core/num/
uint_macros.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
macro_rules! uint_impl {
    (
        Self = $SelfT:ty,
        ActualT = $ActualT:ident,
        SignedT = $SignedT:ident,

        // There are all for use *only* in doc comments.
        // As such, they're all passed as literals -- passing them as a string
        // literal is fine if they need to be multiple code tokens.
        // In non-comments, use the associated constants rather than these.
        BITS = $BITS:literal,
        BITS_MINUS_ONE = $BITS_MINUS_ONE:literal,
        MAX = $MaxV:literal,
        rot = $rot:literal,
        rot_op = $rot_op:literal,
        rot_result = $rot_result:literal,
        swap_op = $swap_op:literal,
        swapped = $swapped:literal,
        reversed = $reversed:literal,
        le_bytes = $le_bytes:literal,
        be_bytes = $be_bytes:literal,
        to_xe_bytes_doc = $to_xe_bytes_doc:expr,
        from_xe_bytes_doc = $from_xe_bytes_doc:expr,
        bound_condition = $bound_condition:literal,
    ) => {
        /// The smallest value that can be represented by this integer type.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MIN, 0);")]
        /// ```
        #[stable(feature = "assoc_int_consts", since = "1.43.0")]
        pub const MIN: Self = 0;

        /// The largest value that can be represented by this integer type
        #[doc = concat!("(2<sup>", $BITS, "</sup> &minus; 1", $bound_condition, ").")]
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX, ", stringify!($MaxV), ");")]
        /// ```
        #[stable(feature = "assoc_int_consts", since = "1.43.0")]
        pub const MAX: Self = !0;

        /// The size of this integer type in bits.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::BITS, ", stringify!($BITS), ");")]
        /// ```
        #[stable(feature = "int_bits_const", since = "1.53.0")]
        pub const BITS: u32 = Self::MAX.count_ones();

        /// Returns the number of ones in the binary representation of `self`.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("let n = 0b01001100", stringify!($SelfT), ";")]
        /// assert_eq!(n.count_ones(), 3);
        ///
        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
        #[doc = concat!("assert_eq!(max.count_ones(), ", stringify!($BITS), ");")]
        ///
        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
        /// assert_eq!(zero.count_ones(), 0);
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
        #[doc(alias = "popcount")]
        #[doc(alias = "popcnt")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        pub const fn count_ones(self) -> u32 {
            return intrinsics::ctpop(self);
        }

        /// Returns the number of zeros in the binary representation of `self`.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
        #[doc = concat!("assert_eq!(zero.count_zeros(), ", stringify!($BITS), ");")]
        ///
        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
        /// assert_eq!(max.count_zeros(), 0);
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        pub const fn count_zeros(self) -> u32 {
            (!self).count_ones()
        }

        /// Returns the number of leading zeros in the binary representation of `self`.
        ///
        /// Depending on what you're doing with the value, you might also be interested in the
        /// [`ilog2`] function which returns a consistent number, even if the type widens.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("let n = ", stringify!($SelfT), "::MAX >> 2;")]
        /// assert_eq!(n.leading_zeros(), 2);
        ///
        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
        #[doc = concat!("assert_eq!(zero.leading_zeros(), ", stringify!($BITS), ");")]
        ///
        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
        /// assert_eq!(max.leading_zeros(), 0);
        /// ```
        #[doc = concat!("[`ilog2`]: ", stringify!($SelfT), "::ilog2")]
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        pub const fn leading_zeros(self) -> u32 {
            return intrinsics::ctlz(self as $ActualT);
        }

        /// Returns the number of trailing zeros in the binary representation
        /// of `self`.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("let n = 0b0101000", stringify!($SelfT), ";")]
        /// assert_eq!(n.trailing_zeros(), 3);
        ///
        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
        #[doc = concat!("assert_eq!(zero.trailing_zeros(), ", stringify!($BITS), ");")]
        ///
        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
        #[doc = concat!("assert_eq!(max.trailing_zeros(), 0);")]
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        pub const fn trailing_zeros(self) -> u32 {
            return intrinsics::cttz(self);
        }

        /// Returns the number of leading ones in the binary representation of `self`.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("let n = !(", stringify!($SelfT), "::MAX >> 2);")]
        /// assert_eq!(n.leading_ones(), 2);
        ///
        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
        /// assert_eq!(zero.leading_ones(), 0);
        ///
        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
        #[doc = concat!("assert_eq!(max.leading_ones(), ", stringify!($BITS), ");")]
        /// ```
        #[stable(feature = "leading_trailing_ones", since = "1.46.0")]
        #[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        pub const fn leading_ones(self) -> u32 {
            (!self).leading_zeros()
        }

        /// Returns the number of trailing ones in the binary representation
        /// of `self`.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("let n = 0b1010111", stringify!($SelfT), ";")]
        /// assert_eq!(n.trailing_ones(), 3);
        ///
        #[doc = concat!("let zero = 0", stringify!($SelfT), ";")]
        /// assert_eq!(zero.trailing_ones(), 0);
        ///
        #[doc = concat!("let max = ", stringify!($SelfT),"::MAX;")]
        #[doc = concat!("assert_eq!(max.trailing_ones(), ", stringify!($BITS), ");")]
        /// ```
        #[stable(feature = "leading_trailing_ones", since = "1.46.0")]
        #[rustc_const_stable(feature = "leading_trailing_ones", since = "1.46.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        pub const fn trailing_ones(self) -> u32 {
            (!self).trailing_zeros()
        }

        /// Returns the bit pattern of `self` reinterpreted as a signed integer of the same size.
        ///
        /// This produces the same result as an `as` cast, but ensures that the bit-width remains
        /// the same.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        /// #![feature(integer_sign_cast)]
        ///
        #[doc = concat!("let n = ", stringify!($SelfT), "::MAX;")]
        ///
        #[doc = concat!("assert_eq!(n.cast_signed(), -1", stringify!($SignedT), ");")]
        /// ```
        #[unstable(feature = "integer_sign_cast", issue = "125882")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        pub const fn cast_signed(self) -> $SignedT {
            self as $SignedT
        }

        /// Shifts the bits to the left by a specified amount, `n`,
        /// wrapping the truncated bits to the end of the resulting integer.
        ///
        /// Please note this isn't the same operation as the `<<` shifting operator!
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("let n = ", $rot_op, stringify!($SelfT), ";")]
        #[doc = concat!("let m = ", $rot_result, ";")]
        ///
        #[doc = concat!("assert_eq!(n.rotate_left(", $rot, "), m);")]
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        pub const fn rotate_left(self, n: u32) -> Self {
            return intrinsics::rotate_left(self, n);
        }

        /// Shifts the bits to the right by a specified amount, `n`,
        /// wrapping the truncated bits to the beginning of the resulting
        /// integer.
        ///
        /// Please note this isn't the same operation as the `>>` shifting operator!
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("let n = ", $rot_result, stringify!($SelfT), ";")]
        #[doc = concat!("let m = ", $rot_op, ";")]
        ///
        #[doc = concat!("assert_eq!(n.rotate_right(", $rot, "), m);")]
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        pub const fn rotate_right(self, n: u32) -> Self {
            return intrinsics::rotate_right(self, n);
        }

        /// Reverses the byte order of the integer.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
        /// let m = n.swap_bytes();
        ///
        #[doc = concat!("assert_eq!(m, ", $swapped, ");")]
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        pub const fn swap_bytes(self) -> Self {
            intrinsics::bswap(self as $ActualT) as Self
        }

        /// Reverses the order of bits in the integer. The least significant bit becomes the most significant bit,
        ///                 second least-significant bit becomes second most-significant bit, etc.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("let n = ", $swap_op, stringify!($SelfT), ";")]
        /// let m = n.reverse_bits();
        ///
        #[doc = concat!("assert_eq!(m, ", $reversed, ");")]
        #[doc = concat!("assert_eq!(0, 0", stringify!($SelfT), ".reverse_bits());")]
        /// ```
        #[stable(feature = "reverse_bits", since = "1.37.0")]
        #[rustc_const_stable(feature = "reverse_bits", since = "1.37.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        pub const fn reverse_bits(self) -> Self {
            intrinsics::bitreverse(self as $ActualT) as Self
        }

        /// Converts an integer from big endian to the target's endianness.
        ///
        /// On big endian this is a no-op. On little endian the bytes are
        /// swapped.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
        ///
        /// if cfg!(target_endian = "big") {
        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_be(n), n)")]
        /// } else {
        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_be(n), n.swap_bytes())")]
        /// }
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
        #[must_use]
        #[inline(always)]
        pub const fn from_be(x: Self) -> Self {
            #[cfg(target_endian = "big")]
            {
                x
            }
            #[cfg(not(target_endian = "big"))]
            {
                x.swap_bytes()
            }
        }

        /// Converts an integer from little endian to the target's endianness.
        ///
        /// On little endian this is a no-op. On big endian the bytes are
        /// swapped.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
        ///
        /// if cfg!(target_endian = "little") {
        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_le(n), n)")]
        /// } else {
        #[doc = concat!("    assert_eq!(", stringify!($SelfT), "::from_le(n), n.swap_bytes())")]
        /// }
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
        #[must_use]
        #[inline(always)]
        pub const fn from_le(x: Self) -> Self {
            #[cfg(target_endian = "little")]
            {
                x
            }
            #[cfg(not(target_endian = "little"))]
            {
                x.swap_bytes()
            }
        }

        /// Converts `self` to big endian from the target's endianness.
        ///
        /// On big endian this is a no-op. On little endian the bytes are
        /// swapped.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
        ///
        /// if cfg!(target_endian = "big") {
        ///     assert_eq!(n.to_be(), n)
        /// } else {
        ///     assert_eq!(n.to_be(), n.swap_bytes())
        /// }
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        pub const fn to_be(self) -> Self { // or not to be?
            #[cfg(target_endian = "big")]
            {
                self
            }
            #[cfg(not(target_endian = "big"))]
            {
                self.swap_bytes()
            }
        }

        /// Converts `self` to little endian from the target's endianness.
        ///
        /// On little endian this is a no-op. On big endian the bytes are
        /// swapped.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("let n = 0x1A", stringify!($SelfT), ";")]
        ///
        /// if cfg!(target_endian = "little") {
        ///     assert_eq!(n.to_le(), n)
        /// } else {
        ///     assert_eq!(n.to_le(), n.swap_bytes())
        /// }
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        pub const fn to_le(self) -> Self {
            #[cfg(target_endian = "little")]
            {
                self
            }
            #[cfg(not(target_endian = "little"))]
            {
                self.swap_bytes()
            }
        }

        /// Checked integer addition. Computes `self + rhs`, returning `None`
        /// if overflow occurred.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!(
            "assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(1), ",
            "Some(", stringify!($SelfT), "::MAX - 1));"
        )]
        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add(3), None);")]
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn checked_add(self, rhs: Self) -> Option<Self> {
            // This used to use `overflowing_add`, but that means it ends up being
            // a `wrapping_add`, losing some optimization opportunities. Notably,
            // phrasing it this way helps `.checked_add(1)` optimize to a check
            // against `MAX` and a `add nuw`.
            // Per <https://github.com/rust-lang/rust/pull/124114#issuecomment-2066173305>,
            // LLVM is happy to re-form the intrinsic later if useful.

            if intrinsics::unlikely(intrinsics::add_with_overflow(self, rhs).1) {
                None
            } else {
                // SAFETY: Just checked it doesn't overflow
                Some(unsafe { intrinsics::unchecked_add(self, rhs) })
            }
        }

        /// Strict integer addition. Computes `self + rhs`, panicking
        /// if overflow occurred.
        ///
        /// # Panics
        ///
        /// ## Overflow behavior
        ///
        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).strict_add(1), ", stringify!($SelfT), "::MAX - 1);")]
        /// ```
        ///
        /// The following panics because of overflow:
        ///
        /// ```should_panic
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add(3);")]
        /// ```
        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[track_caller]
        pub const fn strict_add(self, rhs: Self) -> Self {
            let (a, b) = self.overflowing_add(rhs);
            if b { overflow_panic::add() } else { a }
         }

        /// Unchecked integer addition. Computes `self + rhs`, assuming overflow
        /// cannot occur.
        ///
        /// Calling `x.unchecked_add(y)` is semantically equivalent to calling
        /// `x.`[`checked_add`]`(y).`[`unwrap_unchecked`]`()`.
        ///
        /// If you're just trying to avoid the panic in debug mode, then **do not**
        /// use this.  Instead, you're looking for [`wrapping_add`].
        ///
        /// # Safety
        ///
        /// This results in undefined behavior when
        #[doc = concat!("`self + rhs > ", stringify!($SelfT), "::MAX` or `self + rhs < ", stringify!($SelfT), "::MIN`,")]
        /// i.e. when [`checked_add`] would return `None`.
        ///
        /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
        #[doc = concat!("[`checked_add`]: ", stringify!($SelfT), "::checked_add")]
        #[doc = concat!("[`wrapping_add`]: ", stringify!($SelfT), "::wrapping_add")]
        #[stable(feature = "unchecked_math", since = "1.79.0")]
        #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
        pub const unsafe fn unchecked_add(self, rhs: Self) -> Self {
            assert_unsafe_precondition!(
                check_language_ub,
                concat!(stringify!($SelfT), "::unchecked_add cannot overflow"),
                (
                    lhs: $SelfT = self,
                    rhs: $SelfT = rhs,
                ) => !lhs.overflowing_add(rhs).1,
            );

            // SAFETY: this is guaranteed to be safe by the caller.
            unsafe {
                intrinsics::unchecked_add(self, rhs)
            }
        }

        /// Checked addition with a signed integer. Computes `self + rhs`,
        /// returning `None` if overflow occurred.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_add_signed(2), Some(3));")]
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_add_signed(-2), None);")]
        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).checked_add_signed(3), None);")]
        /// ```
        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn checked_add_signed(self, rhs: $SignedT) -> Option<Self> {
            let (a, b) = self.overflowing_add_signed(rhs);
            if intrinsics::unlikely(b) { None } else { Some(a) }
        }

        /// Strict addition with a signed integer. Computes `self + rhs`,
        /// panicking if overflow occurred.
        ///
        /// # Panics
        ///
        /// ## Overflow behavior
        ///
        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_add_signed(2), 3);")]
        /// ```
        ///
        /// The following panic because of overflow:
        ///
        /// ```should_panic
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("let _ = 1", stringify!($SelfT), ".strict_add_signed(-2);")]
        /// ```
        ///
        /// ```should_panic
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("let _ = (", stringify!($SelfT), "::MAX - 2).strict_add_signed(3);")]
        /// ```
        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[track_caller]
        pub const fn strict_add_signed(self, rhs: $SignedT) -> Self {
            let (a, b) = self.overflowing_add_signed(rhs);
            if b { overflow_panic::add() } else { a }
         }

        /// Checked integer subtraction. Computes `self - rhs`, returning
        /// `None` if overflow occurred.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_sub(1), Some(0));")]
        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".checked_sub(1), None);")]
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn checked_sub(self, rhs: Self) -> Option<Self> {
            // Per PR#103299, there's no advantage to the `overflowing` intrinsic
            // for *unsigned* subtraction and we just emit the manual check anyway.
            // Thus, rather than using `overflowing_sub` that produces a wrapping
            // subtraction, check it ourself so we can use an unchecked one.

            if self < rhs {
                None
            } else {
                // SAFETY: just checked this can't overflow
                Some(unsafe { intrinsics::unchecked_sub(self, rhs) })
            }
        }

        /// Strict integer subtraction. Computes `self - rhs`, panicking if
        /// overflow occurred.
        ///
        /// # Panics
        ///
        /// ## Overflow behavior
        ///
        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".strict_sub(1), 0);")]
        /// ```
        ///
        /// The following panics because of overflow:
        ///
        /// ```should_panic
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("let _ = 0", stringify!($SelfT), ".strict_sub(1);")]
        /// ```
        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[track_caller]
        pub const fn strict_sub(self, rhs: Self) -> Self {
            let (a, b) = self.overflowing_sub(rhs);
            if b { overflow_panic::sub() } else { a }
         }

        /// Unchecked integer subtraction. Computes `self - rhs`, assuming overflow
        /// cannot occur.
        ///
        /// Calling `x.unchecked_sub(y)` is semantically equivalent to calling
        /// `x.`[`checked_sub`]`(y).`[`unwrap_unchecked`]`()`.
        ///
        /// If you're just trying to avoid the panic in debug mode, then **do not**
        /// use this.  Instead, you're looking for [`wrapping_sub`].
        ///
        /// If you find yourself writing code like this:
        ///
        /// ```
        /// # let foo = 30_u32;
        /// # let bar = 20;
        /// if foo >= bar {
        ///     // SAFETY: just checked it will not overflow
        ///     let diff = unsafe { foo.unchecked_sub(bar) };
        ///     // ... use diff ...
        /// }
        /// ```
        ///
        /// Consider changing it to
        ///
        /// ```
        /// # let foo = 30_u32;
        /// # let bar = 20;
        /// if let Some(diff) = foo.checked_sub(bar) {
        ///     // ... use diff ...
        /// }
        /// ```
        ///
        /// As that does exactly the same thing -- including telling the optimizer
        /// that the subtraction cannot overflow -- but avoids needing `unsafe`.
        ///
        /// # Safety
        ///
        /// This results in undefined behavior when
        #[doc = concat!("`self - rhs > ", stringify!($SelfT), "::MAX` or `self - rhs < ", stringify!($SelfT), "::MIN`,")]
        /// i.e. when [`checked_sub`] would return `None`.
        ///
        /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
        #[doc = concat!("[`checked_sub`]: ", stringify!($SelfT), "::checked_sub")]
        #[doc = concat!("[`wrapping_sub`]: ", stringify!($SelfT), "::wrapping_sub")]
        #[stable(feature = "unchecked_math", since = "1.79.0")]
        #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
        pub const unsafe fn unchecked_sub(self, rhs: Self) -> Self {
            assert_unsafe_precondition!(
                check_language_ub,
                concat!(stringify!($SelfT), "::unchecked_sub cannot overflow"),
                (
                    lhs: $SelfT = self,
                    rhs: $SelfT = rhs,
                ) => !lhs.overflowing_sub(rhs).1,
            );

            // SAFETY: this is guaranteed to be safe by the caller.
            unsafe {
                intrinsics::unchecked_sub(self, rhs)
            }
        }

        #[doc = concat!(
            "Checked integer subtraction. Computes `self - rhs` and checks if the result fits into an [`",
            stringify!($SignedT), "`], returning `None` if overflow occurred."
        )]
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        /// #![feature(unsigned_signed_diff)]
        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_signed_diff(2), Some(8));")]
        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_signed_diff(10), Some(-8));")]
        #[doc = concat!(
            "assert_eq!(",
            stringify!($SelfT),
            "::MAX.checked_signed_diff(",
            stringify!($SignedT),
            "::MAX as ",
            stringify!($SelfT),
            "), None);"
        )]
        #[doc = concat!(
            "assert_eq!((",
            stringify!($SignedT),
            "::MAX as ",
            stringify!($SelfT),
            ").checked_signed_diff(",
            stringify!($SelfT),
            "::MAX), Some(",
            stringify!($SignedT),
            "::MIN));"
        )]
        #[doc = concat!(
            "assert_eq!((",
            stringify!($SignedT),
            "::MAX as ",
            stringify!($SelfT),
            " + 1).checked_signed_diff(0), None);"
        )]
        #[doc = concat!(
            "assert_eq!(",
            stringify!($SelfT),
            "::MAX.checked_signed_diff(",
            stringify!($SelfT),
            "::MAX), Some(0));"
        )]
        /// ```
        #[unstable(feature = "unsigned_signed_diff", issue = "126041")]
        #[inline]
        pub const fn checked_signed_diff(self, rhs: Self) -> Option<$SignedT> {
            let res = self.wrapping_sub(rhs) as $SignedT;
            let overflow = (self >= rhs) == (res < 0);

            if !overflow {
                Some(res)
            } else {
                None
            }
        }

        /// Checked integer multiplication. Computes `self * rhs`, returning
        /// `None` if overflow occurred.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_mul(1), Some(5));")]
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_mul(2), None);")]
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn checked_mul(self, rhs: Self) -> Option<Self> {
            let (a, b) = self.overflowing_mul(rhs);
            if intrinsics::unlikely(b) { None } else { Some(a) }
        }

        /// Strict integer multiplication. Computes `self * rhs`, panicking if
        /// overflow occurred.
        ///
        /// # Panics
        ///
        /// ## Overflow behavior
        ///
        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".strict_mul(1), 5);")]
        /// ```
        ///
        /// The following panics because of overflow:
        ///
        /// ``` should_panic
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_mul(2);")]
        /// ```
        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[track_caller]
        pub const fn strict_mul(self, rhs: Self) -> Self {
            let (a, b) = self.overflowing_mul(rhs);
            if b { overflow_panic::mul() } else { a }
         }

        /// Unchecked integer multiplication. Computes `self * rhs`, assuming overflow
        /// cannot occur.
        ///
        /// Calling `x.unchecked_mul(y)` is semantically equivalent to calling
        /// `x.`[`checked_mul`]`(y).`[`unwrap_unchecked`]`()`.
        ///
        /// If you're just trying to avoid the panic in debug mode, then **do not**
        /// use this.  Instead, you're looking for [`wrapping_mul`].
        ///
        /// # Safety
        ///
        /// This results in undefined behavior when
        #[doc = concat!("`self * rhs > ", stringify!($SelfT), "::MAX` or `self * rhs < ", stringify!($SelfT), "::MIN`,")]
        /// i.e. when [`checked_mul`] would return `None`.
        ///
        /// [`unwrap_unchecked`]: option/enum.Option.html#method.unwrap_unchecked
        #[doc = concat!("[`checked_mul`]: ", stringify!($SelfT), "::checked_mul")]
        #[doc = concat!("[`wrapping_mul`]: ", stringify!($SelfT), "::wrapping_mul")]
        #[stable(feature = "unchecked_math", since = "1.79.0")]
        #[rustc_const_stable(feature = "unchecked_math", since = "1.79.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
        pub const unsafe fn unchecked_mul(self, rhs: Self) -> Self {
            assert_unsafe_precondition!(
                check_language_ub,
                concat!(stringify!($SelfT), "::unchecked_mul cannot overflow"),
                (
                    lhs: $SelfT = self,
                    rhs: $SelfT = rhs,
                ) => !lhs.overflowing_mul(rhs).1,
            );

            // SAFETY: this is guaranteed to be safe by the caller.
            unsafe {
                intrinsics::unchecked_mul(self, rhs)
            }
        }

        /// Checked integer division. Computes `self / rhs`, returning `None`
        /// if `rhs == 0`.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".checked_div(2), Some(64));")]
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_div(0), None);")]
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn checked_div(self, rhs: Self) -> Option<Self> {
            if intrinsics::unlikely(rhs == 0) {
                None
            } else {
                // SAFETY: div by zero has been checked above and unsigned types have no other
                // failure modes for division
                Some(unsafe { intrinsics::unchecked_div(self, rhs) })
            }
        }

        /// Strict integer division. Computes `self / rhs`.
        ///
        /// Strict division on unsigned types is just normal division. There's no
        /// way overflow could ever happen. This function exists so that all
        /// operations are accounted for in the strict operations.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_div(10), 10);")]
        /// ```
        ///
        /// The following panics because of division by zero:
        ///
        /// ```should_panic
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div(0);")]
        /// ```
        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        pub const fn strict_div(self, rhs: Self) -> Self {
            self / rhs
        }

        /// Checked Euclidean division. Computes `self.div_euclid(rhs)`, returning `None`
        /// if `rhs == 0`.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".checked_div_euclid(2), Some(64));")]
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_div_euclid(0), None);")]
        /// ```
        #[stable(feature = "euclidean_division", since = "1.38.0")]
        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn checked_div_euclid(self, rhs: Self) -> Option<Self> {
            if intrinsics::unlikely(rhs == 0) {
                None
            } else {
                Some(self.div_euclid(rhs))
            }
        }

        /// Strict Euclidean division. Computes `self.div_euclid(rhs)`.
        ///
        /// Strict division on unsigned types is just normal division. There's no
        /// way overflow could ever happen. This function exists so that all
        /// operations are accounted for in the strict operations. Since, for the
        /// positive integers, all common definitions of division are equal, this
        /// is exactly equal to `self.strict_div(rhs)`.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_div_euclid(10), 10);")]
        /// ```
        /// The following panics because of division by zero:
        ///
        /// ```should_panic
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("let _ = (1", stringify!($SelfT), ").strict_div_euclid(0);")]
        /// ```
        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        pub const fn strict_div_euclid(self, rhs: Self) -> Self {
            self / rhs
        }

        /// Checked integer remainder. Computes `self % rhs`, returning `None`
        /// if `rhs == 0`.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(2), Some(1));")]
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem(0), None);")]
        /// ```
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_checked_int_div", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn checked_rem(self, rhs: Self) -> Option<Self> {
            if intrinsics::unlikely(rhs == 0) {
                None
            } else {
                // SAFETY: div by zero has been checked above and unsigned types have no other
                // failure modes for division
                Some(unsafe { intrinsics::unchecked_rem(self, rhs) })
            }
        }

        /// Strict integer remainder. Computes `self % rhs`.
        ///
        /// Strict remainder calculation on unsigned types is just the regular
        /// remainder calculation. There's no way overflow could ever happen.
        /// This function exists so that all operations are accounted for in the
        /// strict operations.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_rem(10), 0);")]
        /// ```
        ///
        /// The following panics because of division by zero:
        ///
        /// ```should_panic
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem(0);")]
        /// ```
        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        pub const fn strict_rem(self, rhs: Self) -> Self {
            self % rhs
        }

        /// Checked Euclidean modulo. Computes `self.rem_euclid(rhs)`, returning `None`
        /// if `rhs == 0`.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(2), Some(1));")]
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_rem_euclid(0), None);")]
        /// ```
        #[stable(feature = "euclidean_division", since = "1.38.0")]
        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn checked_rem_euclid(self, rhs: Self) -> Option<Self> {
            if intrinsics::unlikely(rhs == 0) {
                None
            } else {
                Some(self.rem_euclid(rhs))
            }
        }

        /// Strict Euclidean modulo. Computes `self.rem_euclid(rhs)`.
        ///
        /// Strict modulo calculation on unsigned types is just the regular
        /// remainder calculation. There's no way overflow could ever happen.
        /// This function exists so that all operations are accounted for in the
        /// strict operations. Since, for the positive integers, all common
        /// definitions of division are equal, this is exactly equal to
        /// `self.strict_rem(rhs)`.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".strict_rem_euclid(10), 0);")]
        /// ```
        ///
        /// The following panics because of division by zero:
        ///
        /// ```should_panic
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("let _ = 5", stringify!($SelfT), ".strict_rem_euclid(0);")]
        /// ```
        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        pub const fn strict_rem_euclid(self, rhs: Self) -> Self {
            self % rhs
        }

        /// Returns the logarithm of the number with respect to an arbitrary base,
        /// rounded down.
        ///
        /// This method might not be optimized owing to implementation details;
        /// `ilog2` can produce results more efficiently for base 2, and `ilog10`
        /// can produce results more efficiently for base 10.
        ///
        /// # Panics
        ///
        /// This function will panic if `self` is zero, or if `base` is less than 2.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".ilog(5), 1);")]
        /// ```
        #[stable(feature = "int_log", since = "1.67.0")]
        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[track_caller]
        pub const fn ilog(self, base: Self) -> u32 {
            assert!(base >= 2, "base of integer logarithm must be at least 2");
            if let Some(log) = self.checked_ilog(base) {
                log
            } else {
                int_log10::panic_for_nonpositive_argument()
            }
        }

        /// Returns the base 2 logarithm of the number, rounded down.
        ///
        /// # Panics
        ///
        /// This function will panic if `self` is zero.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".ilog2(), 1);")]
        /// ```
        #[stable(feature = "int_log", since = "1.67.0")]
        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[track_caller]
        pub const fn ilog2(self) -> u32 {
            if let Some(log) = self.checked_ilog2() {
                log
            } else {
                int_log10::panic_for_nonpositive_argument()
            }
        }

        /// Returns the base 10 logarithm of the number, rounded down.
        ///
        /// # Panics
        ///
        /// This function will panic if `self` is zero.
        ///
        /// # Example
        ///
        /// ```
        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".ilog10(), 1);")]
        /// ```
        #[stable(feature = "int_log", since = "1.67.0")]
        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[track_caller]
        pub const fn ilog10(self) -> u32 {
            if let Some(log) = self.checked_ilog10() {
                log
            } else {
                int_log10::panic_for_nonpositive_argument()
            }
        }

        /// Returns the logarithm of the number with respect to an arbitrary base,
        /// rounded down.
        ///
        /// Returns `None` if the number is zero, or if the base is not at least 2.
        ///
        /// This method might not be optimized owing to implementation details;
        /// `checked_ilog2` can produce results more efficiently for base 2, and
        /// `checked_ilog10` can produce results more efficiently for base 10.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".checked_ilog(5), Some(1));")]
        /// ```
        #[stable(feature = "int_log", since = "1.67.0")]
        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn checked_ilog(self, base: Self) -> Option<u32> {
            if self <= 0 || base <= 1 {
                None
            } else if self < base {
                Some(0)
            } else {
                // Since base >= self, n >= 1
                let mut n = 1;
                let mut r = base;

                // Optimization for 128 bit wide integers.
                if Self::BITS == 128 {
                    // The following is a correct lower bound for ⌊log(base,self)⌋ because
                    //
                    // log(base,self) = log(2,self) / log(2,base)
                    //                ≥ ⌊log(2,self)⌋ / (⌊log(2,base)⌋ + 1)
                    //
                    // hence
                    //
                    // ⌊log(base,self)⌋ ≥ ⌊ ⌊log(2,self)⌋ / (⌊log(2,base)⌋ + 1) ⌋ .
                    n = self.ilog2() / (base.ilog2() + 1);
                    r = base.pow(n);
                }

                while r <= self / base {
                    n += 1;
                    r *= base;
                }
                Some(n)
            }
        }

        /// Returns the base 2 logarithm of the number, rounded down.
        ///
        /// Returns `None` if the number is zero.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_ilog2(), Some(1));")]
        /// ```
        #[stable(feature = "int_log", since = "1.67.0")]
        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn checked_ilog2(self) -> Option<u32> {
            match NonZero::new(self) {
                Some(x) => Some(x.ilog2()),
                None => None,
            }
        }

        /// Returns the base 10 logarithm of the number, rounded down.
        ///
        /// Returns `None` if the number is zero.
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".checked_ilog10(), Some(1));")]
        /// ```
        #[stable(feature = "int_log", since = "1.67.0")]
        #[rustc_const_stable(feature = "int_log", since = "1.67.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn checked_ilog10(self) -> Option<u32> {
            match NonZero::new(self) {
                Some(x) => Some(x.ilog10()),
                None => None,
            }
        }

        /// Checked negation. Computes `-self`, returning `None` unless `self ==
        /// 0`.
        ///
        /// Note that negating any positive integer will overflow.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".checked_neg(), Some(0));")]
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".checked_neg(), None);")]
        /// ```
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn checked_neg(self) -> Option<Self> {
            let (a, b) = self.overflowing_neg();
            if intrinsics::unlikely(b) { None } else { Some(a) }
        }

        /// Strict negation. Computes `-self`, panicking unless `self ==
        /// 0`.
        ///
        /// Note that negating any positive integer will overflow.
        ///
        /// # Panics
        ///
        /// ## Overflow behavior
        ///
        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".strict_neg(), 0);")]
        /// ```
        ///
        /// The following panics because of overflow:
        ///
        /// ```should_panic
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("let _ = 1", stringify!($SelfT), ".strict_neg();")]
        ///
        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[track_caller]
        pub const fn strict_neg(self) -> Self {
            let (a, b) = self.overflowing_neg();
            if b { overflow_panic::neg() } else { a }
        }

        /// Checked shift left. Computes `self << rhs`, returning `None`
        /// if `rhs` is larger than or equal to the number of bits in `self`.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".checked_shl(4), Some(0x10));")]
        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shl(129), None);")]
        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shl(", stringify!($BITS_MINUS_ONE), "), Some(0));")]
        /// ```
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
        #[cfg_attr(bootstrap, rustc_allow_const_fn_unstable(unchecked_shifts))]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn checked_shl(self, rhs: u32) -> Option<Self> {
            // Not using overflowing_shl as that's a wrapping shift
            if rhs < Self::BITS {
                // SAFETY: just checked the RHS is in-range
                Some(unsafe { self.unchecked_shl(rhs) })
            } else {
                None
            }
        }

        /// Strict shift left. Computes `self << rhs`, panicking if `rhs` is larger
        /// than or equal to the number of bits in `self`.
        ///
        /// # Panics
        ///
        /// ## Overflow behavior
        ///
        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".strict_shl(4), 0x10);")]
        /// ```
        ///
        /// The following panics because of overflow:
        ///
        /// ```should_panic
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("let _ = 0x10", stringify!($SelfT), ".strict_shl(129);")]
        /// ```
        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[track_caller]
        pub const fn strict_shl(self, rhs: u32) -> Self {
            let (a, b) = self.overflowing_shl(rhs);
            if b { overflow_panic::shl() } else { a }
        }

        /// Unchecked shift left. Computes `self << rhs`, assuming that
        /// `rhs` is less than the number of bits in `self`.
        ///
        /// # Safety
        ///
        /// This results in undefined behavior if `rhs` is larger than
        /// or equal to the number of bits in `self`,
        /// i.e. when [`checked_shl`] would return `None`.
        ///
        #[doc = concat!("[`checked_shl`]: ", stringify!($SelfT), "::checked_shl")]
        #[unstable(
            feature = "unchecked_shifts",
            reason = "niche optimization path",
            issue = "85122",
        )]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[cfg_attr(bootstrap, rustc_const_unstable(feature = "unchecked_shifts", issue = "85122"))]
        #[inline(always)]
        #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
        pub const unsafe fn unchecked_shl(self, rhs: u32) -> Self {
            assert_unsafe_precondition!(
                check_language_ub,
                concat!(stringify!($SelfT), "::unchecked_shl cannot overflow"),
                (
                    rhs: u32 = rhs,
                ) => rhs < <$ActualT>::BITS,
            );

            // SAFETY: this is guaranteed to be safe by the caller.
            unsafe {
                intrinsics::unchecked_shl(self, rhs)
            }
        }

        /// Unbounded shift left. Computes `self << rhs`, without bounding the value of `rhs`
        ///
        /// If `rhs` is larger or equal to the number of bits in `self`,
        /// the entire value is shifted out, and `0` is returned.
        ///
        /// # Examples
        ///
        /// Basic usage:
        /// ```
        /// #![feature(unbounded_shifts)]
        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".unbounded_shl(4), 0x10);")]
        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".unbounded_shl(129), 0);")]
        /// ```
        #[unstable(feature = "unbounded_shifts", issue = "129375")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn unbounded_shl(self, rhs: u32) -> $SelfT{
            if rhs < Self::BITS {
                // SAFETY:
                // rhs is just checked to be in-range above
                unsafe { self.unchecked_shl(rhs) }
            } else {
                0
            }
        }

        /// Checked shift right. Computes `self >> rhs`, returning `None`
        /// if `rhs` is larger than or equal to the number of bits in `self`.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(4), Some(0x1));")]
        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".checked_shr(129), None);")]
        /// ```
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_checked_int_methods", since = "1.47.0")]
        #[cfg_attr(bootstrap, rustc_allow_const_fn_unstable(unchecked_shifts))]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn checked_shr(self, rhs: u32) -> Option<Self> {
            // Not using overflowing_shr as that's a wrapping shift
            if rhs < Self::BITS {
                // SAFETY: just checked the RHS is in-range
                Some(unsafe { self.unchecked_shr(rhs) })
            } else {
                None
            }
        }

        /// Strict shift right. Computes `self >> rhs`, panicking `rhs` is
        /// larger than or equal to the number of bits in `self`.
        ///
        /// # Panics
        ///
        /// ## Overflow behavior
        ///
        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".strict_shr(4), 0x1);")]
        /// ```
        ///
        /// The following panics because of overflow:
        ///
        /// ```should_panic
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("let _ = 0x10", stringify!($SelfT), ".strict_shr(129);")]
        /// ```
        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[track_caller]
        pub const fn strict_shr(self, rhs: u32) -> Self {
            let (a, b) = self.overflowing_shr(rhs);
            if b { overflow_panic::shr() } else { a }
        }

        /// Unchecked shift right. Computes `self >> rhs`, assuming that
        /// `rhs` is less than the number of bits in `self`.
        ///
        /// # Safety
        ///
        /// This results in undefined behavior if `rhs` is larger than
        /// or equal to the number of bits in `self`,
        /// i.e. when [`checked_shr`] would return `None`.
        ///
        #[doc = concat!("[`checked_shr`]: ", stringify!($SelfT), "::checked_shr")]
        #[unstable(
            feature = "unchecked_shifts",
            reason = "niche optimization path",
            issue = "85122",
        )]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[cfg_attr(bootstrap, rustc_const_unstable(feature = "unchecked_shifts", issue = "85122"))]
        #[inline(always)]
        #[cfg_attr(miri, track_caller)] // even without panics, this helps for Miri backtraces
        pub const unsafe fn unchecked_shr(self, rhs: u32) -> Self {
            assert_unsafe_precondition!(
                check_language_ub,
                concat!(stringify!($SelfT), "::unchecked_shr cannot overflow"),
                (
                    rhs: u32 = rhs,
                ) => rhs < <$ActualT>::BITS,
            );

            // SAFETY: this is guaranteed to be safe by the caller.
            unsafe {
                intrinsics::unchecked_shr(self, rhs)
            }
        }

        /// Unbounded shift right. Computes `self >> rhs`, without bounding the value of `rhs`
        ///
        /// If `rhs` is larger or equal to the number of bits in `self`,
        /// the entire value is shifted out, and `0` is returned.
        ///
        /// # Examples
        ///
        /// Basic usage:
        /// ```
        /// #![feature(unbounded_shifts)]
        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".unbounded_shr(4), 0x1);")]
        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".unbounded_shr(129), 0);")]
        /// ```
        #[unstable(feature = "unbounded_shifts", issue = "129375")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn unbounded_shr(self, rhs: u32) -> $SelfT{
            if rhs < Self::BITS {
                // SAFETY:
                // rhs is just checked to be in-range above
                unsafe { self.unchecked_shr(rhs) }
            } else {
                0
            }
        }

        /// Checked exponentiation. Computes `self.pow(exp)`, returning `None` if
        /// overflow occurred.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_pow(5), Some(32));")]
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_pow(2), None);")]
        /// ```
        #[stable(feature = "no_panic_pow", since = "1.34.0")]
        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn checked_pow(self, mut exp: u32) -> Option<Self> {
            if exp == 0 {
                return Some(1);
            }
            let mut base = self;
            let mut acc: Self = 1;

            loop {
                if (exp & 1) == 1 {
                    acc = try_opt!(acc.checked_mul(base));
                    // since exp!=0, finally the exp must be 1.
                    if exp == 1 {
                        return Some(acc);
                    }
                }
                exp /= 2;
                base = try_opt!(base.checked_mul(base));
            }
        }

        /// Strict exponentiation. Computes `self.pow(exp)`, panicking if
        /// overflow occurred.
        ///
        /// # Panics
        ///
        /// ## Overflow behavior
        ///
        /// This function will always panic on overflow, regardless of whether overflow checks are enabled.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".strict_pow(5), 32);")]
        /// ```
        ///
        /// The following panics because of overflow:
        ///
        /// ```should_panic
        /// #![feature(strict_overflow_ops)]
        #[doc = concat!("let _ = ", stringify!($SelfT), "::MAX.strict_pow(2);")]
        /// ```
        #[unstable(feature = "strict_overflow_ops", issue = "118260")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[track_caller]
        pub const fn strict_pow(self, mut exp: u32) -> Self {
            if exp == 0 {
                return 1;
            }
            let mut base = self;
            let mut acc: Self = 1;

            loop {
                if (exp & 1) == 1 {
                    acc = acc.strict_mul(base);
                    // since exp!=0, finally the exp must be 1.
                    if exp == 1 {
                        return acc;
                    }
                }
                exp /= 2;
                base = base.strict_mul(base);
            }
        }

        /// Saturating integer addition. Computes `self + rhs`, saturating at
        /// the numeric bounds instead of overflowing.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_add(1), 101);")]
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_add(127), ", stringify!($SelfT), "::MAX);")]
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
        #[inline(always)]
        pub const fn saturating_add(self, rhs: Self) -> Self {
            intrinsics::saturating_add(self, rhs)
        }

        /// Saturating addition with a signed integer. Computes `self + rhs`,
        /// saturating at the numeric bounds instead of overflowing.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_add_signed(2), 3);")]
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".saturating_add_signed(-2), 0);")]
        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).saturating_add_signed(4), ", stringify!($SelfT), "::MAX);")]
        /// ```
        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn saturating_add_signed(self, rhs: $SignedT) -> Self {
            let (res, overflow) = self.overflowing_add(rhs as Self);
            if overflow == (rhs < 0) {
                res
            } else if overflow {
                Self::MAX
            } else {
                0
            }
        }

        /// Saturating integer subtraction. Computes `self - rhs`, saturating
        /// at the numeric bounds instead of overflowing.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".saturating_sub(27), 73);")]
        #[doc = concat!("assert_eq!(13", stringify!($SelfT), ".saturating_sub(127), 0);")]
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
        #[inline(always)]
        pub const fn saturating_sub(self, rhs: Self) -> Self {
            intrinsics::saturating_sub(self, rhs)
        }

        /// Saturating integer multiplication. Computes `self * rhs`,
        /// saturating at the numeric bounds instead of overflowing.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".saturating_mul(10), 20);")]
        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX).saturating_mul(10), ", stringify!($SelfT),"::MAX);")]
        /// ```
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_saturating_int_methods", since = "1.47.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn saturating_mul(self, rhs: Self) -> Self {
            match self.checked_mul(rhs) {
                Some(x) => x,
                None => Self::MAX,
            }
        }

        /// Saturating integer division. Computes `self / rhs`, saturating at the
        /// numeric bounds instead of overflowing.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is 0.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".saturating_div(2), 2);")]
        ///
        /// ```
        #[stable(feature = "saturating_div", since = "1.58.0")]
        #[rustc_const_stable(feature = "saturating_div", since = "1.58.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[track_caller]
        pub const fn saturating_div(self, rhs: Self) -> Self {
            // on unsigned types, there is no overflow in integer division
            self.wrapping_div(rhs)
        }

        /// Saturating integer exponentiation. Computes `self.pow(exp)`,
        /// saturating at the numeric bounds instead of overflowing.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(4", stringify!($SelfT), ".saturating_pow(3), 64);")]
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.saturating_pow(2), ", stringify!($SelfT), "::MAX);")]
        /// ```
        #[stable(feature = "no_panic_pow", since = "1.34.0")]
        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn saturating_pow(self, exp: u32) -> Self {
            match self.checked_pow(exp) {
                Some(x) => x,
                None => Self::MAX,
            }
        }

        /// Wrapping (modular) addition. Computes `self + rhs`,
        /// wrapping around at the boundary of the type.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(200", stringify!($SelfT), ".wrapping_add(55), 255);")]
        #[doc = concat!("assert_eq!(200", stringify!($SelfT), ".wrapping_add(", stringify!($SelfT), "::MAX), 199);")]
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        pub const fn wrapping_add(self, rhs: Self) -> Self {
            intrinsics::wrapping_add(self, rhs)
        }

        /// Wrapping (modular) addition with a signed integer. Computes
        /// `self + rhs`, wrapping around at the boundary of the type.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_add_signed(2), 3);")]
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_add_signed(-2), ", stringify!($SelfT), "::MAX);")]
        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).wrapping_add_signed(4), 1);")]
        /// ```
        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn wrapping_add_signed(self, rhs: $SignedT) -> Self {
            self.wrapping_add(rhs as Self)
        }

        /// Wrapping (modular) subtraction. Computes `self - rhs`,
        /// wrapping around at the boundary of the type.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_sub(100), 0);")]
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_sub(", stringify!($SelfT), "::MAX), 101);")]
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        pub const fn wrapping_sub(self, rhs: Self) -> Self {
            intrinsics::wrapping_sub(self, rhs)
        }

        /// Wrapping (modular) multiplication. Computes `self *
        /// rhs`, wrapping around at the boundary of the type.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// Please note that this example is shared between integer types.
        /// Which explains why `u8` is used here.
        ///
        /// ```
        /// assert_eq!(10u8.wrapping_mul(12), 120);
        /// assert_eq!(25u8.wrapping_mul(12), 44);
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        pub const fn wrapping_mul(self, rhs: Self) -> Self {
            intrinsics::wrapping_mul(self, rhs)
        }

        /// Wrapping (modular) division. Computes `self / rhs`.
        ///
        /// Wrapped division on unsigned types is just normal division. There's
        /// no way wrapping could ever happen. This function exists so that all
        /// operations are accounted for in the wrapping operations.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is 0.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div(10), 10);")]
        /// ```
        #[stable(feature = "num_wrapping", since = "1.2.0")]
        #[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        pub const fn wrapping_div(self, rhs: Self) -> Self {
            self / rhs
        }

        /// Wrapping Euclidean division. Computes `self.div_euclid(rhs)`.
        ///
        /// Wrapped division on unsigned types is just normal division. There's
        /// no way wrapping could ever happen. This function exists so that all
        /// operations are accounted for in the wrapping operations. Since, for
        /// the positive integers, all common definitions of division are equal,
        /// this is exactly equal to `self.wrapping_div(rhs)`.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is 0.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_div_euclid(10), 10);")]
        /// ```
        #[stable(feature = "euclidean_division", since = "1.38.0")]
        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        pub const fn wrapping_div_euclid(self, rhs: Self) -> Self {
            self / rhs
        }

        /// Wrapping (modular) remainder. Computes `self % rhs`.
        ///
        /// Wrapped remainder calculation on unsigned types is just the regular
        /// remainder calculation. There's no way wrapping could ever happen.
        /// This function exists so that all operations are accounted for in the
        /// wrapping operations.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is 0.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem(10), 0);")]
        /// ```
        #[stable(feature = "num_wrapping", since = "1.2.0")]
        #[rustc_const_stable(feature = "const_wrapping_int_methods", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        pub const fn wrapping_rem(self, rhs: Self) -> Self {
            self % rhs
        }

        /// Wrapping Euclidean modulo. Computes `self.rem_euclid(rhs)`.
        ///
        /// Wrapped modulo calculation on unsigned types is just the regular
        /// remainder calculation. There's no way wrapping could ever happen.
        /// This function exists so that all operations are accounted for in the
        /// wrapping operations. Since, for the positive integers, all common
        /// definitions of division are equal, this is exactly equal to
        /// `self.wrapping_rem(rhs)`.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is 0.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".wrapping_rem_euclid(10), 0);")]
        /// ```
        #[stable(feature = "euclidean_division", since = "1.38.0")]
        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        pub const fn wrapping_rem_euclid(self, rhs: Self) -> Self {
            self % rhs
        }

        /// Wrapping (modular) negation. Computes `-self`,
        /// wrapping around at the boundary of the type.
        ///
        /// Since unsigned types do not have negative equivalents
        /// all applications of this function will wrap (except for `-0`).
        /// For values smaller than the corresponding signed type's maximum
        /// the result is the same as casting the corresponding signed value.
        /// Any larger values are equivalent to `MAX + 1 - (val - MAX - 1)` where
        /// `MAX` is the corresponding signed type's maximum.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(0_", stringify!($SelfT), ".wrapping_neg(), 0);")]
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_neg(), 1);")]
        #[doc = concat!("assert_eq!(13_", stringify!($SelfT), ".wrapping_neg(), (!13) + 1);")]
        #[doc = concat!("assert_eq!(42_", stringify!($SelfT), ".wrapping_neg(), !(42 - 1));")]
        /// ```
        #[stable(feature = "num_wrapping", since = "1.2.0")]
        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        pub const fn wrapping_neg(self) -> Self {
            (0 as $SelfT).wrapping_sub(self)
        }

        /// Panic-free bitwise shift-left; yields `self << mask(rhs)`,
        /// where `mask` removes any high-order bits of `rhs` that
        /// would cause the shift to exceed the bitwidth of the type.
        ///
        /// Note that this is *not* the same as a rotate-left; the
        /// RHS of a wrapping shift-left is restricted to the range
        /// of the type, rather than the bits shifted out of the LHS
        /// being returned to the other end. The primitive integer
        /// types all implement a [`rotate_left`](Self::rotate_left) function,
        /// which may be what you want instead.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_shl(7), 128);")]
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".wrapping_shl(128), 1);")]
        /// ```
        #[stable(feature = "num_wrapping", since = "1.2.0")]
        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[cfg_attr(bootstrap, rustc_allow_const_fn_unstable(unchecked_shifts))]
        pub const fn wrapping_shl(self, rhs: u32) -> Self {
            // SAFETY: the masking by the bitsize of the type ensures that we do not shift
            // out of bounds
            unsafe {
                self.unchecked_shl(rhs & (Self::BITS - 1))
            }
        }

        /// Panic-free bitwise shift-right; yields `self >> mask(rhs)`,
        /// where `mask` removes any high-order bits of `rhs` that
        /// would cause the shift to exceed the bitwidth of the type.
        ///
        /// Note that this is *not* the same as a rotate-right; the
        /// RHS of a wrapping shift-right is restricted to the range
        /// of the type, rather than the bits shifted out of the LHS
        /// being returned to the other end. The primitive integer
        /// types all implement a [`rotate_right`](Self::rotate_right) function,
        /// which may be what you want instead.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".wrapping_shr(7), 1);")]
        #[doc = concat!("assert_eq!(128", stringify!($SelfT), ".wrapping_shr(128), 128);")]
        /// ```
        #[stable(feature = "num_wrapping", since = "1.2.0")]
        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[cfg_attr(bootstrap, rustc_allow_const_fn_unstable(unchecked_shifts))]
        pub const fn wrapping_shr(self, rhs: u32) -> Self {
            // SAFETY: the masking by the bitsize of the type ensures that we do not shift
            // out of bounds
            unsafe {
                self.unchecked_shr(rhs & (Self::BITS - 1))
            }
        }

        /// Wrapping (modular) exponentiation. Computes `self.pow(exp)`,
        /// wrapping around at the boundary of the type.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".wrapping_pow(5), 243);")]
        /// assert_eq!(3u8.wrapping_pow(6), 217);
        /// ```
        #[stable(feature = "no_panic_pow", since = "1.34.0")]
        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[rustc_allow_const_fn_unstable(is_val_statically_known)]
        pub const fn wrapping_pow(self, mut exp: u32) -> Self {
            if exp == 0 {
                return 1;
            }
            let mut base = self;
            let mut acc: Self = 1;

            if intrinsics::is_val_statically_known(exp) {
                while exp > 1 {
                    if (exp & 1) == 1 {
                        acc = acc.wrapping_mul(base);
                    }
                    exp /= 2;
                    base = base.wrapping_mul(base);
                }

                // since exp!=0, finally the exp must be 1.
                // Deal with the final bit of the exponent separately, since
                // squaring the base afterwards is not necessary.
                acc.wrapping_mul(base)
            } else {
                // This is faster than the above when the exponent is not known
                // at compile time. We can't use the same code for the constant
                // exponent case because LLVM is currently unable to unroll
                // this loop.
                loop {
                    if (exp & 1) == 1 {
                        acc = acc.wrapping_mul(base);
                        // since exp!=0, finally the exp must be 1.
                        if exp == 1 {
                            return acc;
                        }
                    }
                    exp /= 2;
                    base = base.wrapping_mul(base);
                }
            }
        }

        /// Calculates `self` + `rhs`.
        ///
        /// Returns a tuple of the addition along with a boolean indicating
        /// whether an arithmetic overflow would occur. If an overflow would
        /// have occurred then the wrapped value is returned.
        ///
        /// # Examples
        ///
        /// Basic usage
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_add(2), (7, false));")]
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.overflowing_add(1), (0, true));")]
        /// ```
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        pub const fn overflowing_add(self, rhs: Self) -> (Self, bool) {
            let (a, b) = intrinsics::add_with_overflow(self as $ActualT, rhs as $ActualT);
            (a as Self, b)
        }

        /// Calculates `self` + `rhs` + `carry` and returns a tuple containing
        /// the sum and the output carry.
        ///
        /// Performs "ternary addition" of two integer operands and a carry-in
        /// bit, and returns an output integer and a carry-out bit. This allows
        /// chaining together multiple additions to create a wider addition, and
        /// can be useful for bignum addition.
        ///
        #[doc = concat!("This can be thought of as a ", stringify!($BITS), "-bit \"full adder\", in the electronics sense.")]
        ///
        /// If the input carry is false, this method is equivalent to
        /// [`overflowing_add`](Self::overflowing_add), and the output carry is
        /// equal to the overflow flag. Note that although carry and overflow
        /// flags are similar for unsigned integers, they are different for
        /// signed integers.
        ///
        /// # Examples
        ///
        /// ```
        /// #![feature(bigint_helper_methods)]
        ///
        #[doc = concat!("//    3  MAX    (a = 3 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
        #[doc = concat!("// +  5    7    (b = 5 × 2^", stringify!($BITS), " + 7)")]
        /// // ---------
        #[doc = concat!("//    9    6    (sum = 9 × 2^", stringify!($BITS), " + 6)")]
        ///
        #[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (3, ", stringify!($SelfT), "::MAX);")]
        #[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (5, 7);")]
        /// let carry0 = false;
        ///
        /// let (sum0, carry1) = a0.carrying_add(b0, carry0);
        /// assert_eq!(carry1, true);
        /// let (sum1, carry2) = a1.carrying_add(b1, carry1);
        /// assert_eq!(carry2, false);
        ///
        /// assert_eq!((sum1, sum0), (9, 6));
        /// ```
        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn carrying_add(self, rhs: Self, carry: bool) -> (Self, bool) {
            // note: longer-term this should be done via an intrinsic, but this has been shown
            //   to generate optimal code for now, and LLVM doesn't have an equivalent intrinsic
            let (a, b) = self.overflowing_add(rhs);
            let (c, d) = a.overflowing_add(carry as $SelfT);
            (c, b || d)
        }

        /// Calculates `self` + `rhs` with a signed `rhs`.
        ///
        /// Returns a tuple of the addition along with a boolean indicating
        /// whether an arithmetic overflow would occur. If an overflow would
        /// have occurred then the wrapped value is returned.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_add_signed(2), (3, false));")]
        #[doc = concat!("assert_eq!(1", stringify!($SelfT), ".overflowing_add_signed(-2), (", stringify!($SelfT), "::MAX, true));")]
        #[doc = concat!("assert_eq!((", stringify!($SelfT), "::MAX - 2).overflowing_add_signed(4), (1, true));")]
        /// ```
        #[stable(feature = "mixed_integer_ops", since = "1.66.0")]
        #[rustc_const_stable(feature = "mixed_integer_ops", since = "1.66.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn overflowing_add_signed(self, rhs: $SignedT) -> (Self, bool) {
            let (res, overflowed) = self.overflowing_add(rhs as Self);
            (res, overflowed ^ (rhs < 0))
        }

        /// Calculates `self` - `rhs`
        ///
        /// Returns a tuple of the subtraction along with a boolean indicating
        /// whether an arithmetic overflow would occur. If an overflow would
        /// have occurred then the wrapped value is returned.
        ///
        /// # Examples
        ///
        /// Basic usage
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_sub(2), (3, false));")]
        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".overflowing_sub(1), (", stringify!($SelfT), "::MAX, true));")]
        /// ```
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        pub const fn overflowing_sub(self, rhs: Self) -> (Self, bool) {
            let (a, b) = intrinsics::sub_with_overflow(self as $ActualT, rhs as $ActualT);
            (a as Self, b)
        }

        /// Calculates `self` &minus; `rhs` &minus; `borrow` and returns a tuple
        /// containing the difference and the output borrow.
        ///
        /// Performs "ternary subtraction" by subtracting both an integer
        /// operand and a borrow-in bit from `self`, and returns an output
        /// integer and a borrow-out bit. This allows chaining together multiple
        /// subtractions to create a wider subtraction, and can be useful for
        /// bignum subtraction.
        ///
        /// # Examples
        ///
        /// ```
        /// #![feature(bigint_helper_methods)]
        ///
        #[doc = concat!("//    9    6    (a = 9 × 2^", stringify!($BITS), " + 6)")]
        #[doc = concat!("// -  5    7    (b = 5 × 2^", stringify!($BITS), " + 7)")]
        /// // ---------
        #[doc = concat!("//    3  MAX    (diff = 3 × 2^", stringify!($BITS), " + 2^", stringify!($BITS), " - 1)")]
        ///
        #[doc = concat!("let (a1, a0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (9, 6);")]
        #[doc = concat!("let (b1, b0): (", stringify!($SelfT), ", ", stringify!($SelfT), ") = (5, 7);")]
        /// let borrow0 = false;
        ///
        /// let (diff0, borrow1) = a0.borrowing_sub(b0, borrow0);
        /// assert_eq!(borrow1, true);
        /// let (diff1, borrow2) = a1.borrowing_sub(b1, borrow1);
        /// assert_eq!(borrow2, false);
        ///
        #[doc = concat!("assert_eq!((diff1, diff0), (3, ", stringify!($SelfT), "::MAX));")]
        /// ```
        #[unstable(feature = "bigint_helper_methods", issue = "85532")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn borrowing_sub(self, rhs: Self, borrow: bool) -> (Self, bool) {
            // note: longer-term this should be done via an intrinsic, but this has been shown
            //   to generate optimal code for now, and LLVM doesn't have an equivalent intrinsic
            let (a, b) = self.overflowing_sub(rhs);
            let (c, d) = a.overflowing_sub(borrow as $SelfT);
            (c, b || d)
        }

        /// Computes the absolute difference between `self` and `other`.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(80), 20", stringify!($SelfT), ");")]
        #[doc = concat!("assert_eq!(100", stringify!($SelfT), ".abs_diff(110), 10", stringify!($SelfT), ");")]
        /// ```
        #[stable(feature = "int_abs_diff", since = "1.60.0")]
        #[rustc_const_stable(feature = "int_abs_diff", since = "1.60.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn abs_diff(self, other: Self) -> Self {
            if mem::size_of::<Self>() == 1 {
                // Trick LLVM into generating the psadbw instruction when SSE2
                // is available and this function is autovectorized for u8's.
                (self as i32).wrapping_sub(other as i32).abs() as Self
            } else {
                if self < other {
                    other - self
                } else {
                    self - other
                }
            }
        }

        /// Calculates the multiplication of `self` and `rhs`.
        ///
        /// Returns a tuple of the multiplication along with a boolean
        /// indicating whether an arithmetic overflow would occur. If an
        /// overflow would have occurred then the wrapped value is returned.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// Please note that this example is shared between integer types.
        /// Which explains why `u32` is used here.
        ///
        /// ```
        /// assert_eq!(5u32.overflowing_mul(2), (10, false));
        /// assert_eq!(1_000_000_000u32.overflowing_mul(10), (1410065408, true));
        /// ```
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                          without modifying the original"]
        #[inline(always)]
        pub const fn overflowing_mul(self, rhs: Self) -> (Self, bool) {
            let (a, b) = intrinsics::mul_with_overflow(self as $ActualT, rhs as $ActualT);
            (a as Self, b)
        }

        /// Calculates the divisor when `self` is divided by `rhs`.
        ///
        /// Returns a tuple of the divisor along with a boolean indicating
        /// whether an arithmetic overflow would occur. Note that for unsigned
        /// integers overflow never occurs, so the second value is always
        /// `false`.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is 0.
        ///
        /// # Examples
        ///
        /// Basic usage
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div(2), (2, false));")]
        /// ```
        #[inline(always)]
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[track_caller]
        pub const fn overflowing_div(self, rhs: Self) -> (Self, bool) {
            (self / rhs, false)
        }

        /// Calculates the quotient of Euclidean division `self.div_euclid(rhs)`.
        ///
        /// Returns a tuple of the divisor along with a boolean indicating
        /// whether an arithmetic overflow would occur. Note that for unsigned
        /// integers overflow never occurs, so the second value is always
        /// `false`.
        /// Since, for the positive integers, all common
        /// definitions of division are equal, this
        /// is exactly equal to `self.overflowing_div(rhs)`.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is 0.
        ///
        /// # Examples
        ///
        /// Basic usage
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_div_euclid(2), (2, false));")]
        /// ```
        #[inline(always)]
        #[stable(feature = "euclidean_division", since = "1.38.0")]
        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[track_caller]
        pub const fn overflowing_div_euclid(self, rhs: Self) -> (Self, bool) {
            (self / rhs, false)
        }

        /// Calculates the remainder when `self` is divided by `rhs`.
        ///
        /// Returns a tuple of the remainder after dividing along with a boolean
        /// indicating whether an arithmetic overflow would occur. Note that for
        /// unsigned integers overflow never occurs, so the second value is
        /// always `false`.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is 0.
        ///
        /// # Examples
        ///
        /// Basic usage
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem(2), (1, false));")]
        /// ```
        #[inline(always)]
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_overflowing_int_methods", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[track_caller]
        pub const fn overflowing_rem(self, rhs: Self) -> (Self, bool) {
            (self % rhs, false)
        }

        /// Calculates the remainder `self.rem_euclid(rhs)` as if by Euclidean division.
        ///
        /// Returns a tuple of the modulo after dividing along with a boolean
        /// indicating whether an arithmetic overflow would occur. Note that for
        /// unsigned integers overflow never occurs, so the second value is
        /// always `false`.
        /// Since, for the positive integers, all common
        /// definitions of division are equal, this operation
        /// is exactly equal to `self.overflowing_rem(rhs)`.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is 0.
        ///
        /// # Examples
        ///
        /// Basic usage
        ///
        /// ```
        #[doc = concat!("assert_eq!(5", stringify!($SelfT), ".overflowing_rem_euclid(2), (1, false));")]
        /// ```
        #[inline(always)]
        #[stable(feature = "euclidean_division", since = "1.38.0")]
        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[track_caller]
        pub const fn overflowing_rem_euclid(self, rhs: Self) -> (Self, bool) {
            (self % rhs, false)
        }

        /// Negates self in an overflowing fashion.
        ///
        /// Returns `!self + 1` using wrapping operations to return the value
        /// that represents the negation of this unsigned value. Note that for
        /// positive unsigned values overflow always occurs, but negating 0 does
        /// not overflow.
        ///
        /// # Examples
        ///
        /// Basic usage
        ///
        /// ```
        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".overflowing_neg(), (0, false));")]
        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".overflowing_neg(), (-2i32 as ", stringify!($SelfT), ", true));")]
        /// ```
        #[inline(always)]
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        pub const fn overflowing_neg(self) -> (Self, bool) {
            ((!self).wrapping_add(1), self != 0)
        }

        /// Shifts self left by `rhs` bits.
        ///
        /// Returns a tuple of the shifted version of self along with a boolean
        /// indicating whether the shift value was larger than or equal to the
        /// number of bits. If the shift value is too large, then value is
        /// masked (N-1) where N is the number of bits, and this value is then
        /// used to perform the shift.
        ///
        /// # Examples
        ///
        /// Basic usage
        ///
        /// ```
        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".overflowing_shl(4), (0x10, false));")]
        #[doc = concat!("assert_eq!(0x1", stringify!($SelfT), ".overflowing_shl(132), (0x10, true));")]
        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shl(", stringify!($BITS_MINUS_ONE), "), (0, false));")]
        /// ```
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        pub const fn overflowing_shl(self, rhs: u32) -> (Self, bool) {
            (self.wrapping_shl(rhs), rhs >= Self::BITS)
        }

        /// Shifts self right by `rhs` bits.
        ///
        /// Returns a tuple of the shifted version of self along with a boolean
        /// indicating whether the shift value was larger than or equal to the
        /// number of bits. If the shift value is too large, then value is
        /// masked (N-1) where N is the number of bits, and this value is then
        /// used to perform the shift.
        ///
        /// # Examples
        ///
        /// Basic usage
        ///
        /// ```
        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shr(4), (0x1, false));")]
        #[doc = concat!("assert_eq!(0x10", stringify!($SelfT), ".overflowing_shr(132), (0x1, true));")]
        /// ```
        #[stable(feature = "wrapping", since = "1.7.0")]
        #[rustc_const_stable(feature = "const_wrapping_math", since = "1.32.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        pub const fn overflowing_shr(self, rhs: u32) -> (Self, bool) {
            (self.wrapping_shr(rhs), rhs >= Self::BITS)
        }

        /// Raises self to the power of `exp`, using exponentiation by squaring.
        ///
        /// Returns a tuple of the exponentiation along with a bool indicating
        /// whether an overflow happened.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".overflowing_pow(5), (243, false));")]
        /// assert_eq!(3u8.overflowing_pow(6), (217, true));
        /// ```
        #[stable(feature = "no_panic_pow", since = "1.34.0")]
        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn overflowing_pow(self, mut exp: u32) -> (Self, bool) {
            if exp == 0{
                return (1,false);
            }
            let mut base = self;
            let mut acc: Self = 1;
            let mut overflown = false;
            // Scratch space for storing results of overflowing_mul.
            let mut r;

            loop {
                if (exp & 1) == 1 {
                    r = acc.overflowing_mul(base);
                    // since exp!=0, finally the exp must be 1.
                    if exp == 1 {
                        r.1 |= overflown;
                        return r;
                    }
                    acc = r.0;
                    overflown |= r.1;
                }
                exp /= 2;
                r = base.overflowing_mul(base);
                base = r.0;
                overflown |= r.1;
            }
        }

        /// Raises self to the power of `exp`, using exponentiation by squaring.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".pow(5), 32);")]
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[rustc_inherit_overflow_checks]
        #[rustc_allow_const_fn_unstable(is_val_statically_known)]
        pub const fn pow(self, mut exp: u32) -> Self {
            if exp == 0 {
                return 1;
            }
            let mut base = self;
            let mut acc = 1;

            if intrinsics::is_val_statically_known(exp) {
                while exp > 1 {
                    if (exp & 1) == 1 {
                        acc = acc * base;
                    }
                    exp /= 2;
                    base = base * base;
                }

                // since exp!=0, finally the exp must be 1.
                // Deal with the final bit of the exponent separately, since
                // squaring the base afterwards is not necessary and may cause a
                // needless overflow.
                acc * base
            } else {
                // This is faster than the above when the exponent is not known
                // at compile time. We can't use the same code for the constant
                // exponent case because LLVM is currently unable to unroll
                // this loop.
                loop {
                    if (exp & 1) == 1 {
                        acc = acc * base;
                        // since exp!=0, finally the exp must be 1.
                        if exp == 1 {
                            return acc;
                        }
                    }
                    exp /= 2;
                    base = base * base;
                }
            }
        }

        /// Returns the square root of the number, rounded down.
        ///
        /// # Examples
        ///
        /// Basic usage:
        /// ```
        #[doc = concat!("assert_eq!(10", stringify!($SelfT), ".isqrt(), 3);")]
        /// ```
        #[stable(feature = "isqrt", since = "CURRENT_RUSTC_VERSION")]
        #[rustc_const_stable(feature = "isqrt", since = "CURRENT_RUSTC_VERSION")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn isqrt(self) -> Self {
            let result = crate::num::int_sqrt::$ActualT(self as $ActualT) as $SelfT;

            // Inform the optimizer what the range of outputs is. If testing
            // `core` crashes with no panic message and a `num::int_sqrt::u*`
            // test failed, it's because your edits caused these assertions or
            // the assertions in `fn isqrt` of `nonzero.rs` to become false.
            //
            // SAFETY: Integer square root is a monotonically nondecreasing
            // function, which means that increasing the input will never
            // cause the output to decrease. Thus, since the input for unsigned
            // integers is bounded by `[0, <$ActualT>::MAX]`, sqrt(n) will be
            // bounded by `[sqrt(0), sqrt(<$ActualT>::MAX)]`.
            unsafe {
                const MAX_RESULT: $SelfT = crate::num::int_sqrt::$ActualT(<$ActualT>::MAX) as $SelfT;
                crate::hint::assert_unchecked(result <= MAX_RESULT);
            }

            result
        }

        /// Performs Euclidean division.
        ///
        /// Since, for the positive integers, all common
        /// definitions of division are equal, this
        /// is exactly equal to `self / rhs`.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is 0.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(7", stringify!($SelfT), ".div_euclid(4), 1); // or any other integer type")]
        /// ```
        #[stable(feature = "euclidean_division", since = "1.38.0")]
        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        pub const fn div_euclid(self, rhs: Self) -> Self {
            self / rhs
        }


        /// Calculates the least remainder of `self (mod rhs)`.
        ///
        /// Since, for the positive integers, all common
        /// definitions of division are equal, this
        /// is exactly equal to `self % rhs`.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is 0.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(7", stringify!($SelfT), ".rem_euclid(4), 3); // or any other integer type")]
        /// ```
        #[doc(alias = "modulo", alias = "mod")]
        #[stable(feature = "euclidean_division", since = "1.38.0")]
        #[rustc_const_stable(feature = "const_euclidean_int_methods", since = "1.52.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        pub const fn rem_euclid(self, rhs: Self) -> Self {
            self % rhs
        }

        /// Calculates the quotient of `self` and `rhs`, rounding the result towards negative infinity.
        ///
        /// This is the same as performing `self / rhs` for all unsigned integers.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        /// #![feature(int_roundings)]
        #[doc = concat!("assert_eq!(7_", stringify!($SelfT), ".div_floor(4), 1);")]
        /// ```
        #[unstable(feature = "int_roundings", issue = "88581")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline(always)]
        #[track_caller]
        pub const fn div_floor(self, rhs: Self) -> Self {
            self / rhs
        }

        /// Calculates the quotient of `self` and `rhs`, rounding the result towards positive infinity.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(7_", stringify!($SelfT), ".div_ceil(4), 2);")]
        /// ```
        #[stable(feature = "int_roundings1", since = "1.73.0")]
        #[rustc_const_stable(feature = "int_roundings1", since = "1.73.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[track_caller]
        pub const fn div_ceil(self, rhs: Self) -> Self {
            let d = self / rhs;
            let r = self % rhs;
            if r > 0 {
                d + 1
            } else {
                d
            }
        }

        /// Calculates the smallest value greater than or equal to `self` that
        /// is a multiple of `rhs`.
        ///
        /// # Panics
        ///
        /// This function will panic if `rhs` is zero.
        ///
        /// ## Overflow behavior
        ///
        /// On overflow, this function will panic if overflow checks are enabled (default in debug
        /// mode) and wrap if overflow checks are disabled (default in release mode).
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".next_multiple_of(8), 16);")]
        #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".next_multiple_of(8), 24);")]
        /// ```
        #[stable(feature = "int_roundings1", since = "1.73.0")]
        #[rustc_const_stable(feature = "int_roundings1", since = "1.73.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[rustc_inherit_overflow_checks]
        pub const fn next_multiple_of(self, rhs: Self) -> Self {
            match self % rhs {
                0 => self,
                r => self + (rhs - r)
            }
        }

        /// Calculates the smallest value greater than or equal to `self` that
        /// is a multiple of `rhs`. Returns `None` if `rhs` is zero or the
        /// operation would result in overflow.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(16_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(16));")]
        #[doc = concat!("assert_eq!(23_", stringify!($SelfT), ".checked_next_multiple_of(8), Some(24));")]
        #[doc = concat!("assert_eq!(1_", stringify!($SelfT), ".checked_next_multiple_of(0), None);")]
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_next_multiple_of(2), None);")]
        /// ```
        #[stable(feature = "int_roundings1", since = "1.73.0")]
        #[rustc_const_stable(feature = "int_roundings1", since = "1.73.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn checked_next_multiple_of(self, rhs: Self) -> Option<Self> {
            match try_opt!(self.checked_rem(rhs)) {
                0 => Some(self),
                // rhs - r cannot overflow because r is smaller than rhs
                r => self.checked_add(rhs - r)
            }
        }

        /// Returns `true` if `self` is an integer multiple of `rhs`, and false otherwise.
        ///
        /// This function is equivalent to `self % rhs == 0`, except that it will not panic
        /// for `rhs == 0`. Instead, `0.is_multiple_of(0) == true`, and for any non-zero `n`,
        /// `n.is_multiple_of(0) == false`.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        /// #![feature(unsigned_is_multiple_of)]
        #[doc = concat!("assert!(6_", stringify!($SelfT), ".is_multiple_of(2));")]
        #[doc = concat!("assert!(!5_", stringify!($SelfT), ".is_multiple_of(2));")]
        ///
        #[doc = concat!("assert!(0_", stringify!($SelfT), ".is_multiple_of(0));")]
        #[doc = concat!("assert!(!6_", stringify!($SelfT), ".is_multiple_of(0));")]
        /// ```
        #[unstable(feature = "unsigned_is_multiple_of", issue = "128101")]
        #[must_use]
        #[inline]
        #[rustc_inherit_overflow_checks]
        pub const fn is_multiple_of(self, rhs: Self) -> bool {
            match rhs {
                0 => self == 0,
                _ => self % rhs == 0,
            }
        }

        /// Returns `true` if and only if `self == 2^k` for some `k`.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert!(16", stringify!($SelfT), ".is_power_of_two());")]
        #[doc = concat!("assert!(!10", stringify!($SelfT), ".is_power_of_two());")]
        /// ```
        #[must_use]
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_is_power_of_two", since = "1.32.0")]
        #[inline(always)]
        pub const fn is_power_of_two(self) -> bool {
            self.count_ones() == 1
        }

        // Returns one less than next power of two.
        // (For 8u8 next power of two is 8u8 and for 6u8 it is 8u8)
        //
        // 8u8.one_less_than_next_power_of_two() == 7
        // 6u8.one_less_than_next_power_of_two() == 7
        //
        // This method cannot overflow, as in the `next_power_of_two`
        // overflow cases it instead ends up returning the maximum value
        // of the type, and can return 0 for 0.
        #[inline]
        #[cfg_attr(bootstrap, rustc_const_stable(feature = "const_int_pow", since = "1.50.0"))]
        const fn one_less_than_next_power_of_two(self) -> Self {
            if self <= 1 { return 0; }

            let p = self - 1;
            // SAFETY: Because `p > 0`, it cannot consist entirely of leading zeros.
            // That means the shift is always in-bounds, and some processors
            // (such as intel pre-haswell) have more efficient ctlz
            // intrinsics when the argument is non-zero.
            let z = unsafe { intrinsics::ctlz_nonzero(p) };
            <$SelfT>::MAX >> z
        }

        /// Returns the smallest power of two greater than or equal to `self`.
        ///
        /// When return value overflows (i.e., `self > (1 << (N-1))` for type
        /// `uN`), it panics in debug mode and the return value is wrapped to 0 in
        /// release mode (the only situation in which this method can return 0).
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".next_power_of_two(), 2);")]
        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".next_power_of_two(), 4);")]
        #[doc = concat!("assert_eq!(0", stringify!($SelfT), ".next_power_of_two(), 1);")]
        /// ```
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        #[rustc_inherit_overflow_checks]
        pub const fn next_power_of_two(self) -> Self {
            self.one_less_than_next_power_of_two() + 1
        }

        /// Returns the smallest power of two greater than or equal to `self`. If
        /// the next power of two is greater than the type's maximum value,
        /// `None` is returned, otherwise the power of two is wrapped in `Some`.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".checked_next_power_of_two(), Some(2));")]
        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".checked_next_power_of_two(), Some(4));")]
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.checked_next_power_of_two(), None);")]
        /// ```
        #[inline]
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_const_stable(feature = "const_int_pow", since = "1.50.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        pub const fn checked_next_power_of_two(self) -> Option<Self> {
            self.one_less_than_next_power_of_two().checked_add(1)
        }

        /// Returns the smallest power of two greater than or equal to `n`. If
        /// the next power of two is greater than the type's maximum value,
        /// the return value is wrapped to `0`.
        ///
        /// # Examples
        ///
        /// Basic usage:
        ///
        /// ```
        /// #![feature(wrapping_next_power_of_two)]
        ///
        #[doc = concat!("assert_eq!(2", stringify!($SelfT), ".wrapping_next_power_of_two(), 2);")]
        #[doc = concat!("assert_eq!(3", stringify!($SelfT), ".wrapping_next_power_of_two(), 4);")]
        #[doc = concat!("assert_eq!(", stringify!($SelfT), "::MAX.wrapping_next_power_of_two(), 0);")]
        /// ```
        #[inline]
        #[unstable(feature = "wrapping_next_power_of_two", issue = "32463",
                   reason = "needs decision on wrapping behavior")]
        #[rustc_const_unstable(feature = "wrapping_next_power_of_two", issue = "32463")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        pub const fn wrapping_next_power_of_two(self) -> Self {
            self.one_less_than_next_power_of_two().wrapping_add(1)
        }

        /// Returns the memory representation of this integer as a byte array in
        /// big-endian (network) byte order.
        ///
        #[doc = $to_xe_bytes_doc]
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_be_bytes();")]
        #[doc = concat!("assert_eq!(bytes, ", $be_bytes, ");")]
        /// ```
        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn to_be_bytes(self) -> [u8; mem::size_of::<Self>()] {
            self.to_be().to_ne_bytes()
        }

        /// Returns the memory representation of this integer as a byte array in
        /// little-endian byte order.
        ///
        #[doc = $to_xe_bytes_doc]
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_le_bytes();")]
        #[doc = concat!("assert_eq!(bytes, ", $le_bytes, ");")]
        /// ```
        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        #[inline]
        pub const fn to_le_bytes(self) -> [u8; mem::size_of::<Self>()] {
            self.to_le().to_ne_bytes()
        }

        /// Returns the memory representation of this integer as a byte array in
        /// native byte order.
        ///
        /// As the target platform's native endianness is used, portable code
        /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate,
        /// instead.
        ///
        #[doc = $to_xe_bytes_doc]
        ///
        /// [`to_be_bytes`]: Self::to_be_bytes
        /// [`to_le_bytes`]: Self::to_le_bytes
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("let bytes = ", $swap_op, stringify!($SelfT), ".to_ne_bytes();")]
        /// assert_eq!(
        ///     bytes,
        ///     if cfg!(target_endian = "big") {
        #[doc = concat!("        ", $be_bytes)]
        ///     } else {
        #[doc = concat!("        ", $le_bytes)]
        ///     }
        /// );
        /// ```
        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
        #[must_use = "this returns the result of the operation, \
                      without modifying the original"]
        // SAFETY: const sound because integers are plain old datatypes so we can always
        // transmute them to arrays of bytes
        #[inline]
        pub const fn to_ne_bytes(self) -> [u8; mem::size_of::<Self>()] {
            // SAFETY: integers are plain old datatypes so we can always transmute them to
            // arrays of bytes
            unsafe { mem::transmute(self) }
        }

        /// Creates a native endian integer value from its representation
        /// as a byte array in big endian.
        ///
        #[doc = $from_xe_bytes_doc]
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("let value = ", stringify!($SelfT), "::from_be_bytes(", $be_bytes, ");")]
        #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
        /// ```
        ///
        /// When starting from a slice rather than an array, fallible conversion APIs can be used:
        ///
        /// ```
        #[doc = concat!("fn read_be_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
        #[doc = concat!("    let (int_bytes, rest) = input.split_at(std::mem::size_of::<", stringify!($SelfT), ">());")]
        ///     *input = rest;
        #[doc = concat!("    ", stringify!($SelfT), "::from_be_bytes(int_bytes.try_into().unwrap())")]
        /// }
        /// ```
        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
        #[must_use]
        #[inline]
        pub const fn from_be_bytes(bytes: [u8; mem::size_of::<Self>()]) -> Self {
            Self::from_be(Self::from_ne_bytes(bytes))
        }

        /// Creates a native endian integer value from its representation
        /// as a byte array in little endian.
        ///
        #[doc = $from_xe_bytes_doc]
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("let value = ", stringify!($SelfT), "::from_le_bytes(", $le_bytes, ");")]
        #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
        /// ```
        ///
        /// When starting from a slice rather than an array, fallible conversion APIs can be used:
        ///
        /// ```
        #[doc = concat!("fn read_le_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
        #[doc = concat!("    let (int_bytes, rest) = input.split_at(std::mem::size_of::<", stringify!($SelfT), ">());")]
        ///     *input = rest;
        #[doc = concat!("    ", stringify!($SelfT), "::from_le_bytes(int_bytes.try_into().unwrap())")]
        /// }
        /// ```
        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
        #[must_use]
        #[inline]
        pub const fn from_le_bytes(bytes: [u8; mem::size_of::<Self>()]) -> Self {
            Self::from_le(Self::from_ne_bytes(bytes))
        }

        /// Creates a native endian integer value from its memory representation
        /// as a byte array in native endianness.
        ///
        /// As the target platform's native endianness is used, portable code
        /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
        /// appropriate instead.
        ///
        /// [`from_be_bytes`]: Self::from_be_bytes
        /// [`from_le_bytes`]: Self::from_le_bytes
        ///
        #[doc = $from_xe_bytes_doc]
        ///
        /// # Examples
        ///
        /// ```
        #[doc = concat!("let value = ", stringify!($SelfT), "::from_ne_bytes(if cfg!(target_endian = \"big\") {")]
        #[doc = concat!("    ", $be_bytes, "")]
        /// } else {
        #[doc = concat!("    ", $le_bytes, "")]
        /// });
        #[doc = concat!("assert_eq!(value, ", $swap_op, ");")]
        /// ```
        ///
        /// When starting from a slice rather than an array, fallible conversion APIs can be used:
        ///
        /// ```
        #[doc = concat!("fn read_ne_", stringify!($SelfT), "(input: &mut &[u8]) -> ", stringify!($SelfT), " {")]
        #[doc = concat!("    let (int_bytes, rest) = input.split_at(std::mem::size_of::<", stringify!($SelfT), ">());")]
        ///     *input = rest;
        #[doc = concat!("    ", stringify!($SelfT), "::from_ne_bytes(int_bytes.try_into().unwrap())")]
        /// }
        /// ```
        #[stable(feature = "int_to_from_bytes", since = "1.32.0")]
        #[rustc_const_stable(feature = "const_int_conversion", since = "1.44.0")]
        #[must_use]
        // SAFETY: const sound because integers are plain old datatypes so we can always
        // transmute to them
        #[inline]
        pub const fn from_ne_bytes(bytes: [u8; mem::size_of::<Self>()]) -> Self {
            // SAFETY: integers are plain old datatypes so we can always transmute to them
            unsafe { mem::transmute(bytes) }
        }

        /// New code should prefer to use
        #[doc = concat!("[`", stringify!($SelfT), "::MIN", "`] instead.")]
        ///
        /// Returns the smallest value that can be represented by this integer type.
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_promotable]
        #[inline(always)]
        #[rustc_const_stable(feature = "const_max_value", since = "1.32.0")]
        #[deprecated(since = "TBD", note = "replaced by the `MIN` associated constant on this type")]
        #[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_min_value")]
        pub const fn min_value() -> Self { Self::MIN }

        /// New code should prefer to use
        #[doc = concat!("[`", stringify!($SelfT), "::MAX", "`] instead.")]
        ///
        /// Returns the largest value that can be represented by this integer type.
        #[stable(feature = "rust1", since = "1.0.0")]
        #[rustc_promotable]
        #[inline(always)]
        #[rustc_const_stable(feature = "const_max_value", since = "1.32.0")]
        #[deprecated(since = "TBD", note = "replaced by the `MAX` associated constant on this type")]
        #[rustc_diagnostic_item = concat!(stringify!($SelfT), "_legacy_fn_max_value")]
        pub const fn max_value() -> Self { Self::MAX }
    }
}