_ptr] on it. See that method for
/// documentation and safety requirements.
///
/// For non-`Sized` pointees this operation considers only the data pointers,
/// ignoring the metadata.
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
#[unstable(feature = "ptr_sub_ptr", issue = "95892")]
#[rustc_const_unstable(feature = "const_ptr_sub_ptr", issue = "95892")]
pub const unsafe fn byte_sub_ptr<U: ?Sized>(self, origin: NonNull<U>) -> usize {
// SAFETY: the caller must uphold the safety contract for `byte_sub_ptr`.
unsafe { self.pointer.byte_sub_ptr(origin.pointer) }
}
/// Reads the value from `self` without moving it. This leaves the
/// memory in `self` unchanged.
///
/// See [`ptr::read`] for safety concerns and examples.
///
/// [`ptr::read`]: crate::ptr::read()
#[inline]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
#[stable(feature = "non_null_convenience", since = "1.80.0")]
#[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
pub const unsafe fn read(self) -> T
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `read`.
unsafe { ptr::read(self.pointer) }
}
/// Performs a volatile read of the value from `self` without moving it. This
/// leaves the memory in `self` unchanged.
///
/// Volatile operations are intended to act on I/O memory, and are guaranteed
/// to not be elided or reordered by the compiler across other volatile
/// operations.
///
/// See [`ptr::read_volatile`] for safety concerns and examples.
///
/// [`ptr::read_volatile`]: crate::ptr::read_volatile()
#[inline]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
#[stable(feature = "non_null_convenience", since = "1.80.0")]
pub unsafe fn read_volatile(self) -> T
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `read_volatile`.
unsafe { ptr::read_volatile(self.pointer) }
}
/// Reads the value from `self` without moving it. This leaves the
/// memory in `self` unchanged.
///
/// Unlike `read`, the pointer may be unaligned.
///
/// See [`ptr::read_unaligned`] for safety concerns and examples.
///
/// [`ptr::read_unaligned`]: crate::ptr::read_unaligned()
#[inline]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
#[stable(feature = "non_null_convenience", since = "1.80.0")]
#[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
pub const unsafe fn read_unaligned(self) -> T
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `read_unaligned`.
unsafe { ptr::read_unaligned(self.pointer) }
}
/// Copies `count * size_of<T>` bytes from `self` to `dest`. The source
/// and destination may overlap.
///
/// NOTE: this has the *same* argument order as [`ptr::copy`].
///
/// See [`ptr::copy`] for safety concerns and examples.
///
/// [`ptr::copy`]: crate::ptr::copy()
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
#[stable(feature = "non_null_convenience", since = "1.80.0")]
#[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
pub const unsafe fn copy_to(self, dest: NonNull<T>, count: usize)
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `copy`.
unsafe { ptr::copy(self.pointer, dest.as_ptr(), count) }
}
/// Copies `count * size_of<T>` bytes from `self` to `dest`. The source
/// and destination may *not* overlap.
///
/// NOTE: this has the *same* argument order as [`ptr::copy_nonoverlapping`].
///
/// See [`ptr::copy_nonoverlapping`] for safety concerns and examples.
///
/// [`ptr::copy_nonoverlapping`]: crate::ptr::copy_nonoverlapping()
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
#[stable(feature = "non_null_convenience", since = "1.80.0")]
#[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
pub const unsafe fn copy_to_nonoverlapping(self, dest: NonNull<T>, count: usize)
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `copy_nonoverlapping`.
unsafe { ptr::copy_nonoverlapping(self.pointer, dest.as_ptr(), count) }
}
/// Copies `count * size_of<T>` bytes from `src` to `self`. The source
/// and destination may overlap.
///
/// NOTE: this has the *opposite* argument order of [`ptr::copy`].
///
/// See [`ptr::copy`] for safety concerns and examples.
///
/// [`ptr::copy`]: crate::ptr::copy()
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
#[stable(feature = "non_null_convenience", since = "1.80.0")]
#[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
pub const unsafe fn copy_from(self, src: NonNull<T>, count: usize)
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `copy`.
unsafe { ptr::copy(src.pointer, self.as_ptr(), count) }
}
/// Copies `count * size_of<T>` bytes from `src` to `self`. The source
/// and destination may *not* overlap.
///
/// NOTE: this has the *opposite* argument order of [`ptr::copy_nonoverlapping`].
///
/// See [`ptr::copy_nonoverlapping`] for safety concerns and examples.
///
/// [`ptr::copy_nonoverlapping`]: crate::ptr::copy_nonoverlapping()
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
#[stable(feature = "non_null_convenience", since = "1.80.0")]
#[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
pub const unsafe fn copy_from_nonoverlapping(self, src: NonNull<T>, count: usize)
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `copy_nonoverlapping`.
unsafe { ptr::copy_nonoverlapping(src.pointer, self.as_ptr(), count) }
}
/// Executes the destructor (if any) of the pointed-to value.
///
/// See [`ptr::drop_in_place`] for safety concerns and examples.
///
/// [`ptr::drop_in_place`]: crate::ptr::drop_in_place()
#[inline(always)]
#[stable(feature = "non_null_convenience", since = "1.80.0")]
pub unsafe fn drop_in_place(self) {
// SAFETY: the caller must uphold the safety contract for `drop_in_place`.
unsafe { ptr::drop_in_place(self.as_ptr()) }
}
/// Overwrites a memory location with the given value without reading or
/// dropping the old value.
///
/// See [`ptr::write`] for safety concerns and examples.
///
/// [`ptr::write`]: crate::ptr::write()
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
#[stable(feature = "non_null_convenience", since = "1.80.0")]
#[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
pub const unsafe fn write(self, val: T)
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `write`.
unsafe { ptr::write(self.as_ptr(), val) }
}
/// Invokes memset on the specified pointer, setting `count * size_of::<T>()`
/// bytes of memory starting at `self` to `val`.
///
/// See [`ptr::write_bytes`] for safety concerns and examples.
///
/// [`ptr::write_bytes`]: crate::ptr::write_bytes()
#[inline(always)]
#[doc(alias = "memset")]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
#[stable(feature = "non_null_convenience", since = "1.80.0")]
#[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
pub const unsafe fn write_bytes(self, val: u8, count: usize)
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `write_bytes`.
unsafe { ptr::write_bytes(self.as_ptr(), val, count) }
}
/// Performs a volatile write of a memory location with the given value without
/// reading or dropping the old value.
///
/// Volatile operations are intended to act on I/O memory, and are guaranteed
/// to not be elided or reordered by the compiler across other volatile
/// operations.
///
/// See [`ptr::write_volatile`] for safety concerns and examples.
///
/// [`ptr::write_volatile`]: crate::ptr::write_volatile()
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
#[stable(feature = "non_null_convenience", since = "1.80.0")]
pub unsafe fn write_volatile(self, val: T)
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `write_volatile`.
unsafe { ptr::write_volatile(self.as_ptr(), val) }
}
/// Overwrites a memory location with the given value without reading or
/// dropping the old value.
///
/// Unlike `write`, the pointer may be unaligned.
///
/// See [`ptr::write_unaligned`] for safety concerns and examples.
///
/// [`ptr::write_unaligned`]: crate::ptr::write_unaligned()
#[inline(always)]
#[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
#[stable(feature = "non_null_convenience", since = "1.80.0")]
#[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
pub const unsafe fn write_unaligned(self, val: T)
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `write_unaligned`.
unsafe { ptr::write_unaligned(self.as_ptr(), val) }
}
/// Replaces the value at `self` with `src`, returning the old
/// value, without dropping either.
///
/// See [`ptr::replace`] for safety concerns and examples.
///
/// [`ptr::replace`]: crate::ptr::replace()
#[inline(always)]
#[stable(feature = "non_null_convenience", since = "1.80.0")]
pub unsafe fn replace(self, src: T) -> T
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `replace`.
unsafe { ptr::replace(self.as_ptr(), src) }
}
/// Swaps the values at two mutable locations of the same type, without
/// deinitializing either. They may overlap, unlike `mem::swap` which is
/// otherwise equivalent.
///
/// See [`ptr::swap`] for safety concerns and examples.
///
/// [`ptr::swap`]: crate::ptr::swap()
#[inline(always)]
#[stable(feature = "non_null_convenience", since = "1.80.0")]
#[rustc_const_unstable(feature = "const_swap", issue = "83163")]
pub const unsafe fn swap(self, with: NonNull<T>)
where
T: Sized,
{
// SAFETY: the caller must uphold the safety contract for `swap`.
unsafe { ptr::swap(self.as_ptr(), with.as_ptr()) }
}
/// Computes the offset that needs to be applied to the pointer in order to make it aligned to
/// `align`.
///
/// If it is not possible to align the pointer, the implementation returns
/// `usize::MAX`.
///
/// The offset is expressed in number of `T` elements, and not bytes.
///
/// There are no guarantees whatsoever that offsetting the pointer will not overflow or go
/// beyond the allocation that the pointer points into. It is up to the caller to ensure that
/// the returned offset is correct in all terms other than alignment.
///
/// When this is called during compile-time evaluation (which is unstable), the implementation
/// may return `usize::MAX` in cases where that can never happen at runtime. This is because the
/// actual alignment of pointers is not known yet during compile-time, so an offset with
/// guaranteed alignment can sometimes not be computed. For example, a buffer declared as `[u8;
/// N]` might be allocated at an odd or an even address, but at compile-time this is not yet
/// known, so the execution has to be correct for either choice. It is therefore impossible to
/// find an offset that is guaranteed to be 2-aligned. (This behavior is subject to change, as usual
/// for unstable APIs.)
///
/// # Panics
///
/// The function panics if `align` is not a power-of-two.
///
/// # Examples
///
/// Accessing adjacent `u8` as `u16`
///
/// ```
/// use std::mem::align_of;
/// use std::ptr::NonNull;
///
/// # unsafe {
/// let x = [5_u8, 6, 7, 8, 9];
/// let ptr = NonNull::new(x.as_ptr() as *mut u8).unwrap();
/// let offset = ptr.align_offset(align_of::<u16>());
///
/// if offset < x.len() - 1 {
/// let u16_ptr = ptr.add(offset).cast::<u16>();
/// assert!(u16_ptr.read() == u16::from_ne_bytes([5, 6]) || u16_ptr.read() == u16::from_ne_bytes([6, 7]));
/// } else {
/// // while the pointer can be aligned via `offset`, it would point
/// // outside the allocation
/// }
/// # }
/// ```
#[inline]
#[must_use]
#[stable(feature = "non_null_convenience", since = "1.80.0")]
#[rustc_const_unstable(feature = "const_align_offset", issue = "90962")]
pub const fn align_offset(self, align: usize) -> usize
where
T: Sized,
{
if !align.is_power_of_two() {
panic!("align_offset: align is not a power-of-two");
}
{
// SAFETY: `align` has been checked to be a power of 2 above.
unsafe { ptr::align_offset(self.pointer, align) }
}
}
/// Returns whether the pointer is properly aligned for `T`.
///
/// # Examples
///
/// ```
/// use std::ptr::NonNull;
///
/// // On some platforms, the alignment of i32 is less than 4.
/// #[repr(align(4))]
/// struct AlignedI32(i32);
///
/// let data = AlignedI32(42);
/// let ptr = NonNull::<AlignedI32>::from(&data);
///
/// assert!(ptr.is_aligned());
/// assert!(!NonNull::new(ptr.as_ptr().wrapping_byte_add(1)).unwrap().is_aligned());
/// ```
///
/// # At compiletime
/// **Note: Alignment at compiletime is experimental and subject to change. See the
/// [tracking issue] for details.**
///
/// At compiletime, the compiler may not know where a value will end up in memory.
/// Calling this function on a pointer created from a reference at compiletime will only
/// return `true` if the pointer is guaranteed to be aligned. This means that the pointer
/// is never aligned if cast to a type with a stricter alignment than the reference's
/// underlying allocation.
///
/// ```
/// #![feature(const_nonnull_new)]
/// #![feature(const_pointer_is_aligned)]
/// use std::ptr::NonNull;
///
/// // On some platforms, the alignment of primitives is less than their size.
/// #[repr(align(4))]
/// struct AlignedI32(i32);
/// #[repr(align(8))]
/// struct AlignedI64(i64);
///
/// const _: () = {
/// let data = [AlignedI32(42), AlignedI32(42)];
/// let ptr = NonNull::<AlignedI32>::new(&data[0] as *const _ as *mut _).unwrap();
/// assert!(ptr.is_aligned());
///
/// // At runtime either `ptr1` or `ptr2` would be aligned, but at compiletime neither is aligned.
/// let ptr1 = ptr.cast::<AlignedI64>();
/// let ptr2 = unsafe { ptr.add(1).cast::<AlignedI64>() };
/// assert!(!ptr1.is_aligned());
/// assert!(!ptr2.is_aligned());
/// };
/// ```
///
/// Due to this behavior, it is possible that a runtime pointer derived from a compiletime
/// pointer is aligned, even if the compiletime pointer wasn't aligned.
///
/// ```
/// #![feature(const_pointer_is_aligned)]
///
/// // On some platforms, the alignment of primitives is less than their size.
/// #[repr(align(4))]
/// struct AlignedI32(i32);
/// #[repr(align(8))]
/// struct AlignedI64(i64);
///
/// // At compiletime, neither `COMPTIME_PTR` nor `COMPTIME_PTR + 1` is aligned.
/// const COMPTIME_PTR: *const AlignedI32 = &AlignedI32(42);
/// const _: () = assert!(!COMPTIME_PTR.cast::<AlignedI64>().is_aligned());
/// const _: () = assert!(!COMPTIME_PTR.wrapping_add(1).cast::<AlignedI64>().is_aligned());
///
/// // At runtime, either `runtime_ptr` or `runtime_ptr + 1` is aligned.
/// let runtime_ptr = COMPTIME_PTR;
/// assert_ne!(
/// runtime_ptr.cast::<AlignedI64>().is_aligned(),
/// runtime_ptr.wrapping_add(1).cast::<AlignedI64>().is_aligned(),
/// );
/// ```
///
/// If a pointer is created from a fixed address, this function behaves the same during
/// runtime and compiletime.
///
/// ```
/// #![feature(const_pointer_is_aligned)]
/// #![feature(const_nonnull_new)]
/// use std::ptr::NonNull;
///
/// // On some platforms, the alignment of primitives is less than their size.
/// #[repr(align(4))]
/// struct AlignedI32(i32);
/// #[repr(align(8))]
/// struct AlignedI64(i64);
///
/// const _: () = {
/// let ptr = NonNull::new(40 as *mut AlignedI32).unwrap();
/// assert!(ptr.is_aligned());
///
/// // For pointers with a known address, runtime and compiletime behavior are identical.
/// let ptr1 = ptr.cast::<AlignedI64>();
/// let ptr2 = NonNull::new(ptr.as_ptr().wrapping_add(1)).unwrap().cast::<AlignedI64>();
/// assert!(ptr1.is_aligned());
/// assert!(!ptr2.is_aligned());
/// };
/// ```
///
/// [tracking issue]: https://github.com/rust-lang/rust/issues/104203
#[inline]
#[must_use]
#[stable(feature = "pointer_is_aligned", since = "1.79.0")]
#[rustc_const_unstable(feature = "const_pointer_is_aligned", issue = "104203")]
pub const fn is_aligned(self) -> bool
where
T: Sized,
{
self.pointer.is_aligned()
}
/// Returns whether the pointer is aligned to `align`.
///
/// For non-`Sized` pointees this operation considers only the data pointer,
/// ignoring the metadata.
///
/// # Panics
///
/// The function panics if `align` is not a power-of-two (this includes 0).
///
/// # Examples
///
/// ```
/// #![feature(pointer_is_aligned_to)]
///
/// // On some platforms, the alignment of i32 is less than 4.
/// #[repr(align(4))]
/// struct AlignedI32(i32);
///
/// let data = AlignedI32(42);
/// let ptr = &data as *const AlignedI32;
///
/// assert!(ptr.is_aligned_to(1));
/// assert!(ptr.is_aligned_to(2));
/// assert!(ptr.is_aligned_to(4));
///
/// assert!(ptr.wrapping_byte_add(2).is_aligned_to(2));
/// assert!(!ptr.wrapping_byte_add(2).is_aligned_to(4));
///
/// assert_ne!(ptr.is_aligned_to(8), ptr.wrapping_add(1).is_aligned_to(8));
/// ```
///
/// # At compiletime
/// **Note: Alignment at compiletime is experimental and subject to change. See the
/// [tracking issue] for details.**
///
/// At compiletime, the compiler may not know where a value will end up in memory.
/// Calling this function on a pointer created from a reference at compiletime will only
/// return `true` if the pointer is guaranteed to be aligned. This means that the pointer
/// cannot be stricter aligned than the reference's underlying allocation.
///
/// ```
/// #![feature(pointer_is_aligned_to)]
/// #![feature(const_pointer_is_aligned)]
///
/// // On some platforms, the alignment of i32 is less than 4.
/// #[repr(align(4))]
/// struct AlignedI32(i32);
///
/// const _: () = {
/// let data = AlignedI32(42);
/// let ptr = &data as *const AlignedI32;
///
/// assert!(ptr.is_aligned_to(1));
/// assert!(ptr.is_aligned_to(2));
/// assert!(ptr.is_aligned_to(4));
///
/// // At compiletime, we know for sure that the pointer isn't aligned to 8.
/// assert!(!ptr.is_aligned_to(8));
/// assert!(!ptr.wrapping_add(1).is_aligned_to(8));
/// };
/// ```
///
/// Due to this behavior, it is possible that a runtime pointer derived from a compiletime
/// pointer is aligned, even if the compiletime pointer wasn't aligned.
///
/// ```
/// #![feature(pointer_is_aligned_to)]
/// #![feature(const_pointer_is_aligned)]
///
/// // On some platforms, the alignment of i32 is less than 4.
/// #[repr(align(4))]
/// struct AlignedI32(i32);
///
/// // At compiletime, neither `COMPTIME_PTR` nor `COMPTIME_PTR + 1` is aligned.
/// const COMPTIME_PTR: *const AlignedI32 = &AlignedI32(42);
/// const _: () = assert!(!COMPTIME_PTR.is_aligned_to(8));
/// const _: () = assert!(!COMPTIME_PTR.wrapping_add(1).is_aligned_to(8));
///
/// // At runtime, either `runtime_ptr` or `runtime_ptr + 1` is aligned.
/// let runtime_ptr = COMPTIME_PTR;
/// assert_ne!(
/// runtime_ptr.is_aligned_to(8),
/// runtime_ptr.wrapping_add(1).is_aligned_to(8),
/// );
/// ```
///
/// If a pointer is created from a fixed address, this function behaves the same during
/// runtime and compiletime.
///
/// ```
/// #![feature(pointer_is_aligned_to)]
/// #![feature(const_pointer_is_aligned)]
///
/// const _: () = {
/// let ptr = 40 as *const u8;
/// assert!(ptr.is_aligned_to(1));
/// assert!(ptr.is_aligned_to(2));
/// assert!(ptr.is_aligned_to(4));
/// assert!(ptr.is_aligned_to(8));
/// assert!(!ptr.is_aligned_to(16));
/// };
/// ```
///
/// [tracking issue]: https://github.com/rust-lang/rust/issues/104203
#[inline]
#[must_use]
#[unstable(feature = "pointer_is_aligned_to", issue = "96284")]
#[rustc_const_unstable(feature = "const_pointer_is_aligned", issue = "104203")]
pub const fn is_aligned_to(self, align: usize) -> bool {
self.pointer.is_aligned_to(align)
}
}
impl<T> NonNull<[T]> {
/// Creates a non-null raw slice from a thin pointer and a length.
///
/// The `len` argument is the number of **elements**, not the number of bytes.
///
/// This function is safe, but dereferencing the return value is unsafe.
/// See the documentation of [`slice::from_raw_parts`] for slice safety requirements.
///
/// # Examples
///
/// ```rust
/// use std::ptr::NonNull;
///
/// // create a slice pointer when starting out with a pointer to the first element
/// let mut x = [5, 6, 7];
/// let nonnull_pointer = NonNull::new(x.as_mut_ptr()).unwrap();
/// let slice = NonNull::slice_from_raw_parts(nonnull_pointer, 3);
/// assert_eq!(unsafe { slice.as_ref()[2] }, 7);
/// ```
///
/// (Note that this example artificially demonstrates a use of this method,
/// but `let slice = NonNull::from(&x[..]);` would be a better way to write code like this.)
#[stable(feature = "nonnull_slice_from_raw_parts", since = "1.70.0")]
#[rustc_const_stable(feature = "const_slice_from_raw_parts_mut", since = "1.83.0")]
#[must_use]
#[inline]
pub const fn slice_from_raw_parts(data: NonNull<T>, len: usize) -> Self {
// SAFETY: `data` is a `NonNull` pointer which is necessarily non-null
unsafe { Self::new_unchecked(super::slice_from_raw_parts_mut(data.as_ptr(), len)) }
}
/// Returns the length of a non-null raw slice.
///
/// The returned value is the number of **elements**, not the number of bytes.
///
/// This function is safe, even when the non-null raw slice cannot be dereferenced to a slice
/// because the pointer does not have a valid address.
///
/// # Examples
///
/// ```rust
/// use std::ptr::NonNull;
///
/// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
/// assert_eq!(slice.len(), 3);
/// ```
#[stable(feature = "slice_ptr_len_nonnull", since = "1.63.0")]
#[rustc_const_stable(feature = "const_slice_ptr_len_nonnull", since = "1.63.0")]
#[must_use]
#[inline]
pub const fn len(self) -> usize {
self.as_ptr().len()
}
/// Returns `true` if the non-null raw slice has a length of 0.
///
/// # Examples
///
/// ```rust
/// use std::ptr::NonNull;
///
/// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
/// assert!(!slice.is_empty());
/// ```
#[stable(feature = "slice_ptr_is_empty_nonnull", since = "1.79.0")]
#[rustc_const_stable(feature = "const_slice_ptr_is_empty_nonnull", since = "1.79.0")]
#[must_use]
#[inline]
pub const fn is_empty(self) -> bool {
self.len() == 0
}
/// Returns a non-null pointer to the slice's buffer.
///
/// # Examples
///
/// ```rust
/// #![feature(slice_ptr_get)]
/// use std::ptr::NonNull;
///
/// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
/// assert_eq!(slice.as_non_null_ptr(), NonNull::<i8>::dangling());
/// ```
#[inline]
#[must_use]
#[unstable(feature = "slice_ptr_get", issue = "74265")]
pub const fn as_non_null_ptr(self) -> NonNull<T> {
self.cast()
}
/// Returns a raw pointer to the slice's buffer.
///
/// # Examples
///
/// ```rust
/// #![feature(slice_ptr_get)]
/// use std::ptr::NonNull;
///
/// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
/// assert_eq!(slice.as_mut_ptr(), NonNull::<i8>::dangling().as_ptr());
/// ```
#[inline]
#[must_use]
#[unstable(feature = "slice_ptr_get", issue = "74265")]
#[rustc_never_returns_null_ptr]
pub const fn as_mut_ptr(self) -> *mut T {
self.as_non_null_ptr().as_ptr()
}
/// Returns a shared reference to a slice of possibly uninitialized values. In contrast to
/// [`as_ref`], this does not require that the value has to be initialized.
///
/// For the mutable counterpart see [`as_uninit_slice_mut`].
///
/// [`as_ref`]: NonNull::as_ref
/// [`as_uninit_slice_mut`]: NonNull::as_uninit_slice_mut
///
/// # Safety
///
/// When calling this method, you have to ensure that all of the following is true:
///
/// * The pointer must be [valid] for reads for `ptr.len() * mem::size_of::<T>()` many bytes,
/// and it must be properly aligned. This means in particular:
///
/// * The entire memory range of this slice must be contained within a single allocated object!
/// Slices can never span across multiple allocated objects.
///
/// * The pointer must be aligned even for zero-length slices. One
/// reason for this is that enum layout optimizations may rely on references
/// (including slices of any length) being aligned and non-null to distinguish
/// them from other data. You can obtain a pointer that is usable as `data`
/// for zero-length slices using [`NonNull::dangling()`].
///
/// * The total size `ptr.len() * mem::size_of::<T>()` of the slice must be no larger than `isize::MAX`.
/// See the safety documentation of [`pointer::offset`].
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, while this reference exists, the memory the pointer points to must
/// not get mutated (except inside `UnsafeCell`).
///
/// This applies even if the result of this method is unused!
///
/// See also [`slice::from_raw_parts`].
///
/// [valid]: crate::ptr#safety
#[inline]
#[must_use]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
pub const unsafe fn as_uninit_slice<'a>(self) -> &'a [MaybeUninit<T>] {
// SAFETY: the caller must uphold the safety contract for `as_uninit_slice`.
unsafe { slice::from_raw_parts(self.cast().as_ptr(), self.len()) }
}
/// Returns a unique reference to a slice of possibly uninitialized values. In contrast to
/// [`as_mut`], this does not require that the value has to be initialized.
///
/// For the shared counterpart see [`as_uninit_slice`].
///
/// [`as_mut`]: NonNull::as_mut
/// [`as_uninit_slice`]: NonNull::as_uninit_slice
///
/// # Safety
///
/// When calling this method, you have to ensure that all of the following is true:
///
/// * The pointer must be [valid] for reads and writes for `ptr.len() * mem::size_of::<T>()`
/// many bytes, and it must be properly aligned. This means in particular:
///
/// * The entire memory range of this slice must be contained within a single allocated object!
/// Slices can never span across multiple allocated objects.
///
/// * The pointer must be aligned even for zero-length slices. One
/// reason for this is that enum layout optimizations may rely on references
/// (including slices of any length) being aligned and non-null to distinguish
/// them from other data. You can obtain a pointer that is usable as `data`
/// for zero-length slices using [`NonNull::dangling()`].
///
/// * The total size `ptr.len() * mem::size_of::<T>()` of the slice must be no larger than `isize::MAX`.
/// See the safety documentation of [`pointer::offset`].
///
/// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
/// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
/// In particular, while this reference exists, the memory the pointer points to must
/// not get accessed (read or written) through any other pointer.
///
/// This applies even if the result of this method is unused!
///
/// See also [`slice::from_raw_parts_mut`].
///
/// [valid]: crate::ptr#safety
///
/// # Examples
///
/// ```rust
/// #![feature(allocator_api, ptr_as_uninit)]
///
/// use std::alloc::{Allocator, Layout, Global};
/// use std::mem::MaybeUninit;
/// use std::ptr::NonNull;
///
/// let memory: NonNull<[u8]> = Global.allocate(Layout::new::<[u8; 32]>())?;
/// // This is safe as `memory` is valid for reads and writes for `memory.len()` many bytes.
/// // Note that calling `memory.as_mut()` is not allowed here as the content may be uninitialized.
/// # #[allow(unused_variables)]
/// let slice: &mut [MaybeUninit<u8>] = unsafe { memory.as_uninit_slice_mut() };
/// # // Prevent leaks for Miri.
/// # unsafe { Global.deallocate(memory.cast(), Layout::new::<[u8; 32]>()); }
/// # Ok::<_, std::alloc::AllocError>(())
/// ```
#[inline]
#[must_use]
#[unstable(feature = "ptr_as_uninit", issue = "75402")]
pub const unsafe fn as_uninit_slice_mut<'a>(self) -> &'a mut [MaybeUninit<T>] {
// SAFETY: the caller must uphold the safety contract for `as_uninit_slice_mut`.
unsafe { slice::from_raw_parts_mut(self.cast().as_ptr(), self.len()) }
}
/// Returns a raw pointer to an element or subslice, without doing bounds
/// checking.
///
/// Calling this method with an out-of-bounds index or when `self` is not dereferenceable
/// is *[undefined behavior]* even if the resulting pointer is not used.
///
/// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
///
/// # Examples
///
/// ```
/// #![feature(slice_ptr_get)]
/// use std::ptr::NonNull;
///
/// let x = &mut [1, 2, 4];
/// let x = NonNull::slice_from_raw_parts(NonNull::new(x.as_mut_ptr()).unwrap(), x.len());
///
/// unsafe {
/// assert_eq!(x.get_unchecked_mut(1).as_ptr(), x.as_non_null_ptr().as_ptr().add(1));
/// }
/// ```
#[unstable(feature = "slice_ptr_get", issue = "74265")]
#[inline]
pub unsafe fn get_unchecked_mut<I>(self, index: I) -> NonNull<I::Output>
where
I: SliceIndex<[T]>,
{
// SAFETY: the caller ensures that `self` is dereferenceable and `index` in-bounds.
// As a consequence, the resulting pointer cannot be null.
unsafe { NonNull::new_unchecked(self.as_ptr().get_unchecked_mut(index)) }
}
}
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> Clone for NonNull<T> {
#[inline(always)]
fn clone(&self) -> Self {
*self
}
}
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> Copy for NonNull<T> {}
#[unstable(feature = "coerce_unsized", issue = "18598")]
impl<T: ?Sized, U: ?Sized> CoerceUnsized<NonNull<U>> for NonNull<T> where T: Unsize<U> {}
#[unstable(feature = "dispatch_from_dyn", issue = "none")]
impl<T: ?Sized, U: ?Sized> DispatchFromDyn<NonNull<U>> for NonNull<T> where T: Unsize<U> {}
#[stable(feature = "pin", since = "1.33.0")]
unsafe impl<T: ?Sized> PinCoerceUnsized for NonNull<T> {}
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> fmt::Debug for NonNull<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Pointer::fmt(&self.as_ptr(), f)
}
}
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> fmt::Pointer for NonNull<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt::Pointer::fmt(&self.as_ptr(), f)
}
}
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> Eq for NonNull<T> {}
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> PartialEq for NonNull<T> {
#[inline]
#[allow(ambiguous_wide_pointer_comparisons)]
fn eq(&self, other: &Self) -> bool {
self.as_ptr() == other.as_ptr()
}
}
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> Ord for NonNull<T> {
#[inline]
#[allow(ambiguous_wide_pointer_comparisons)]
fn cmp(&self, other: &Self) -> Ordering {
self.as_ptr().cmp(&other.as_ptr())
}
}
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> PartialOrd for NonNull<T> {
#[inline]
#[allow(ambiguous_wide_pointer_comparisons)]
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.as_ptr().partial_cmp(&other.as_ptr())
}
}
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> hash::Hash for NonNull<T> {
#[inline]
fn hash<H: hash::Hasher>(&self, state: &mut H) {
self.as_ptr().hash(state)
}
}
#[unstable(feature = "ptr_internals", issue = "none")]
impl<T: ?Sized> From<Unique<T>> for NonNull<T> {
#[inline]
fn from(unique: Unique<T>) -> Self {
unique.as_non_null_ptr()
}
}
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> From<&mut T> for NonNull<T> {
/// Converts a `&mut T` to a `NonNull<T>`.
///
/// This conversion is safe and infallible since references cannot be null.
#[inline]
fn from(r: &mut T) -> Self {
NonNull::from_mut(r)
}
}
#[stable(feature = "nonnull", since = "1.25.0")]
impl<T: ?Sized> From<&T> for NonNull<T> {
/// Converts a `&T` to a `NonNull<T>`.
///
/// This conversion is safe and infallible since references cannot be null.
#[inline]
fn from(r: &T) -> Self {
NonNull::from_ref(r)
}
}