core/ptr/non_null.rs
1use crate::cmp::Ordering;
2use crate::marker::Unsize;
3use crate::mem::{MaybeUninit, SizedTypeProperties};
4use crate::num::NonZero;
5use crate::ops::{CoerceUnsized, DispatchFromDyn};
6use crate::pin::PinCoerceUnsized;
7use crate::ptr::Unique;
8use crate::slice::{self, SliceIndex};
9use crate::ub_checks::assert_unsafe_precondition;
10use crate::{fmt, hash, intrinsics, mem, ptr};
11
12/// `*mut T` but non-zero and [covariant].
13///
14/// This is often the correct thing to use when building data structures using
15/// raw pointers, but is ultimately more dangerous to use because of its additional
16/// properties. If you're not sure if you should use `NonNull<T>`, just use `*mut T`!
17///
18/// Unlike `*mut T`, the pointer must always be non-null, even if the pointer
19/// is never dereferenced. This is so that enums may use this forbidden value
20/// as a discriminant -- `Option<NonNull<T>>` has the same size as `*mut T`.
21/// However the pointer may still dangle if it isn't dereferenced.
22///
23/// Unlike `*mut T`, `NonNull<T>` was chosen to be covariant over `T`. This makes it
24/// possible to use `NonNull<T>` when building covariant types, but introduces the
25/// risk of unsoundness if used in a type that shouldn't actually be covariant.
26/// (The opposite choice was made for `*mut T` even though technically the unsoundness
27/// could only be caused by calling unsafe functions.)
28///
29/// Covariance is correct for most safe abstractions, such as `Box`, `Rc`, `Arc`, `Vec`,
30/// and `LinkedList`. This is the case because they provide a public API that follows the
31/// normal shared XOR mutable rules of Rust.
32///
33/// If your type cannot safely be covariant, you must ensure it contains some
34/// additional field to provide invariance. Often this field will be a [`PhantomData`]
35/// type like `PhantomData<Cell<T>>` or `PhantomData<&'a mut T>`.
36///
37/// Notice that `NonNull<T>` has a `From` instance for `&T`. However, this does
38/// not change the fact that mutating through a (pointer derived from a) shared
39/// reference is undefined behavior unless the mutation happens inside an
40/// [`UnsafeCell<T>`]. The same goes for creating a mutable reference from a shared
41/// reference. When using this `From` instance without an `UnsafeCell<T>`,
42/// it is your responsibility to ensure that `as_mut` is never called, and `as_ptr`
43/// is never used for mutation.
44///
45/// # Representation
46///
47/// Thanks to the [null pointer optimization],
48/// `NonNull<T>` and `Option<NonNull<T>>`
49/// are guaranteed to have the same size and alignment:
50///
51/// ```
52/// use std::ptr::NonNull;
53///
54/// assert_eq!(size_of::<NonNull<i16>>(), size_of::<Option<NonNull<i16>>>());
55/// assert_eq!(align_of::<NonNull<i16>>(), align_of::<Option<NonNull<i16>>>());
56///
57/// assert_eq!(size_of::<NonNull<str>>(), size_of::<Option<NonNull<str>>>());
58/// assert_eq!(align_of::<NonNull<str>>(), align_of::<Option<NonNull<str>>>());
59/// ```
60///
61/// [covariant]: https://doc.rust-lang.org/reference/subtyping.html
62/// [`PhantomData`]: crate::marker::PhantomData
63/// [`UnsafeCell<T>`]: crate::cell::UnsafeCell
64/// [null pointer optimization]: crate::option#representation
65#[stable(feature = "nonnull", since = "1.25.0")]
66#[repr(transparent)]
67#[rustc_layout_scalar_valid_range_start(1)]
68#[rustc_nonnull_optimization_guaranteed]
69#[rustc_diagnostic_item = "NonNull"]
70pub struct NonNull<T: ?Sized> {
71 // Remember to use `.as_ptr()` instead of `.pointer`, as field projecting to
72 // this is banned by <https://github.com/rust-lang/compiler-team/issues/807>.
73 pointer: *const T,
74}
75
76/// `NonNull` pointers are not `Send` because the data they reference may be aliased.
77// N.B., this impl is unnecessary, but should provide better error messages.
78#[stable(feature = "nonnull", since = "1.25.0")]
79impl<T: ?Sized> !Send for NonNull<T> {}
80
81/// `NonNull` pointers are not `Sync` because the data they reference may be aliased.
82// N.B., this impl is unnecessary, but should provide better error messages.
83#[stable(feature = "nonnull", since = "1.25.0")]
84impl<T: ?Sized> !Sync for NonNull<T> {}
85
86impl<T: Sized> NonNull<T> {
87 /// Creates a pointer with the given address and no [provenance][crate::ptr#provenance].
88 ///
89 /// For more details, see the equivalent method on a raw pointer, [`ptr::without_provenance_mut`].
90 ///
91 /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
92 #[unstable(feature = "nonnull_provenance", issue = "135243")]
93 #[must_use]
94 #[inline]
95 pub const fn without_provenance(addr: NonZero<usize>) -> Self {
96 let pointer = crate::ptr::without_provenance(addr.get());
97 // SAFETY: we know `addr` is non-zero.
98 unsafe { NonNull { pointer } }
99 }
100
101 /// Creates a new `NonNull` that is dangling, but well-aligned.
102 ///
103 /// This is useful for initializing types which lazily allocate, like
104 /// `Vec::new` does.
105 ///
106 /// Note that the pointer value may potentially represent a valid pointer to
107 /// a `T`, which means this must not be used as a "not yet initialized"
108 /// sentinel value. Types that lazily allocate must track initialization by
109 /// some other means.
110 ///
111 /// # Examples
112 ///
113 /// ```
114 /// use std::ptr::NonNull;
115 ///
116 /// let ptr = NonNull::<u32>::dangling();
117 /// // Important: don't try to access the value of `ptr` without
118 /// // initializing it first! The pointer is not null but isn't valid either!
119 /// ```
120 #[stable(feature = "nonnull", since = "1.25.0")]
121 #[rustc_const_stable(feature = "const_nonnull_dangling", since = "1.36.0")]
122 #[must_use]
123 #[inline]
124 pub const fn dangling() -> Self {
125 let align = crate::ptr::Alignment::of::<T>();
126 NonNull::without_provenance(align.as_nonzero())
127 }
128
129 /// Converts an address back to a mutable pointer, picking up some previously 'exposed'
130 /// [provenance][crate::ptr#provenance].
131 ///
132 /// For more details, see the equivalent method on a raw pointer, [`ptr::with_exposed_provenance_mut`].
133 ///
134 /// This is an [Exposed Provenance][crate::ptr#exposed-provenance] API.
135 #[unstable(feature = "nonnull_provenance", issue = "135243")]
136 #[inline]
137 pub fn with_exposed_provenance(addr: NonZero<usize>) -> Self {
138 // SAFETY: we know `addr` is non-zero.
139 unsafe {
140 let ptr = crate::ptr::with_exposed_provenance_mut(addr.get());
141 NonNull::new_unchecked(ptr)
142 }
143 }
144
145 /// Returns a shared references to the value. In contrast to [`as_ref`], this does not require
146 /// that the value has to be initialized.
147 ///
148 /// For the mutable counterpart see [`as_uninit_mut`].
149 ///
150 /// [`as_ref`]: NonNull::as_ref
151 /// [`as_uninit_mut`]: NonNull::as_uninit_mut
152 ///
153 /// # Safety
154 ///
155 /// When calling this method, you have to ensure that
156 /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
157 /// Note that because the created reference is to `MaybeUninit<T>`, the
158 /// source pointer can point to uninitialized memory.
159 #[inline]
160 #[must_use]
161 #[unstable(feature = "ptr_as_uninit", issue = "75402")]
162 pub const unsafe fn as_uninit_ref<'a>(self) -> &'a MaybeUninit<T> {
163 // SAFETY: the caller must guarantee that `self` meets all the
164 // requirements for a reference.
165 unsafe { &*self.cast().as_ptr() }
166 }
167
168 /// Returns a unique references to the value. In contrast to [`as_mut`], this does not require
169 /// that the value has to be initialized.
170 ///
171 /// For the shared counterpart see [`as_uninit_ref`].
172 ///
173 /// [`as_mut`]: NonNull::as_mut
174 /// [`as_uninit_ref`]: NonNull::as_uninit_ref
175 ///
176 /// # Safety
177 ///
178 /// When calling this method, you have to ensure that
179 /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
180 /// Note that because the created reference is to `MaybeUninit<T>`, the
181 /// source pointer can point to uninitialized memory.
182 #[inline]
183 #[must_use]
184 #[unstable(feature = "ptr_as_uninit", issue = "75402")]
185 pub const unsafe fn as_uninit_mut<'a>(self) -> &'a mut MaybeUninit<T> {
186 // SAFETY: the caller must guarantee that `self` meets all the
187 // requirements for a reference.
188 unsafe { &mut *self.cast().as_ptr() }
189 }
190}
191
192impl<T: ?Sized> NonNull<T> {
193 /// Creates a new `NonNull`.
194 ///
195 /// # Safety
196 ///
197 /// `ptr` must be non-null.
198 ///
199 /// # Examples
200 ///
201 /// ```
202 /// use std::ptr::NonNull;
203 ///
204 /// let mut x = 0u32;
205 /// let ptr = unsafe { NonNull::new_unchecked(&mut x as *mut _) };
206 /// ```
207 ///
208 /// *Incorrect* usage of this function:
209 ///
210 /// ```rust,no_run
211 /// use std::ptr::NonNull;
212 ///
213 /// // NEVER DO THAT!!! This is undefined behavior. ⚠️
214 /// let ptr = unsafe { NonNull::<u32>::new_unchecked(std::ptr::null_mut()) };
215 /// ```
216 #[stable(feature = "nonnull", since = "1.25.0")]
217 #[rustc_const_stable(feature = "const_nonnull_new_unchecked", since = "1.25.0")]
218 #[inline]
219 pub const unsafe fn new_unchecked(ptr: *mut T) -> Self {
220 // SAFETY: the caller must guarantee that `ptr` is non-null.
221 unsafe {
222 assert_unsafe_precondition!(
223 check_language_ub,
224 "NonNull::new_unchecked requires that the pointer is non-null",
225 (ptr: *mut () = ptr as *mut ()) => !ptr.is_null()
226 );
227 NonNull { pointer: ptr as _ }
228 }
229 }
230
231 /// Creates a new `NonNull` if `ptr` is non-null.
232 ///
233 /// # Panics during const evaluation
234 ///
235 /// This method will panic during const evaluation if the pointer cannot be
236 /// determined to be null or not. See [`is_null`] for more information.
237 ///
238 /// [`is_null`]: ../primitive.pointer.html#method.is_null-1
239 ///
240 /// # Examples
241 ///
242 /// ```
243 /// use std::ptr::NonNull;
244 ///
245 /// let mut x = 0u32;
246 /// let ptr = NonNull::<u32>::new(&mut x as *mut _).expect("ptr is null!");
247 ///
248 /// if let Some(ptr) = NonNull::<u32>::new(std::ptr::null_mut()) {
249 /// unreachable!();
250 /// }
251 /// ```
252 #[stable(feature = "nonnull", since = "1.25.0")]
253 #[rustc_const_stable(feature = "const_nonnull_new", since = "1.85.0")]
254 #[inline]
255 pub const fn new(ptr: *mut T) -> Option<Self> {
256 if !ptr.is_null() {
257 // SAFETY: The pointer is already checked and is not null
258 Some(unsafe { Self::new_unchecked(ptr) })
259 } else {
260 None
261 }
262 }
263
264 /// Converts a reference to a `NonNull` pointer.
265 #[stable(feature = "non_null_from_ref", since = "CURRENT_RUSTC_VERSION")]
266 #[rustc_const_stable(feature = "non_null_from_ref", since = "CURRENT_RUSTC_VERSION")]
267 #[inline]
268 pub const fn from_ref(r: &T) -> Self {
269 // SAFETY: A reference cannot be null.
270 unsafe { NonNull { pointer: r as *const T } }
271 }
272
273 /// Converts a mutable reference to a `NonNull` pointer.
274 #[stable(feature = "non_null_from_ref", since = "CURRENT_RUSTC_VERSION")]
275 #[rustc_const_stable(feature = "non_null_from_ref", since = "CURRENT_RUSTC_VERSION")]
276 #[inline]
277 pub const fn from_mut(r: &mut T) -> Self {
278 // SAFETY: A mutable reference cannot be null.
279 unsafe { NonNull { pointer: r as *mut T } }
280 }
281
282 /// Performs the same functionality as [`std::ptr::from_raw_parts`], except that a
283 /// `NonNull` pointer is returned, as opposed to a raw `*const` pointer.
284 ///
285 /// See the documentation of [`std::ptr::from_raw_parts`] for more details.
286 ///
287 /// [`std::ptr::from_raw_parts`]: crate::ptr::from_raw_parts
288 #[unstable(feature = "ptr_metadata", issue = "81513")]
289 #[inline]
290 pub const fn from_raw_parts(
291 data_pointer: NonNull<impl super::Thin>,
292 metadata: <T as super::Pointee>::Metadata,
293 ) -> NonNull<T> {
294 // SAFETY: The result of `ptr::from::raw_parts_mut` is non-null because `data_pointer` is.
295 unsafe {
296 NonNull::new_unchecked(super::from_raw_parts_mut(data_pointer.as_ptr(), metadata))
297 }
298 }
299
300 /// Decompose a (possibly wide) pointer into its data pointer and metadata components.
301 ///
302 /// The pointer can be later reconstructed with [`NonNull::from_raw_parts`].
303 #[unstable(feature = "ptr_metadata", issue = "81513")]
304 #[must_use = "this returns the result of the operation, \
305 without modifying the original"]
306 #[inline]
307 pub const fn to_raw_parts(self) -> (NonNull<()>, <T as super::Pointee>::Metadata) {
308 (self.cast(), super::metadata(self.as_ptr()))
309 }
310
311 /// Gets the "address" portion of the pointer.
312 ///
313 /// For more details, see the equivalent method on a raw pointer, [`pointer::addr`].
314 ///
315 /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
316 #[must_use]
317 #[inline]
318 #[stable(feature = "strict_provenance", since = "1.84.0")]
319 pub fn addr(self) -> NonZero<usize> {
320 // SAFETY: The pointer is guaranteed by the type to be non-null,
321 // meaning that the address will be non-zero.
322 unsafe { NonZero::new_unchecked(self.as_ptr().addr()) }
323 }
324
325 /// Exposes the ["provenance"][crate::ptr#provenance] part of the pointer for future use in
326 /// [`with_exposed_provenance`][NonNull::with_exposed_provenance] and returns the "address" portion.
327 ///
328 /// For more details, see the equivalent method on a raw pointer, [`pointer::expose_provenance`].
329 ///
330 /// This is an [Exposed Provenance][crate::ptr#exposed-provenance] API.
331 #[unstable(feature = "nonnull_provenance", issue = "135243")]
332 pub fn expose_provenance(self) -> NonZero<usize> {
333 // SAFETY: The pointer is guaranteed by the type to be non-null,
334 // meaning that the address will be non-zero.
335 unsafe { NonZero::new_unchecked(self.as_ptr().expose_provenance()) }
336 }
337
338 /// Creates a new pointer with the given address and the [provenance][crate::ptr#provenance] of
339 /// `self`.
340 ///
341 /// For more details, see the equivalent method on a raw pointer, [`pointer::with_addr`].
342 ///
343 /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
344 #[must_use]
345 #[inline]
346 #[stable(feature = "strict_provenance", since = "1.84.0")]
347 pub fn with_addr(self, addr: NonZero<usize>) -> Self {
348 // SAFETY: The result of `ptr::from::with_addr` is non-null because `addr` is guaranteed to be non-zero.
349 unsafe { NonNull::new_unchecked(self.as_ptr().with_addr(addr.get()) as *mut _) }
350 }
351
352 /// Creates a new pointer by mapping `self`'s address to a new one, preserving the
353 /// [provenance][crate::ptr#provenance] of `self`.
354 ///
355 /// For more details, see the equivalent method on a raw pointer, [`pointer::map_addr`].
356 ///
357 /// This is a [Strict Provenance][crate::ptr#strict-provenance] API.
358 #[must_use]
359 #[inline]
360 #[stable(feature = "strict_provenance", since = "1.84.0")]
361 pub fn map_addr(self, f: impl FnOnce(NonZero<usize>) -> NonZero<usize>) -> Self {
362 self.with_addr(f(self.addr()))
363 }
364
365 /// Acquires the underlying `*mut` pointer.
366 ///
367 /// # Examples
368 ///
369 /// ```
370 /// use std::ptr::NonNull;
371 ///
372 /// let mut x = 0u32;
373 /// let ptr = NonNull::new(&mut x).expect("ptr is null!");
374 ///
375 /// let x_value = unsafe { *ptr.as_ptr() };
376 /// assert_eq!(x_value, 0);
377 ///
378 /// unsafe { *ptr.as_ptr() += 2; }
379 /// let x_value = unsafe { *ptr.as_ptr() };
380 /// assert_eq!(x_value, 2);
381 /// ```
382 #[stable(feature = "nonnull", since = "1.25.0")]
383 #[rustc_const_stable(feature = "const_nonnull_as_ptr", since = "1.32.0")]
384 #[rustc_never_returns_null_ptr]
385 #[must_use]
386 #[inline(always)]
387 pub const fn as_ptr(self) -> *mut T {
388 // This is a transmute for the same reasons as `NonZero::get`.
389
390 // SAFETY: `NonNull` is `transparent` over a `*const T`, and `*const T`
391 // and `*mut T` have the same layout, so transitively we can transmute
392 // our `NonNull` to a `*mut T` directly.
393 unsafe { mem::transmute::<Self, *mut T>(self) }
394 }
395
396 /// Returns a shared reference to the value. If the value may be uninitialized, [`as_uninit_ref`]
397 /// must be used instead.
398 ///
399 /// For the mutable counterpart see [`as_mut`].
400 ///
401 /// [`as_uninit_ref`]: NonNull::as_uninit_ref
402 /// [`as_mut`]: NonNull::as_mut
403 ///
404 /// # Safety
405 ///
406 /// When calling this method, you have to ensure that
407 /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
408 ///
409 /// # Examples
410 ///
411 /// ```
412 /// use std::ptr::NonNull;
413 ///
414 /// let mut x = 0u32;
415 /// let ptr = NonNull::new(&mut x as *mut _).expect("ptr is null!");
416 ///
417 /// let ref_x = unsafe { ptr.as_ref() };
418 /// println!("{ref_x}");
419 /// ```
420 ///
421 /// [the module documentation]: crate::ptr#safety
422 #[stable(feature = "nonnull", since = "1.25.0")]
423 #[rustc_const_stable(feature = "const_nonnull_as_ref", since = "1.73.0")]
424 #[must_use]
425 #[inline(always)]
426 pub const unsafe fn as_ref<'a>(&self) -> &'a T {
427 // SAFETY: the caller must guarantee that `self` meets all the
428 // requirements for a reference.
429 // `cast_const` avoids a mutable raw pointer deref.
430 unsafe { &*self.as_ptr().cast_const() }
431 }
432
433 /// Returns a unique reference to the value. If the value may be uninitialized, [`as_uninit_mut`]
434 /// must be used instead.
435 ///
436 /// For the shared counterpart see [`as_ref`].
437 ///
438 /// [`as_uninit_mut`]: NonNull::as_uninit_mut
439 /// [`as_ref`]: NonNull::as_ref
440 ///
441 /// # Safety
442 ///
443 /// When calling this method, you have to ensure that
444 /// the pointer is [convertible to a reference](crate::ptr#pointer-to-reference-conversion).
445 /// # Examples
446 ///
447 /// ```
448 /// use std::ptr::NonNull;
449 ///
450 /// let mut x = 0u32;
451 /// let mut ptr = NonNull::new(&mut x).expect("null pointer");
452 ///
453 /// let x_ref = unsafe { ptr.as_mut() };
454 /// assert_eq!(*x_ref, 0);
455 /// *x_ref += 2;
456 /// assert_eq!(*x_ref, 2);
457 /// ```
458 ///
459 /// [the module documentation]: crate::ptr#safety
460 #[stable(feature = "nonnull", since = "1.25.0")]
461 #[rustc_const_stable(feature = "const_ptr_as_ref", since = "1.83.0")]
462 #[must_use]
463 #[inline(always)]
464 pub const unsafe fn as_mut<'a>(&mut self) -> &'a mut T {
465 // SAFETY: the caller must guarantee that `self` meets all the
466 // requirements for a mutable reference.
467 unsafe { &mut *self.as_ptr() }
468 }
469
470 /// Casts to a pointer of another type.
471 ///
472 /// # Examples
473 ///
474 /// ```
475 /// use std::ptr::NonNull;
476 ///
477 /// let mut x = 0u32;
478 /// let ptr = NonNull::new(&mut x as *mut _).expect("null pointer");
479 ///
480 /// let casted_ptr = ptr.cast::<i8>();
481 /// let raw_ptr: *mut i8 = casted_ptr.as_ptr();
482 /// ```
483 #[stable(feature = "nonnull_cast", since = "1.27.0")]
484 #[rustc_const_stable(feature = "const_nonnull_cast", since = "1.36.0")]
485 #[must_use = "this returns the result of the operation, \
486 without modifying the original"]
487 #[inline]
488 pub const fn cast<U>(self) -> NonNull<U> {
489 // SAFETY: `self` is a `NonNull` pointer which is necessarily non-null
490 unsafe { NonNull { pointer: self.as_ptr() as *mut U } }
491 }
492
493 /// Try to cast to a pointer of another type by checking aligment.
494 ///
495 /// If the pointer is properly aligned to the target type, it will be
496 /// cast to the target type. Otherwise, `None` is returned.
497 ///
498 /// # Examples
499 ///
500 /// ```rust
501 /// #![feature(pointer_try_cast_aligned)]
502 /// use std::ptr::NonNull;
503 ///
504 /// let mut x = 0u64;
505 ///
506 /// let aligned = NonNull::from_mut(&mut x);
507 /// let unaligned = unsafe { aligned.byte_add(1) };
508 ///
509 /// assert!(aligned.try_cast_aligned::<u32>().is_some());
510 /// assert!(unaligned.try_cast_aligned::<u32>().is_none());
511 /// ```
512 #[unstable(feature = "pointer_try_cast_aligned", issue = "141221")]
513 #[must_use = "this returns the result of the operation, \
514 without modifying the original"]
515 #[inline]
516 pub fn try_cast_aligned<U>(self) -> Option<NonNull<U>> {
517 if self.is_aligned_to(align_of::<U>()) { Some(self.cast()) } else { None }
518 }
519
520 /// Adds an offset to a pointer.
521 ///
522 /// `count` is in units of T; e.g., a `count` of 3 represents a pointer
523 /// offset of `3 * size_of::<T>()` bytes.
524 ///
525 /// # Safety
526 ///
527 /// If any of the following conditions are violated, the result is Undefined Behavior:
528 ///
529 /// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
530 ///
531 /// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
532 /// [allocated object], and the entire memory range between `self` and the result must be in
533 /// bounds of that allocated object. In particular, this range must not "wrap around" the edge
534 /// of the address space.
535 ///
536 /// Allocated objects can never be larger than `isize::MAX` bytes, so if the computed offset
537 /// stays in bounds of the allocated object, it is guaranteed to satisfy the first requirement.
538 /// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
539 /// safe.
540 ///
541 /// [allocated object]: crate::ptr#allocated-object
542 ///
543 /// # Examples
544 ///
545 /// ```
546 /// use std::ptr::NonNull;
547 ///
548 /// let mut s = [1, 2, 3];
549 /// let ptr: NonNull<u32> = NonNull::new(s.as_mut_ptr()).unwrap();
550 ///
551 /// unsafe {
552 /// println!("{}", ptr.offset(1).read());
553 /// println!("{}", ptr.offset(2).read());
554 /// }
555 /// ```
556 #[inline(always)]
557 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
558 #[must_use = "returns a new pointer rather than modifying its argument"]
559 #[stable(feature = "non_null_convenience", since = "1.80.0")]
560 #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
561 pub const unsafe fn offset(self, count: isize) -> Self
562 where
563 T: Sized,
564 {
565 // SAFETY: the caller must uphold the safety contract for `offset`.
566 // Additionally safety contract of `offset` guarantees that the resulting pointer is
567 // pointing to an allocation, there can't be an allocation at null, thus it's safe to
568 // construct `NonNull`.
569 unsafe { NonNull { pointer: intrinsics::offset(self.as_ptr(), count) } }
570 }
571
572 /// Calculates the offset from a pointer in bytes.
573 ///
574 /// `count` is in units of **bytes**.
575 ///
576 /// This is purely a convenience for casting to a `u8` pointer and
577 /// using [offset][pointer::offset] on it. See that method for documentation
578 /// and safety requirements.
579 ///
580 /// For non-`Sized` pointees this operation changes only the data pointer,
581 /// leaving the metadata untouched.
582 #[must_use]
583 #[inline(always)]
584 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
585 #[stable(feature = "non_null_convenience", since = "1.80.0")]
586 #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
587 pub const unsafe fn byte_offset(self, count: isize) -> Self {
588 // SAFETY: the caller must uphold the safety contract for `offset` and `byte_offset` has
589 // the same safety contract.
590 // Additionally safety contract of `offset` guarantees that the resulting pointer is
591 // pointing to an allocation, there can't be an allocation at null, thus it's safe to
592 // construct `NonNull`.
593 unsafe { NonNull { pointer: self.as_ptr().byte_offset(count) } }
594 }
595
596 /// Adds an offset to a pointer (convenience for `.offset(count as isize)`).
597 ///
598 /// `count` is in units of T; e.g., a `count` of 3 represents a pointer
599 /// offset of `3 * size_of::<T>()` bytes.
600 ///
601 /// # Safety
602 ///
603 /// If any of the following conditions are violated, the result is Undefined Behavior:
604 ///
605 /// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
606 ///
607 /// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
608 /// [allocated object], and the entire memory range between `self` and the result must be in
609 /// bounds of that allocated object. In particular, this range must not "wrap around" the edge
610 /// of the address space.
611 ///
612 /// Allocated objects can never be larger than `isize::MAX` bytes, so if the computed offset
613 /// stays in bounds of the allocated object, it is guaranteed to satisfy the first requirement.
614 /// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
615 /// safe.
616 ///
617 /// [allocated object]: crate::ptr#allocated-object
618 ///
619 /// # Examples
620 ///
621 /// ```
622 /// use std::ptr::NonNull;
623 ///
624 /// let s: &str = "123";
625 /// let ptr: NonNull<u8> = NonNull::new(s.as_ptr().cast_mut()).unwrap();
626 ///
627 /// unsafe {
628 /// println!("{}", ptr.add(1).read() as char);
629 /// println!("{}", ptr.add(2).read() as char);
630 /// }
631 /// ```
632 #[inline(always)]
633 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
634 #[must_use = "returns a new pointer rather than modifying its argument"]
635 #[stable(feature = "non_null_convenience", since = "1.80.0")]
636 #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
637 pub const unsafe fn add(self, count: usize) -> Self
638 where
639 T: Sized,
640 {
641 // SAFETY: the caller must uphold the safety contract for `offset`.
642 // Additionally safety contract of `offset` guarantees that the resulting pointer is
643 // pointing to an allocation, there can't be an allocation at null, thus it's safe to
644 // construct `NonNull`.
645 unsafe { NonNull { pointer: intrinsics::offset(self.as_ptr(), count) } }
646 }
647
648 /// Calculates the offset from a pointer in bytes (convenience for `.byte_offset(count as isize)`).
649 ///
650 /// `count` is in units of bytes.
651 ///
652 /// This is purely a convenience for casting to a `u8` pointer and
653 /// using [`add`][NonNull::add] on it. See that method for documentation
654 /// and safety requirements.
655 ///
656 /// For non-`Sized` pointees this operation changes only the data pointer,
657 /// leaving the metadata untouched.
658 #[must_use]
659 #[inline(always)]
660 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
661 #[stable(feature = "non_null_convenience", since = "1.80.0")]
662 #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
663 pub const unsafe fn byte_add(self, count: usize) -> Self {
664 // SAFETY: the caller must uphold the safety contract for `add` and `byte_add` has the same
665 // safety contract.
666 // Additionally safety contract of `add` guarantees that the resulting pointer is pointing
667 // to an allocation, there can't be an allocation at null, thus it's safe to construct
668 // `NonNull`.
669 unsafe { NonNull { pointer: self.as_ptr().byte_add(count) } }
670 }
671
672 /// Subtracts an offset from a pointer (convenience for
673 /// `.offset((count as isize).wrapping_neg())`).
674 ///
675 /// `count` is in units of T; e.g., a `count` of 3 represents a pointer
676 /// offset of `3 * size_of::<T>()` bytes.
677 ///
678 /// # Safety
679 ///
680 /// If any of the following conditions are violated, the result is Undefined Behavior:
681 ///
682 /// * The computed offset, `count * size_of::<T>()` bytes, must not overflow `isize`.
683 ///
684 /// * If the computed offset is non-zero, then `self` must be derived from a pointer to some
685 /// [allocated object], and the entire memory range between `self` and the result must be in
686 /// bounds of that allocated object. In particular, this range must not "wrap around" the edge
687 /// of the address space.
688 ///
689 /// Allocated objects can never be larger than `isize::MAX` bytes, so if the computed offset
690 /// stays in bounds of the allocated object, it is guaranteed to satisfy the first requirement.
691 /// This implies, for instance, that `vec.as_ptr().add(vec.len())` (for `vec: Vec<T>`) is always
692 /// safe.
693 ///
694 /// [allocated object]: crate::ptr#allocated-object
695 ///
696 /// # Examples
697 ///
698 /// ```
699 /// use std::ptr::NonNull;
700 ///
701 /// let s: &str = "123";
702 ///
703 /// unsafe {
704 /// let end: NonNull<u8> = NonNull::new(s.as_ptr().cast_mut()).unwrap().add(3);
705 /// println!("{}", end.sub(1).read() as char);
706 /// println!("{}", end.sub(2).read() as char);
707 /// }
708 /// ```
709 #[inline(always)]
710 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
711 #[must_use = "returns a new pointer rather than modifying its argument"]
712 #[stable(feature = "non_null_convenience", since = "1.80.0")]
713 #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
714 pub const unsafe fn sub(self, count: usize) -> Self
715 where
716 T: Sized,
717 {
718 if T::IS_ZST {
719 // Pointer arithmetic does nothing when the pointee is a ZST.
720 self
721 } else {
722 // SAFETY: the caller must uphold the safety contract for `offset`.
723 // Because the pointee is *not* a ZST, that means that `count` is
724 // at most `isize::MAX`, and thus the negation cannot overflow.
725 unsafe { self.offset((count as isize).unchecked_neg()) }
726 }
727 }
728
729 /// Calculates the offset from a pointer in bytes (convenience for
730 /// `.byte_offset((count as isize).wrapping_neg())`).
731 ///
732 /// `count` is in units of bytes.
733 ///
734 /// This is purely a convenience for casting to a `u8` pointer and
735 /// using [`sub`][NonNull::sub] on it. See that method for documentation
736 /// and safety requirements.
737 ///
738 /// For non-`Sized` pointees this operation changes only the data pointer,
739 /// leaving the metadata untouched.
740 #[must_use]
741 #[inline(always)]
742 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
743 #[stable(feature = "non_null_convenience", since = "1.80.0")]
744 #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
745 pub const unsafe fn byte_sub(self, count: usize) -> Self {
746 // SAFETY: the caller must uphold the safety contract for `sub` and `byte_sub` has the same
747 // safety contract.
748 // Additionally safety contract of `sub` guarantees that the resulting pointer is pointing
749 // to an allocation, there can't be an allocation at null, thus it's safe to construct
750 // `NonNull`.
751 unsafe { NonNull { pointer: self.as_ptr().byte_sub(count) } }
752 }
753
754 /// Calculates the distance between two pointers within the same allocation. The returned value is in
755 /// units of T: the distance in bytes divided by `size_of::<T>()`.
756 ///
757 /// This is equivalent to `(self as isize - origin as isize) / (size_of::<T>() as isize)`,
758 /// except that it has a lot more opportunities for UB, in exchange for the compiler
759 /// better understanding what you are doing.
760 ///
761 /// The primary motivation of this method is for computing the `len` of an array/slice
762 /// of `T` that you are currently representing as a "start" and "end" pointer
763 /// (and "end" is "one past the end" of the array).
764 /// In that case, `end.offset_from(start)` gets you the length of the array.
765 ///
766 /// All of the following safety requirements are trivially satisfied for this usecase.
767 ///
768 /// [`offset`]: #method.offset
769 ///
770 /// # Safety
771 ///
772 /// If any of the following conditions are violated, the result is Undefined Behavior:
773 ///
774 /// * `self` and `origin` must either
775 ///
776 /// * point to the same address, or
777 /// * both be *derived from* a pointer to the same [allocated object], and the memory range between
778 /// the two pointers must be in bounds of that object. (See below for an example.)
779 ///
780 /// * The distance between the pointers, in bytes, must be an exact multiple
781 /// of the size of `T`.
782 ///
783 /// As a consequence, the absolute distance between the pointers, in bytes, computed on
784 /// mathematical integers (without "wrapping around"), cannot overflow an `isize`. This is
785 /// implied by the in-bounds requirement, and the fact that no allocated object can be larger
786 /// than `isize::MAX` bytes.
787 ///
788 /// The requirement for pointers to be derived from the same allocated object is primarily
789 /// needed for `const`-compatibility: the distance between pointers into *different* allocated
790 /// objects is not known at compile-time. However, the requirement also exists at
791 /// runtime and may be exploited by optimizations. If you wish to compute the difference between
792 /// pointers that are not guaranteed to be from the same allocation, use `(self as isize -
793 /// origin as isize) / size_of::<T>()`.
794 // FIXME: recommend `addr()` instead of `as usize` once that is stable.
795 ///
796 /// [`add`]: #method.add
797 /// [allocated object]: crate::ptr#allocated-object
798 ///
799 /// # Panics
800 ///
801 /// This function panics if `T` is a Zero-Sized Type ("ZST").
802 ///
803 /// # Examples
804 ///
805 /// Basic usage:
806 ///
807 /// ```
808 /// use std::ptr::NonNull;
809 ///
810 /// let a = [0; 5];
811 /// let ptr1: NonNull<u32> = NonNull::from(&a[1]);
812 /// let ptr2: NonNull<u32> = NonNull::from(&a[3]);
813 /// unsafe {
814 /// assert_eq!(ptr2.offset_from(ptr1), 2);
815 /// assert_eq!(ptr1.offset_from(ptr2), -2);
816 /// assert_eq!(ptr1.offset(2), ptr2);
817 /// assert_eq!(ptr2.offset(-2), ptr1);
818 /// }
819 /// ```
820 ///
821 /// *Incorrect* usage:
822 ///
823 /// ```rust,no_run
824 /// use std::ptr::NonNull;
825 ///
826 /// let ptr1 = NonNull::new(Box::into_raw(Box::new(0u8))).unwrap();
827 /// let ptr2 = NonNull::new(Box::into_raw(Box::new(1u8))).unwrap();
828 /// let diff = (ptr2.addr().get() as isize).wrapping_sub(ptr1.addr().get() as isize);
829 /// // Make ptr2_other an "alias" of ptr2.add(1), but derived from ptr1.
830 /// let diff_plus_1 = diff.wrapping_add(1);
831 /// let ptr2_other = NonNull::new(ptr1.as_ptr().wrapping_byte_offset(diff_plus_1)).unwrap();
832 /// assert_eq!(ptr2.addr(), ptr2_other.addr());
833 /// // Since ptr2_other and ptr2 are derived from pointers to different objects,
834 /// // computing their offset is undefined behavior, even though
835 /// // they point to addresses that are in-bounds of the same object!
836 ///
837 /// let one = unsafe { ptr2_other.offset_from(ptr2) }; // Undefined Behavior! ⚠️
838 /// ```
839 #[inline]
840 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
841 #[stable(feature = "non_null_convenience", since = "1.80.0")]
842 #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
843 pub const unsafe fn offset_from(self, origin: NonNull<T>) -> isize
844 where
845 T: Sized,
846 {
847 // SAFETY: the caller must uphold the safety contract for `offset_from`.
848 unsafe { self.as_ptr().offset_from(origin.as_ptr()) }
849 }
850
851 /// Calculates the distance between two pointers within the same allocation. The returned value is in
852 /// units of **bytes**.
853 ///
854 /// This is purely a convenience for casting to a `u8` pointer and
855 /// using [`offset_from`][NonNull::offset_from] on it. See that method for
856 /// documentation and safety requirements.
857 ///
858 /// For non-`Sized` pointees this operation considers only the data pointers,
859 /// ignoring the metadata.
860 #[inline(always)]
861 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
862 #[stable(feature = "non_null_convenience", since = "1.80.0")]
863 #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
864 pub const unsafe fn byte_offset_from<U: ?Sized>(self, origin: NonNull<U>) -> isize {
865 // SAFETY: the caller must uphold the safety contract for `byte_offset_from`.
866 unsafe { self.as_ptr().byte_offset_from(origin.as_ptr()) }
867 }
868
869 // N.B. `wrapping_offset``, `wrapping_add`, etc are not implemented because they can wrap to null
870
871 /// Calculates the distance between two pointers within the same allocation, *where it's known that
872 /// `self` is equal to or greater than `origin`*. The returned value is in
873 /// units of T: the distance in bytes is divided by `size_of::<T>()`.
874 ///
875 /// This computes the same value that [`offset_from`](#method.offset_from)
876 /// would compute, but with the added precondition that the offset is
877 /// guaranteed to be non-negative. This method is equivalent to
878 /// `usize::try_from(self.offset_from(origin)).unwrap_unchecked()`,
879 /// but it provides slightly more information to the optimizer, which can
880 /// sometimes allow it to optimize slightly better with some backends.
881 ///
882 /// This method can be though of as recovering the `count` that was passed
883 /// to [`add`](#method.add) (or, with the parameters in the other order,
884 /// to [`sub`](#method.sub)). The following are all equivalent, assuming
885 /// that their safety preconditions are met:
886 /// ```rust
887 /// # unsafe fn blah(ptr: std::ptr::NonNull<u32>, origin: std::ptr::NonNull<u32>, count: usize) -> bool { unsafe {
888 /// ptr.offset_from_unsigned(origin) == count
889 /// # &&
890 /// origin.add(count) == ptr
891 /// # &&
892 /// ptr.sub(count) == origin
893 /// # } }
894 /// ```
895 ///
896 /// # Safety
897 ///
898 /// - The distance between the pointers must be non-negative (`self >= origin`)
899 ///
900 /// - *All* the safety conditions of [`offset_from`](#method.offset_from)
901 /// apply to this method as well; see it for the full details.
902 ///
903 /// Importantly, despite the return type of this method being able to represent
904 /// a larger offset, it's still *not permitted* to pass pointers which differ
905 /// by more than `isize::MAX` *bytes*. As such, the result of this method will
906 /// always be less than or equal to `isize::MAX as usize`.
907 ///
908 /// # Panics
909 ///
910 /// This function panics if `T` is a Zero-Sized Type ("ZST").
911 ///
912 /// # Examples
913 ///
914 /// ```
915 /// use std::ptr::NonNull;
916 ///
917 /// let a = [0; 5];
918 /// let ptr1: NonNull<u32> = NonNull::from(&a[1]);
919 /// let ptr2: NonNull<u32> = NonNull::from(&a[3]);
920 /// unsafe {
921 /// assert_eq!(ptr2.offset_from_unsigned(ptr1), 2);
922 /// assert_eq!(ptr1.add(2), ptr2);
923 /// assert_eq!(ptr2.sub(2), ptr1);
924 /// assert_eq!(ptr2.offset_from_unsigned(ptr2), 0);
925 /// }
926 ///
927 /// // This would be incorrect, as the pointers are not correctly ordered:
928 /// // ptr1.offset_from_unsigned(ptr2)
929 /// ```
930 #[inline]
931 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
932 #[stable(feature = "ptr_sub_ptr", since = "1.87.0")]
933 #[rustc_const_stable(feature = "const_ptr_sub_ptr", since = "1.87.0")]
934 pub const unsafe fn offset_from_unsigned(self, subtracted: NonNull<T>) -> usize
935 where
936 T: Sized,
937 {
938 // SAFETY: the caller must uphold the safety contract for `offset_from_unsigned`.
939 unsafe { self.as_ptr().offset_from_unsigned(subtracted.as_ptr()) }
940 }
941
942 /// Calculates the distance between two pointers within the same allocation, *where it's known that
943 /// `self` is equal to or greater than `origin`*. The returned value is in
944 /// units of **bytes**.
945 ///
946 /// This is purely a convenience for casting to a `u8` pointer and
947 /// using [`offset_from_unsigned`][NonNull::offset_from_unsigned] on it.
948 /// See that method for documentation and safety requirements.
949 ///
950 /// For non-`Sized` pointees this operation considers only the data pointers,
951 /// ignoring the metadata.
952 #[inline(always)]
953 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
954 #[stable(feature = "ptr_sub_ptr", since = "1.87.0")]
955 #[rustc_const_stable(feature = "const_ptr_sub_ptr", since = "1.87.0")]
956 pub const unsafe fn byte_offset_from_unsigned<U: ?Sized>(self, origin: NonNull<U>) -> usize {
957 // SAFETY: the caller must uphold the safety contract for `byte_offset_from_unsigned`.
958 unsafe { self.as_ptr().byte_offset_from_unsigned(origin.as_ptr()) }
959 }
960
961 /// Reads the value from `self` without moving it. This leaves the
962 /// memory in `self` unchanged.
963 ///
964 /// See [`ptr::read`] for safety concerns and examples.
965 ///
966 /// [`ptr::read`]: crate::ptr::read()
967 #[inline]
968 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
969 #[stable(feature = "non_null_convenience", since = "1.80.0")]
970 #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
971 pub const unsafe fn read(self) -> T
972 where
973 T: Sized,
974 {
975 // SAFETY: the caller must uphold the safety contract for `read`.
976 unsafe { ptr::read(self.as_ptr()) }
977 }
978
979 /// Performs a volatile read of the value from `self` without moving it. This
980 /// leaves the memory in `self` unchanged.
981 ///
982 /// Volatile operations are intended to act on I/O memory, and are guaranteed
983 /// to not be elided or reordered by the compiler across other volatile
984 /// operations.
985 ///
986 /// See [`ptr::read_volatile`] for safety concerns and examples.
987 ///
988 /// [`ptr::read_volatile`]: crate::ptr::read_volatile()
989 #[inline]
990 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
991 #[stable(feature = "non_null_convenience", since = "1.80.0")]
992 pub unsafe fn read_volatile(self) -> T
993 where
994 T: Sized,
995 {
996 // SAFETY: the caller must uphold the safety contract for `read_volatile`.
997 unsafe { ptr::read_volatile(self.as_ptr()) }
998 }
999
1000 /// Reads the value from `self` without moving it. This leaves the
1001 /// memory in `self` unchanged.
1002 ///
1003 /// Unlike `read`, the pointer may be unaligned.
1004 ///
1005 /// See [`ptr::read_unaligned`] for safety concerns and examples.
1006 ///
1007 /// [`ptr::read_unaligned`]: crate::ptr::read_unaligned()
1008 #[inline]
1009 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1010 #[stable(feature = "non_null_convenience", since = "1.80.0")]
1011 #[rustc_const_stable(feature = "non_null_convenience", since = "1.80.0")]
1012 pub const unsafe fn read_unaligned(self) -> T
1013 where
1014 T: Sized,
1015 {
1016 // SAFETY: the caller must uphold the safety contract for `read_unaligned`.
1017 unsafe { ptr::read_unaligned(self.as_ptr()) }
1018 }
1019
1020 /// Copies `count * size_of::<T>()` bytes from `self` to `dest`. The source
1021 /// and destination may overlap.
1022 ///
1023 /// NOTE: this has the *same* argument order as [`ptr::copy`].
1024 ///
1025 /// See [`ptr::copy`] for safety concerns and examples.
1026 ///
1027 /// [`ptr::copy`]: crate::ptr::copy()
1028 #[inline(always)]
1029 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1030 #[stable(feature = "non_null_convenience", since = "1.80.0")]
1031 #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1032 pub const unsafe fn copy_to(self, dest: NonNull<T>, count: usize)
1033 where
1034 T: Sized,
1035 {
1036 // SAFETY: the caller must uphold the safety contract for `copy`.
1037 unsafe { ptr::copy(self.as_ptr(), dest.as_ptr(), count) }
1038 }
1039
1040 /// Copies `count * size_of::<T>()` bytes from `self` to `dest`. The source
1041 /// and destination may *not* overlap.
1042 ///
1043 /// NOTE: this has the *same* argument order as [`ptr::copy_nonoverlapping`].
1044 ///
1045 /// See [`ptr::copy_nonoverlapping`] for safety concerns and examples.
1046 ///
1047 /// [`ptr::copy_nonoverlapping`]: crate::ptr::copy_nonoverlapping()
1048 #[inline(always)]
1049 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1050 #[stable(feature = "non_null_convenience", since = "1.80.0")]
1051 #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1052 pub const unsafe fn copy_to_nonoverlapping(self, dest: NonNull<T>, count: usize)
1053 where
1054 T: Sized,
1055 {
1056 // SAFETY: the caller must uphold the safety contract for `copy_nonoverlapping`.
1057 unsafe { ptr::copy_nonoverlapping(self.as_ptr(), dest.as_ptr(), count) }
1058 }
1059
1060 /// Copies `count * size_of::<T>()` bytes from `src` to `self`. The source
1061 /// and destination may overlap.
1062 ///
1063 /// NOTE: this has the *opposite* argument order of [`ptr::copy`].
1064 ///
1065 /// See [`ptr::copy`] for safety concerns and examples.
1066 ///
1067 /// [`ptr::copy`]: crate::ptr::copy()
1068 #[inline(always)]
1069 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1070 #[stable(feature = "non_null_convenience", since = "1.80.0")]
1071 #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1072 pub const unsafe fn copy_from(self, src: NonNull<T>, count: usize)
1073 where
1074 T: Sized,
1075 {
1076 // SAFETY: the caller must uphold the safety contract for `copy`.
1077 unsafe { ptr::copy(src.as_ptr(), self.as_ptr(), count) }
1078 }
1079
1080 /// Copies `count * size_of::<T>()` bytes from `src` to `self`. The source
1081 /// and destination may *not* overlap.
1082 ///
1083 /// NOTE: this has the *opposite* argument order of [`ptr::copy_nonoverlapping`].
1084 ///
1085 /// See [`ptr::copy_nonoverlapping`] for safety concerns and examples.
1086 ///
1087 /// [`ptr::copy_nonoverlapping`]: crate::ptr::copy_nonoverlapping()
1088 #[inline(always)]
1089 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1090 #[stable(feature = "non_null_convenience", since = "1.80.0")]
1091 #[rustc_const_stable(feature = "const_intrinsic_copy", since = "1.83.0")]
1092 pub const unsafe fn copy_from_nonoverlapping(self, src: NonNull<T>, count: usize)
1093 where
1094 T: Sized,
1095 {
1096 // SAFETY: the caller must uphold the safety contract for `copy_nonoverlapping`.
1097 unsafe { ptr::copy_nonoverlapping(src.as_ptr(), self.as_ptr(), count) }
1098 }
1099
1100 /// Executes the destructor (if any) of the pointed-to value.
1101 ///
1102 /// See [`ptr::drop_in_place`] for safety concerns and examples.
1103 ///
1104 /// [`ptr::drop_in_place`]: crate::ptr::drop_in_place()
1105 #[inline(always)]
1106 #[stable(feature = "non_null_convenience", since = "1.80.0")]
1107 pub unsafe fn drop_in_place(self) {
1108 // SAFETY: the caller must uphold the safety contract for `drop_in_place`.
1109 unsafe { ptr::drop_in_place(self.as_ptr()) }
1110 }
1111
1112 /// Overwrites a memory location with the given value without reading or
1113 /// dropping the old value.
1114 ///
1115 /// See [`ptr::write`] for safety concerns and examples.
1116 ///
1117 /// [`ptr::write`]: crate::ptr::write()
1118 #[inline(always)]
1119 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1120 #[stable(feature = "non_null_convenience", since = "1.80.0")]
1121 #[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
1122 pub const unsafe fn write(self, val: T)
1123 where
1124 T: Sized,
1125 {
1126 // SAFETY: the caller must uphold the safety contract for `write`.
1127 unsafe { ptr::write(self.as_ptr(), val) }
1128 }
1129
1130 /// Invokes memset on the specified pointer, setting `count * size_of::<T>()`
1131 /// bytes of memory starting at `self` to `val`.
1132 ///
1133 /// See [`ptr::write_bytes`] for safety concerns and examples.
1134 ///
1135 /// [`ptr::write_bytes`]: crate::ptr::write_bytes()
1136 #[inline(always)]
1137 #[doc(alias = "memset")]
1138 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1139 #[stable(feature = "non_null_convenience", since = "1.80.0")]
1140 #[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
1141 pub const unsafe fn write_bytes(self, val: u8, count: usize)
1142 where
1143 T: Sized,
1144 {
1145 // SAFETY: the caller must uphold the safety contract for `write_bytes`.
1146 unsafe { ptr::write_bytes(self.as_ptr(), val, count) }
1147 }
1148
1149 /// Performs a volatile write of a memory location with the given value without
1150 /// reading or dropping the old value.
1151 ///
1152 /// Volatile operations are intended to act on I/O memory, and are guaranteed
1153 /// to not be elided or reordered by the compiler across other volatile
1154 /// operations.
1155 ///
1156 /// See [`ptr::write_volatile`] for safety concerns and examples.
1157 ///
1158 /// [`ptr::write_volatile`]: crate::ptr::write_volatile()
1159 #[inline(always)]
1160 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1161 #[stable(feature = "non_null_convenience", since = "1.80.0")]
1162 pub unsafe fn write_volatile(self, val: T)
1163 where
1164 T: Sized,
1165 {
1166 // SAFETY: the caller must uphold the safety contract for `write_volatile`.
1167 unsafe { ptr::write_volatile(self.as_ptr(), val) }
1168 }
1169
1170 /// Overwrites a memory location with the given value without reading or
1171 /// dropping the old value.
1172 ///
1173 /// Unlike `write`, the pointer may be unaligned.
1174 ///
1175 /// See [`ptr::write_unaligned`] for safety concerns and examples.
1176 ///
1177 /// [`ptr::write_unaligned`]: crate::ptr::write_unaligned()
1178 #[inline(always)]
1179 #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
1180 #[stable(feature = "non_null_convenience", since = "1.80.0")]
1181 #[rustc_const_stable(feature = "const_ptr_write", since = "1.83.0")]
1182 pub const unsafe fn write_unaligned(self, val: T)
1183 where
1184 T: Sized,
1185 {
1186 // SAFETY: the caller must uphold the safety contract for `write_unaligned`.
1187 unsafe { ptr::write_unaligned(self.as_ptr(), val) }
1188 }
1189
1190 /// Replaces the value at `self` with `src`, returning the old
1191 /// value, without dropping either.
1192 ///
1193 /// See [`ptr::replace`] for safety concerns and examples.
1194 ///
1195 /// [`ptr::replace`]: crate::ptr::replace()
1196 #[inline(always)]
1197 #[stable(feature = "non_null_convenience", since = "1.80.0")]
1198 #[rustc_const_stable(feature = "const_inherent_ptr_replace", since = "1.88.0")]
1199 pub const unsafe fn replace(self, src: T) -> T
1200 where
1201 T: Sized,
1202 {
1203 // SAFETY: the caller must uphold the safety contract for `replace`.
1204 unsafe { ptr::replace(self.as_ptr(), src) }
1205 }
1206
1207 /// Swaps the values at two mutable locations of the same type, without
1208 /// deinitializing either. They may overlap, unlike `mem::swap` which is
1209 /// otherwise equivalent.
1210 ///
1211 /// See [`ptr::swap`] for safety concerns and examples.
1212 ///
1213 /// [`ptr::swap`]: crate::ptr::swap()
1214 #[inline(always)]
1215 #[stable(feature = "non_null_convenience", since = "1.80.0")]
1216 #[rustc_const_stable(feature = "const_swap", since = "1.85.0")]
1217 pub const unsafe fn swap(self, with: NonNull<T>)
1218 where
1219 T: Sized,
1220 {
1221 // SAFETY: the caller must uphold the safety contract for `swap`.
1222 unsafe { ptr::swap(self.as_ptr(), with.as_ptr()) }
1223 }
1224
1225 /// Computes the offset that needs to be applied to the pointer in order to make it aligned to
1226 /// `align`.
1227 ///
1228 /// If it is not possible to align the pointer, the implementation returns
1229 /// `usize::MAX`.
1230 ///
1231 /// The offset is expressed in number of `T` elements, and not bytes.
1232 ///
1233 /// There are no guarantees whatsoever that offsetting the pointer will not overflow or go
1234 /// beyond the allocation that the pointer points into. It is up to the caller to ensure that
1235 /// the returned offset is correct in all terms other than alignment.
1236 ///
1237 /// When this is called during compile-time evaluation (which is unstable), the implementation
1238 /// may return `usize::MAX` in cases where that can never happen at runtime. This is because the
1239 /// actual alignment of pointers is not known yet during compile-time, so an offset with
1240 /// guaranteed alignment can sometimes not be computed. For example, a buffer declared as `[u8;
1241 /// N]` might be allocated at an odd or an even address, but at compile-time this is not yet
1242 /// known, so the execution has to be correct for either choice. It is therefore impossible to
1243 /// find an offset that is guaranteed to be 2-aligned. (This behavior is subject to change, as usual
1244 /// for unstable APIs.)
1245 ///
1246 /// # Panics
1247 ///
1248 /// The function panics if `align` is not a power-of-two.
1249 ///
1250 /// # Examples
1251 ///
1252 /// Accessing adjacent `u8` as `u16`
1253 ///
1254 /// ```
1255 /// use std::ptr::NonNull;
1256 ///
1257 /// # unsafe {
1258 /// let x = [5_u8, 6, 7, 8, 9];
1259 /// let ptr = NonNull::new(x.as_ptr() as *mut u8).unwrap();
1260 /// let offset = ptr.align_offset(align_of::<u16>());
1261 ///
1262 /// if offset < x.len() - 1 {
1263 /// let u16_ptr = ptr.add(offset).cast::<u16>();
1264 /// assert!(u16_ptr.read() == u16::from_ne_bytes([5, 6]) || u16_ptr.read() == u16::from_ne_bytes([6, 7]));
1265 /// } else {
1266 /// // while the pointer can be aligned via `offset`, it would point
1267 /// // outside the allocation
1268 /// }
1269 /// # }
1270 /// ```
1271 #[inline]
1272 #[must_use]
1273 #[stable(feature = "non_null_convenience", since = "1.80.0")]
1274 pub fn align_offset(self, align: usize) -> usize
1275 where
1276 T: Sized,
1277 {
1278 if !align.is_power_of_two() {
1279 panic!("align_offset: align is not a power-of-two");
1280 }
1281
1282 {
1283 // SAFETY: `align` has been checked to be a power of 2 above.
1284 unsafe { ptr::align_offset(self.as_ptr(), align) }
1285 }
1286 }
1287
1288 /// Returns whether the pointer is properly aligned for `T`.
1289 ///
1290 /// # Examples
1291 ///
1292 /// ```
1293 /// use std::ptr::NonNull;
1294 ///
1295 /// // On some platforms, the alignment of i32 is less than 4.
1296 /// #[repr(align(4))]
1297 /// struct AlignedI32(i32);
1298 ///
1299 /// let data = AlignedI32(42);
1300 /// let ptr = NonNull::<AlignedI32>::from(&data);
1301 ///
1302 /// assert!(ptr.is_aligned());
1303 /// assert!(!NonNull::new(ptr.as_ptr().wrapping_byte_add(1)).unwrap().is_aligned());
1304 /// ```
1305 #[inline]
1306 #[must_use]
1307 #[stable(feature = "pointer_is_aligned", since = "1.79.0")]
1308 pub fn is_aligned(self) -> bool
1309 where
1310 T: Sized,
1311 {
1312 self.as_ptr().is_aligned()
1313 }
1314
1315 /// Returns whether the pointer is aligned to `align`.
1316 ///
1317 /// For non-`Sized` pointees this operation considers only the data pointer,
1318 /// ignoring the metadata.
1319 ///
1320 /// # Panics
1321 ///
1322 /// The function panics if `align` is not a power-of-two (this includes 0).
1323 ///
1324 /// # Examples
1325 ///
1326 /// ```
1327 /// #![feature(pointer_is_aligned_to)]
1328 ///
1329 /// // On some platforms, the alignment of i32 is less than 4.
1330 /// #[repr(align(4))]
1331 /// struct AlignedI32(i32);
1332 ///
1333 /// let data = AlignedI32(42);
1334 /// let ptr = &data as *const AlignedI32;
1335 ///
1336 /// assert!(ptr.is_aligned_to(1));
1337 /// assert!(ptr.is_aligned_to(2));
1338 /// assert!(ptr.is_aligned_to(4));
1339 ///
1340 /// assert!(ptr.wrapping_byte_add(2).is_aligned_to(2));
1341 /// assert!(!ptr.wrapping_byte_add(2).is_aligned_to(4));
1342 ///
1343 /// assert_ne!(ptr.is_aligned_to(8), ptr.wrapping_add(1).is_aligned_to(8));
1344 /// ```
1345 #[inline]
1346 #[must_use]
1347 #[unstable(feature = "pointer_is_aligned_to", issue = "96284")]
1348 pub fn is_aligned_to(self, align: usize) -> bool {
1349 self.as_ptr().is_aligned_to(align)
1350 }
1351}
1352
1353impl<T> NonNull<[T]> {
1354 /// Creates a non-null raw slice from a thin pointer and a length.
1355 ///
1356 /// The `len` argument is the number of **elements**, not the number of bytes.
1357 ///
1358 /// This function is safe, but dereferencing the return value is unsafe.
1359 /// See the documentation of [`slice::from_raw_parts`] for slice safety requirements.
1360 ///
1361 /// # Examples
1362 ///
1363 /// ```rust
1364 /// use std::ptr::NonNull;
1365 ///
1366 /// // create a slice pointer when starting out with a pointer to the first element
1367 /// let mut x = [5, 6, 7];
1368 /// let nonnull_pointer = NonNull::new(x.as_mut_ptr()).unwrap();
1369 /// let slice = NonNull::slice_from_raw_parts(nonnull_pointer, 3);
1370 /// assert_eq!(unsafe { slice.as_ref()[2] }, 7);
1371 /// ```
1372 ///
1373 /// (Note that this example artificially demonstrates a use of this method,
1374 /// but `let slice = NonNull::from(&x[..]);` would be a better way to write code like this.)
1375 #[stable(feature = "nonnull_slice_from_raw_parts", since = "1.70.0")]
1376 #[rustc_const_stable(feature = "const_slice_from_raw_parts_mut", since = "1.83.0")]
1377 #[must_use]
1378 #[inline]
1379 pub const fn slice_from_raw_parts(data: NonNull<T>, len: usize) -> Self {
1380 // SAFETY: `data` is a `NonNull` pointer which is necessarily non-null
1381 unsafe { Self::new_unchecked(super::slice_from_raw_parts_mut(data.as_ptr(), len)) }
1382 }
1383
1384 /// Returns the length of a non-null raw slice.
1385 ///
1386 /// The returned value is the number of **elements**, not the number of bytes.
1387 ///
1388 /// This function is safe, even when the non-null raw slice cannot be dereferenced to a slice
1389 /// because the pointer does not have a valid address.
1390 ///
1391 /// # Examples
1392 ///
1393 /// ```rust
1394 /// use std::ptr::NonNull;
1395 ///
1396 /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1397 /// assert_eq!(slice.len(), 3);
1398 /// ```
1399 #[stable(feature = "slice_ptr_len_nonnull", since = "1.63.0")]
1400 #[rustc_const_stable(feature = "const_slice_ptr_len_nonnull", since = "1.63.0")]
1401 #[must_use]
1402 #[inline]
1403 pub const fn len(self) -> usize {
1404 self.as_ptr().len()
1405 }
1406
1407 /// Returns `true` if the non-null raw slice has a length of 0.
1408 ///
1409 /// # Examples
1410 ///
1411 /// ```rust
1412 /// use std::ptr::NonNull;
1413 ///
1414 /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1415 /// assert!(!slice.is_empty());
1416 /// ```
1417 #[stable(feature = "slice_ptr_is_empty_nonnull", since = "1.79.0")]
1418 #[rustc_const_stable(feature = "const_slice_ptr_is_empty_nonnull", since = "1.79.0")]
1419 #[must_use]
1420 #[inline]
1421 pub const fn is_empty(self) -> bool {
1422 self.len() == 0
1423 }
1424
1425 /// Returns a non-null pointer to the slice's buffer.
1426 ///
1427 /// # Examples
1428 ///
1429 /// ```rust
1430 /// #![feature(slice_ptr_get)]
1431 /// use std::ptr::NonNull;
1432 ///
1433 /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1434 /// assert_eq!(slice.as_non_null_ptr(), NonNull::<i8>::dangling());
1435 /// ```
1436 #[inline]
1437 #[must_use]
1438 #[unstable(feature = "slice_ptr_get", issue = "74265")]
1439 pub const fn as_non_null_ptr(self) -> NonNull<T> {
1440 self.cast()
1441 }
1442
1443 /// Returns a raw pointer to the slice's buffer.
1444 ///
1445 /// # Examples
1446 ///
1447 /// ```rust
1448 /// #![feature(slice_ptr_get)]
1449 /// use std::ptr::NonNull;
1450 ///
1451 /// let slice: NonNull<[i8]> = NonNull::slice_from_raw_parts(NonNull::dangling(), 3);
1452 /// assert_eq!(slice.as_mut_ptr(), NonNull::<i8>::dangling().as_ptr());
1453 /// ```
1454 #[inline]
1455 #[must_use]
1456 #[unstable(feature = "slice_ptr_get", issue = "74265")]
1457 #[rustc_never_returns_null_ptr]
1458 pub const fn as_mut_ptr(self) -> *mut T {
1459 self.as_non_null_ptr().as_ptr()
1460 }
1461
1462 /// Returns a shared reference to a slice of possibly uninitialized values. In contrast to
1463 /// [`as_ref`], this does not require that the value has to be initialized.
1464 ///
1465 /// For the mutable counterpart see [`as_uninit_slice_mut`].
1466 ///
1467 /// [`as_ref`]: NonNull::as_ref
1468 /// [`as_uninit_slice_mut`]: NonNull::as_uninit_slice_mut
1469 ///
1470 /// # Safety
1471 ///
1472 /// When calling this method, you have to ensure that all of the following is true:
1473 ///
1474 /// * The pointer must be [valid] for reads for `ptr.len() * size_of::<T>()` many bytes,
1475 /// and it must be properly aligned. This means in particular:
1476 ///
1477 /// * The entire memory range of this slice must be contained within a single allocated object!
1478 /// Slices can never span across multiple allocated objects.
1479 ///
1480 /// * The pointer must be aligned even for zero-length slices. One
1481 /// reason for this is that enum layout optimizations may rely on references
1482 /// (including slices of any length) being aligned and non-null to distinguish
1483 /// them from other data. You can obtain a pointer that is usable as `data`
1484 /// for zero-length slices using [`NonNull::dangling()`].
1485 ///
1486 /// * The total size `ptr.len() * size_of::<T>()` of the slice must be no larger than `isize::MAX`.
1487 /// See the safety documentation of [`pointer::offset`].
1488 ///
1489 /// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
1490 /// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
1491 /// In particular, while this reference exists, the memory the pointer points to must
1492 /// not get mutated (except inside `UnsafeCell`).
1493 ///
1494 /// This applies even if the result of this method is unused!
1495 ///
1496 /// See also [`slice::from_raw_parts`].
1497 ///
1498 /// [valid]: crate::ptr#safety
1499 #[inline]
1500 #[must_use]
1501 #[unstable(feature = "ptr_as_uninit", issue = "75402")]
1502 pub const unsafe fn as_uninit_slice<'a>(self) -> &'a [MaybeUninit<T>] {
1503 // SAFETY: the caller must uphold the safety contract for `as_uninit_slice`.
1504 unsafe { slice::from_raw_parts(self.cast().as_ptr(), self.len()) }
1505 }
1506
1507 /// Returns a unique reference to a slice of possibly uninitialized values. In contrast to
1508 /// [`as_mut`], this does not require that the value has to be initialized.
1509 ///
1510 /// For the shared counterpart see [`as_uninit_slice`].
1511 ///
1512 /// [`as_mut`]: NonNull::as_mut
1513 /// [`as_uninit_slice`]: NonNull::as_uninit_slice
1514 ///
1515 /// # Safety
1516 ///
1517 /// When calling this method, you have to ensure that all of the following is true:
1518 ///
1519 /// * The pointer must be [valid] for reads and writes for `ptr.len() * size_of::<T>()`
1520 /// many bytes, and it must be properly aligned. This means in particular:
1521 ///
1522 /// * The entire memory range of this slice must be contained within a single allocated object!
1523 /// Slices can never span across multiple allocated objects.
1524 ///
1525 /// * The pointer must be aligned even for zero-length slices. One
1526 /// reason for this is that enum layout optimizations may rely on references
1527 /// (including slices of any length) being aligned and non-null to distinguish
1528 /// them from other data. You can obtain a pointer that is usable as `data`
1529 /// for zero-length slices using [`NonNull::dangling()`].
1530 ///
1531 /// * The total size `ptr.len() * size_of::<T>()` of the slice must be no larger than `isize::MAX`.
1532 /// See the safety documentation of [`pointer::offset`].
1533 ///
1534 /// * You must enforce Rust's aliasing rules, since the returned lifetime `'a` is
1535 /// arbitrarily chosen and does not necessarily reflect the actual lifetime of the data.
1536 /// In particular, while this reference exists, the memory the pointer points to must
1537 /// not get accessed (read or written) through any other pointer.
1538 ///
1539 /// This applies even if the result of this method is unused!
1540 ///
1541 /// See also [`slice::from_raw_parts_mut`].
1542 ///
1543 /// [valid]: crate::ptr#safety
1544 ///
1545 /// # Examples
1546 ///
1547 /// ```rust
1548 /// #![feature(allocator_api, ptr_as_uninit)]
1549 ///
1550 /// use std::alloc::{Allocator, Layout, Global};
1551 /// use std::mem::MaybeUninit;
1552 /// use std::ptr::NonNull;
1553 ///
1554 /// let memory: NonNull<[u8]> = Global.allocate(Layout::new::<[u8; 32]>())?;
1555 /// // This is safe as `memory` is valid for reads and writes for `memory.len()` many bytes.
1556 /// // Note that calling `memory.as_mut()` is not allowed here as the content may be uninitialized.
1557 /// # #[allow(unused_variables)]
1558 /// let slice: &mut [MaybeUninit<u8>] = unsafe { memory.as_uninit_slice_mut() };
1559 /// # // Prevent leaks for Miri.
1560 /// # unsafe { Global.deallocate(memory.cast(), Layout::new::<[u8; 32]>()); }
1561 /// # Ok::<_, std::alloc::AllocError>(())
1562 /// ```
1563 #[inline]
1564 #[must_use]
1565 #[unstable(feature = "ptr_as_uninit", issue = "75402")]
1566 pub const unsafe fn as_uninit_slice_mut<'a>(self) -> &'a mut [MaybeUninit<T>] {
1567 // SAFETY: the caller must uphold the safety contract for `as_uninit_slice_mut`.
1568 unsafe { slice::from_raw_parts_mut(self.cast().as_ptr(), self.len()) }
1569 }
1570
1571 /// Returns a raw pointer to an element or subslice, without doing bounds
1572 /// checking.
1573 ///
1574 /// Calling this method with an out-of-bounds index or when `self` is not dereferenceable
1575 /// is *[undefined behavior]* even if the resulting pointer is not used.
1576 ///
1577 /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html
1578 ///
1579 /// # Examples
1580 ///
1581 /// ```
1582 /// #![feature(slice_ptr_get)]
1583 /// use std::ptr::NonNull;
1584 ///
1585 /// let x = &mut [1, 2, 4];
1586 /// let x = NonNull::slice_from_raw_parts(NonNull::new(x.as_mut_ptr()).unwrap(), x.len());
1587 ///
1588 /// unsafe {
1589 /// assert_eq!(x.get_unchecked_mut(1).as_ptr(), x.as_non_null_ptr().as_ptr().add(1));
1590 /// }
1591 /// ```
1592 #[unstable(feature = "slice_ptr_get", issue = "74265")]
1593 #[inline]
1594 pub unsafe fn get_unchecked_mut<I>(self, index: I) -> NonNull<I::Output>
1595 where
1596 I: SliceIndex<[T]>,
1597 {
1598 // SAFETY: the caller ensures that `self` is dereferenceable and `index` in-bounds.
1599 // As a consequence, the resulting pointer cannot be null.
1600 unsafe { NonNull::new_unchecked(self.as_ptr().get_unchecked_mut(index)) }
1601 }
1602}
1603
1604#[stable(feature = "nonnull", since = "1.25.0")]
1605impl<T: ?Sized> Clone for NonNull<T> {
1606 #[inline(always)]
1607 fn clone(&self) -> Self {
1608 *self
1609 }
1610}
1611
1612#[stable(feature = "nonnull", since = "1.25.0")]
1613impl<T: ?Sized> Copy for NonNull<T> {}
1614
1615#[unstable(feature = "coerce_unsized", issue = "18598")]
1616impl<T: ?Sized, U: ?Sized> CoerceUnsized<NonNull<U>> for NonNull<T> where T: Unsize<U> {}
1617
1618#[unstable(feature = "dispatch_from_dyn", issue = "none")]
1619impl<T: ?Sized, U: ?Sized> DispatchFromDyn<NonNull<U>> for NonNull<T> where T: Unsize<U> {}
1620
1621#[stable(feature = "pin", since = "1.33.0")]
1622unsafe impl<T: ?Sized> PinCoerceUnsized for NonNull<T> {}
1623
1624#[unstable(feature = "pointer_like_trait", issue = "none")]
1625impl<T> core::marker::PointerLike for NonNull<T> {}
1626
1627#[stable(feature = "nonnull", since = "1.25.0")]
1628impl<T: ?Sized> fmt::Debug for NonNull<T> {
1629 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1630 fmt::Pointer::fmt(&self.as_ptr(), f)
1631 }
1632}
1633
1634#[stable(feature = "nonnull", since = "1.25.0")]
1635impl<T: ?Sized> fmt::Pointer for NonNull<T> {
1636 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1637 fmt::Pointer::fmt(&self.as_ptr(), f)
1638 }
1639}
1640
1641#[stable(feature = "nonnull", since = "1.25.0")]
1642impl<T: ?Sized> Eq for NonNull<T> {}
1643
1644#[stable(feature = "nonnull", since = "1.25.0")]
1645impl<T: ?Sized> PartialEq for NonNull<T> {
1646 #[inline]
1647 #[allow(ambiguous_wide_pointer_comparisons)]
1648 fn eq(&self, other: &Self) -> bool {
1649 self.as_ptr() == other.as_ptr()
1650 }
1651}
1652
1653#[stable(feature = "nonnull", since = "1.25.0")]
1654impl<T: ?Sized> Ord for NonNull<T> {
1655 #[inline]
1656 #[allow(ambiguous_wide_pointer_comparisons)]
1657 fn cmp(&self, other: &Self) -> Ordering {
1658 self.as_ptr().cmp(&other.as_ptr())
1659 }
1660}
1661
1662#[stable(feature = "nonnull", since = "1.25.0")]
1663impl<T: ?Sized> PartialOrd for NonNull<T> {
1664 #[inline]
1665 #[allow(ambiguous_wide_pointer_comparisons)]
1666 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
1667 self.as_ptr().partial_cmp(&other.as_ptr())
1668 }
1669}
1670
1671#[stable(feature = "nonnull", since = "1.25.0")]
1672impl<T: ?Sized> hash::Hash for NonNull<T> {
1673 #[inline]
1674 fn hash<H: hash::Hasher>(&self, state: &mut H) {
1675 self.as_ptr().hash(state)
1676 }
1677}
1678
1679#[unstable(feature = "ptr_internals", issue = "none")]
1680impl<T: ?Sized> From<Unique<T>> for NonNull<T> {
1681 #[inline]
1682 fn from(unique: Unique<T>) -> Self {
1683 unique.as_non_null_ptr()
1684 }
1685}
1686
1687#[stable(feature = "nonnull", since = "1.25.0")]
1688impl<T: ?Sized> From<&mut T> for NonNull<T> {
1689 /// Converts a `&mut T` to a `NonNull<T>`.
1690 ///
1691 /// This conversion is safe and infallible since references cannot be null.
1692 #[inline]
1693 fn from(r: &mut T) -> Self {
1694 NonNull::from_mut(r)
1695 }
1696}
1697
1698#[stable(feature = "nonnull", since = "1.25.0")]
1699impl<T: ?Sized> From<&T> for NonNull<T> {
1700 /// Converts a `&T` to a `NonNull<T>`.
1701 ///
1702 /// This conversion is safe and infallible since references cannot be null.
1703 #[inline]
1704 fn from(r: &T) -> Self {
1705 NonNull::from_ref(r)
1706 }
1707}