core/num/
f128.rs

1//! Constants for the `f128` quadruple-precision floating point type.
2//!
3//! *[See also the `f128` primitive type][f128].*
4//!
5//! Mathematically significant numbers are provided in the `consts` sub-module.
6//!
7//! For the constants defined directly in this module
8//! (as distinct from those defined in the `consts` sub-module),
9//! new code should instead use the associated constants
10//! defined directly on the `f128` type.
11
12#![unstable(feature = "f128", issue = "116909")]
13
14use crate::convert::FloatToInt;
15use crate::num::FpCategory;
16use crate::panic::const_assert;
17use crate::{intrinsics, mem};
18
19/// Basic mathematical constants.
20#[unstable(feature = "f128", issue = "116909")]
21pub mod consts {
22    // FIXME: replace with mathematical constants from cmath.
23
24    /// Archimedes' constant (π)
25    #[unstable(feature = "f128", issue = "116909")]
26    pub const PI: f128 = 3.14159265358979323846264338327950288419716939937510582097494_f128;
27
28    /// The full circle constant (τ)
29    ///
30    /// Equal to 2π.
31    #[unstable(feature = "f128", issue = "116909")]
32    pub const TAU: f128 = 6.28318530717958647692528676655900576839433879875021164194989_f128;
33
34    /// The golden ratio (φ)
35    #[unstable(feature = "f128", issue = "116909")]
36    // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
37    pub const PHI: f128 = 1.61803398874989484820458683436563811772030917980576286213545_f128;
38
39    /// The Euler-Mascheroni constant (γ)
40    #[unstable(feature = "f128", issue = "116909")]
41    // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
42    pub const EGAMMA: f128 = 0.577215664901532860606512090082402431042159335939923598805767_f128;
43
44    /// π/2
45    #[unstable(feature = "f128", issue = "116909")]
46    pub const FRAC_PI_2: f128 = 1.57079632679489661923132169163975144209858469968755291048747_f128;
47
48    /// π/3
49    #[unstable(feature = "f128", issue = "116909")]
50    pub const FRAC_PI_3: f128 = 1.04719755119659774615421446109316762806572313312503527365831_f128;
51
52    /// π/4
53    #[unstable(feature = "f128", issue = "116909")]
54    pub const FRAC_PI_4: f128 = 0.785398163397448309615660845819875721049292349843776455243736_f128;
55
56    /// π/6
57    #[unstable(feature = "f128", issue = "116909")]
58    pub const FRAC_PI_6: f128 = 0.523598775598298873077107230546583814032861566562517636829157_f128;
59
60    /// π/8
61    #[unstable(feature = "f128", issue = "116909")]
62    pub const FRAC_PI_8: f128 = 0.392699081698724154807830422909937860524646174921888227621868_f128;
63
64    /// 1/π
65    #[unstable(feature = "f128", issue = "116909")]
66    pub const FRAC_1_PI: f128 = 0.318309886183790671537767526745028724068919291480912897495335_f128;
67
68    /// 1/sqrt(π)
69    #[unstable(feature = "f128", issue = "116909")]
70    // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
71    pub const FRAC_1_SQRT_PI: f128 =
72        0.564189583547756286948079451560772585844050629328998856844086_f128;
73
74    /// 1/sqrt(2π)
75    #[doc(alias = "FRAC_1_SQRT_TAU")]
76    #[unstable(feature = "f128", issue = "116909")]
77    // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
78    pub const FRAC_1_SQRT_2PI: f128 =
79        0.398942280401432677939946059934381868475858631164934657665926_f128;
80
81    /// 2/π
82    #[unstable(feature = "f128", issue = "116909")]
83    pub const FRAC_2_PI: f128 = 0.636619772367581343075535053490057448137838582961825794990669_f128;
84
85    /// 2/sqrt(π)
86    #[unstable(feature = "f128", issue = "116909")]
87    pub const FRAC_2_SQRT_PI: f128 =
88        1.12837916709551257389615890312154517168810125865799771368817_f128;
89
90    /// sqrt(2)
91    #[unstable(feature = "f128", issue = "116909")]
92    pub const SQRT_2: f128 = 1.41421356237309504880168872420969807856967187537694807317668_f128;
93
94    /// 1/sqrt(2)
95    #[unstable(feature = "f128", issue = "116909")]
96    pub const FRAC_1_SQRT_2: f128 =
97        0.707106781186547524400844362104849039284835937688474036588340_f128;
98
99    /// sqrt(3)
100    #[unstable(feature = "f128", issue = "116909")]
101    // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
102    pub const SQRT_3: f128 = 1.73205080756887729352744634150587236694280525381038062805581_f128;
103
104    /// 1/sqrt(3)
105    #[unstable(feature = "f128", issue = "116909")]
106    // Also, #[unstable(feature = "more_float_constants", issue = "103883")]
107    pub const FRAC_1_SQRT_3: f128 =
108        0.577350269189625764509148780501957455647601751270126876018602_f128;
109
110    /// Euler's number (e)
111    #[unstable(feature = "f128", issue = "116909")]
112    pub const E: f128 = 2.71828182845904523536028747135266249775724709369995957496697_f128;
113
114    /// log<sub>2</sub>(10)
115    #[unstable(feature = "f128", issue = "116909")]
116    pub const LOG2_10: f128 = 3.32192809488736234787031942948939017586483139302458061205476_f128;
117
118    /// log<sub>2</sub>(e)
119    #[unstable(feature = "f128", issue = "116909")]
120    pub const LOG2_E: f128 = 1.44269504088896340735992468100189213742664595415298593413545_f128;
121
122    /// log<sub>10</sub>(2)
123    #[unstable(feature = "f128", issue = "116909")]
124    pub const LOG10_2: f128 = 0.301029995663981195213738894724493026768189881462108541310427_f128;
125
126    /// log<sub>10</sub>(e)
127    #[unstable(feature = "f128", issue = "116909")]
128    pub const LOG10_E: f128 = 0.434294481903251827651128918916605082294397005803666566114454_f128;
129
130    /// ln(2)
131    #[unstable(feature = "f128", issue = "116909")]
132    pub const LN_2: f128 = 0.693147180559945309417232121458176568075500134360255254120680_f128;
133
134    /// ln(10)
135    #[unstable(feature = "f128", issue = "116909")]
136    pub const LN_10: f128 = 2.30258509299404568401799145468436420760110148862877297603333_f128;
137}
138
139impl f128 {
140    // FIXME(f16_f128): almost all methods in this `impl` are missing examples and a const
141    // implementation. Add these once we can run code on all platforms and have f16/f128 in CTFE.
142
143    /// The radix or base of the internal representation of `f128`.
144    #[unstable(feature = "f128", issue = "116909")]
145    pub const RADIX: u32 = 2;
146
147    /// Number of significant digits in base 2.
148    ///
149    /// Note that the size of the mantissa in the bitwise representation is one
150    /// smaller than this since the leading 1 is not stored explicitly.
151    #[unstable(feature = "f128", issue = "116909")]
152    pub const MANTISSA_DIGITS: u32 = 113;
153
154    /// Approximate number of significant digits in base 10.
155    ///
156    /// This is the maximum <i>x</i> such that any decimal number with <i>x</i>
157    /// significant digits can be converted to `f128` and back without loss.
158    ///
159    /// Equal to floor(log<sub>10</sub>&nbsp;2<sup>[`MANTISSA_DIGITS`]&nbsp;&minus;&nbsp;1</sup>).
160    ///
161    /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
162    #[unstable(feature = "f128", issue = "116909")]
163    pub const DIGITS: u32 = 33;
164
165    /// [Machine epsilon] value for `f128`.
166    ///
167    /// This is the difference between `1.0` and the next larger representable number.
168    ///
169    /// Equal to 2<sup>1&nbsp;&minus;&nbsp;[`MANTISSA_DIGITS`]</sup>.
170    ///
171    /// [Machine epsilon]: https://en.wikipedia.org/wiki/Machine_epsilon
172    /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
173    #[unstable(feature = "f128", issue = "116909")]
174    pub const EPSILON: f128 = 1.92592994438723585305597794258492732e-34_f128;
175
176    /// Smallest finite `f128` value.
177    ///
178    /// Equal to &minus;[`MAX`].
179    ///
180    /// [`MAX`]: f128::MAX
181    #[unstable(feature = "f128", issue = "116909")]
182    pub const MIN: f128 = -1.18973149535723176508575932662800702e+4932_f128;
183    /// Smallest positive normal `f128` value.
184    ///
185    /// Equal to 2<sup>[`MIN_EXP`]&nbsp;&minus;&nbsp;1</sup>.
186    ///
187    /// [`MIN_EXP`]: f128::MIN_EXP
188    #[unstable(feature = "f128", issue = "116909")]
189    pub const MIN_POSITIVE: f128 = 3.36210314311209350626267781732175260e-4932_f128;
190    /// Largest finite `f128` value.
191    ///
192    /// Equal to
193    /// (1&nbsp;&minus;&nbsp;2<sup>&minus;[`MANTISSA_DIGITS`]</sup>)&nbsp;2<sup>[`MAX_EXP`]</sup>.
194    ///
195    /// [`MANTISSA_DIGITS`]: f128::MANTISSA_DIGITS
196    /// [`MAX_EXP`]: f128::MAX_EXP
197    #[unstable(feature = "f128", issue = "116909")]
198    pub const MAX: f128 = 1.18973149535723176508575932662800702e+4932_f128;
199
200    /// One greater than the minimum possible *normal* power of 2 exponent
201    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
202    ///
203    /// This corresponds to the exact minimum possible *normal* power of 2 exponent
204    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
205    /// In other words, all normal numbers representable by this type are
206    /// greater than or equal to 0.5&nbsp;×&nbsp;2<sup><i>MIN_EXP</i></sup>.
207    #[unstable(feature = "f128", issue = "116909")]
208    pub const MIN_EXP: i32 = -16_381;
209    /// One greater than the maximum possible power of 2 exponent
210    /// for a significand bounded by 1 ≤ x < 2 (i.e. the IEEE definition).
211    ///
212    /// This corresponds to the exact maximum possible power of 2 exponent
213    /// for a significand bounded by 0.5 ≤ x < 1 (i.e. the C definition).
214    /// In other words, all numbers representable by this type are
215    /// strictly less than 2<sup><i>MAX_EXP</i></sup>.
216    #[unstable(feature = "f128", issue = "116909")]
217    pub const MAX_EXP: i32 = 16_384;
218
219    /// Minimum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
220    ///
221    /// Equal to ceil(log<sub>10</sub>&nbsp;[`MIN_POSITIVE`]).
222    ///
223    /// [`MIN_POSITIVE`]: f128::MIN_POSITIVE
224    #[unstable(feature = "f128", issue = "116909")]
225    pub const MIN_10_EXP: i32 = -4_931;
226    /// Maximum <i>x</i> for which 10<sup><i>x</i></sup> is normal.
227    ///
228    /// Equal to floor(log<sub>10</sub>&nbsp;[`MAX`]).
229    ///
230    /// [`MAX`]: f128::MAX
231    #[unstable(feature = "f128", issue = "116909")]
232    pub const MAX_10_EXP: i32 = 4_932;
233
234    /// Not a Number (NaN).
235    ///
236    /// Note that IEEE 754 doesn't define just a single NaN value; a plethora of bit patterns are
237    /// considered to be NaN. Furthermore, the standard makes a difference between a "signaling" and
238    /// a "quiet" NaN, and allows inspecting its "payload" (the unspecified bits in the bit pattern)
239    /// and its sign. See the [specification of NaN bit patterns](f32#nan-bit-patterns) for more
240    /// info.
241    ///
242    /// This constant is guaranteed to be a quiet NaN (on targets that follow the Rust assumptions
243    /// that the quiet/signaling bit being set to 1 indicates a quiet NaN). Beyond that, nothing is
244    /// guaranteed about the specific bit pattern chosen here: both payload and sign are arbitrary.
245    /// The concrete bit pattern may change across Rust versions and target platforms.
246    #[allow(clippy::eq_op)]
247    #[rustc_diagnostic_item = "f128_nan"]
248    #[unstable(feature = "f128", issue = "116909")]
249    pub const NAN: f128 = 0.0_f128 / 0.0_f128;
250
251    /// Infinity (∞).
252    #[unstable(feature = "f128", issue = "116909")]
253    pub const INFINITY: f128 = 1.0_f128 / 0.0_f128;
254
255    /// Negative infinity (−∞).
256    #[unstable(feature = "f128", issue = "116909")]
257    pub const NEG_INFINITY: f128 = -1.0_f128 / 0.0_f128;
258
259    /// Sign bit
260    pub(crate) const SIGN_MASK: u128 = 0x8000_0000_0000_0000_0000_0000_0000_0000;
261
262    /// Exponent mask
263    pub(crate) const EXP_MASK: u128 = 0x7fff_0000_0000_0000_0000_0000_0000_0000;
264
265    /// Mantissa mask
266    pub(crate) const MAN_MASK: u128 = 0x0000_ffff_ffff_ffff_ffff_ffff_ffff_ffff;
267
268    /// Minimum representable positive value (min subnormal)
269    const TINY_BITS: u128 = 0x1;
270
271    /// Minimum representable negative value (min negative subnormal)
272    const NEG_TINY_BITS: u128 = Self::TINY_BITS | Self::SIGN_MASK;
273
274    /// Returns `true` if this value is NaN.
275    ///
276    /// ```
277    /// #![feature(f128)]
278    /// # // FIXME(f16_f128): remove when `unordtf2` is available
279    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
280    ///
281    /// let nan = f128::NAN;
282    /// let f = 7.0_f128;
283    ///
284    /// assert!(nan.is_nan());
285    /// assert!(!f.is_nan());
286    /// # }
287    /// ```
288    #[inline]
289    #[must_use]
290    #[unstable(feature = "f128", issue = "116909")]
291    #[allow(clippy::eq_op)] // > if you intended to check if the operand is NaN, use `.is_nan()` instead :)
292    pub const fn is_nan(self) -> bool {
293        self != self
294    }
295
296    /// Returns `true` if this value is positive infinity or negative infinity, and
297    /// `false` otherwise.
298    ///
299    /// ```
300    /// #![feature(f128)]
301    /// # // FIXME(f16_f128): remove when `eqtf2` is available
302    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
303    ///
304    /// let f = 7.0f128;
305    /// let inf = f128::INFINITY;
306    /// let neg_inf = f128::NEG_INFINITY;
307    /// let nan = f128::NAN;
308    ///
309    /// assert!(!f.is_infinite());
310    /// assert!(!nan.is_infinite());
311    ///
312    /// assert!(inf.is_infinite());
313    /// assert!(neg_inf.is_infinite());
314    /// # }
315    /// ```
316    #[inline]
317    #[must_use]
318    #[unstable(feature = "f128", issue = "116909")]
319    pub const fn is_infinite(self) -> bool {
320        (self == f128::INFINITY) | (self == f128::NEG_INFINITY)
321    }
322
323    /// Returns `true` if this number is neither infinite nor NaN.
324    ///
325    /// ```
326    /// #![feature(f128)]
327    /// # // FIXME(f16_f128): remove when `lttf2` is available
328    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
329    ///
330    /// let f = 7.0f128;
331    /// let inf: f128 = f128::INFINITY;
332    /// let neg_inf: f128 = f128::NEG_INFINITY;
333    /// let nan: f128 = f128::NAN;
334    ///
335    /// assert!(f.is_finite());
336    ///
337    /// assert!(!nan.is_finite());
338    /// assert!(!inf.is_finite());
339    /// assert!(!neg_inf.is_finite());
340    /// # }
341    /// ```
342    #[inline]
343    #[must_use]
344    #[unstable(feature = "f128", issue = "116909")]
345    #[rustc_const_unstable(feature = "f128", issue = "116909")]
346    pub const fn is_finite(self) -> bool {
347        // There's no need to handle NaN separately: if self is NaN,
348        // the comparison is not true, exactly as desired.
349        self.abs() < Self::INFINITY
350    }
351
352    /// Returns `true` if the number is [subnormal].
353    ///
354    /// ```
355    /// #![feature(f128)]
356    /// # // FIXME(f16_f128): remove when `eqtf2` is available
357    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
358    ///
359    /// let min = f128::MIN_POSITIVE; // 3.362103143e-4932f128
360    /// let max = f128::MAX;
361    /// let lower_than_min = 1.0e-4960_f128;
362    /// let zero = 0.0_f128;
363    ///
364    /// assert!(!min.is_subnormal());
365    /// assert!(!max.is_subnormal());
366    ///
367    /// assert!(!zero.is_subnormal());
368    /// assert!(!f128::NAN.is_subnormal());
369    /// assert!(!f128::INFINITY.is_subnormal());
370    /// // Values between `0` and `min` are Subnormal.
371    /// assert!(lower_than_min.is_subnormal());
372    /// # }
373    /// ```
374    ///
375    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
376    #[inline]
377    #[must_use]
378    #[unstable(feature = "f128", issue = "116909")]
379    pub const fn is_subnormal(self) -> bool {
380        matches!(self.classify(), FpCategory::Subnormal)
381    }
382
383    /// Returns `true` if the number is neither zero, infinite, [subnormal], or NaN.
384    ///
385    /// ```
386    /// #![feature(f128)]
387    /// # // FIXME(f16_f128): remove when `eqtf2` is available
388    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
389    ///
390    /// let min = f128::MIN_POSITIVE; // 3.362103143e-4932f128
391    /// let max = f128::MAX;
392    /// let lower_than_min = 1.0e-4960_f128;
393    /// let zero = 0.0_f128;
394    ///
395    /// assert!(min.is_normal());
396    /// assert!(max.is_normal());
397    ///
398    /// assert!(!zero.is_normal());
399    /// assert!(!f128::NAN.is_normal());
400    /// assert!(!f128::INFINITY.is_normal());
401    /// // Values between `0` and `min` are Subnormal.
402    /// assert!(!lower_than_min.is_normal());
403    /// # }
404    /// ```
405    ///
406    /// [subnormal]: https://en.wikipedia.org/wiki/Denormal_number
407    #[inline]
408    #[must_use]
409    #[unstable(feature = "f128", issue = "116909")]
410    pub const fn is_normal(self) -> bool {
411        matches!(self.classify(), FpCategory::Normal)
412    }
413
414    /// Returns the floating point category of the number. If only one property
415    /// is going to be tested, it is generally faster to use the specific
416    /// predicate instead.
417    ///
418    /// ```
419    /// #![feature(f128)]
420    /// # // FIXME(f16_f128): remove when `eqtf2` is available
421    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
422    ///
423    /// use std::num::FpCategory;
424    ///
425    /// let num = 12.4_f128;
426    /// let inf = f128::INFINITY;
427    ///
428    /// assert_eq!(num.classify(), FpCategory::Normal);
429    /// assert_eq!(inf.classify(), FpCategory::Infinite);
430    /// # }
431    /// ```
432    #[inline]
433    #[unstable(feature = "f128", issue = "116909")]
434    pub const fn classify(self) -> FpCategory {
435        let bits = self.to_bits();
436        match (bits & Self::MAN_MASK, bits & Self::EXP_MASK) {
437            (0, Self::EXP_MASK) => FpCategory::Infinite,
438            (_, Self::EXP_MASK) => FpCategory::Nan,
439            (0, 0) => FpCategory::Zero,
440            (_, 0) => FpCategory::Subnormal,
441            _ => FpCategory::Normal,
442        }
443    }
444
445    /// Returns `true` if `self` has a positive sign, including `+0.0`, NaNs with
446    /// positive sign bit and positive infinity.
447    ///
448    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
449    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
450    /// conserved over arithmetic operations, the result of `is_sign_positive` on
451    /// a NaN might produce an unexpected or non-portable result. See the [specification
452    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == 1.0`
453    /// if you need fully portable behavior (will return `false` for all NaNs).
454    ///
455    /// ```
456    /// #![feature(f128)]
457    ///
458    /// let f = 7.0_f128;
459    /// let g = -7.0_f128;
460    ///
461    /// assert!(f.is_sign_positive());
462    /// assert!(!g.is_sign_positive());
463    /// ```
464    #[inline]
465    #[must_use]
466    #[unstable(feature = "f128", issue = "116909")]
467    pub const fn is_sign_positive(self) -> bool {
468        !self.is_sign_negative()
469    }
470
471    /// Returns `true` if `self` has a negative sign, including `-0.0`, NaNs with
472    /// negative sign bit and negative infinity.
473    ///
474    /// Note that IEEE 754 doesn't assign any meaning to the sign bit in case of
475    /// a NaN, and as Rust doesn't guarantee that the bit pattern of NaNs are
476    /// conserved over arithmetic operations, the result of `is_sign_negative` on
477    /// a NaN might produce an unexpected or non-portable result. See the [specification
478    /// of NaN bit patterns](f32#nan-bit-patterns) for more info. Use `self.signum() == -1.0`
479    /// if you need fully portable behavior (will return `false` for all NaNs).
480    ///
481    /// ```
482    /// #![feature(f128)]
483    ///
484    /// let f = 7.0_f128;
485    /// let g = -7.0_f128;
486    ///
487    /// assert!(!f.is_sign_negative());
488    /// assert!(g.is_sign_negative());
489    /// ```
490    #[inline]
491    #[must_use]
492    #[unstable(feature = "f128", issue = "116909")]
493    pub const fn is_sign_negative(self) -> bool {
494        // IEEE754 says: isSignMinus(x) is true if and only if x has negative sign. isSignMinus
495        // applies to zeros and NaNs as well.
496        // SAFETY: This is just transmuting to get the sign bit, it's fine.
497        (self.to_bits() & (1 << 127)) != 0
498    }
499
500    /// Returns the least number greater than `self`.
501    ///
502    /// Let `TINY` be the smallest representable positive `f128`. Then,
503    ///  - if `self.is_nan()`, this returns `self`;
504    ///  - if `self` is [`NEG_INFINITY`], this returns [`MIN`];
505    ///  - if `self` is `-TINY`, this returns -0.0;
506    ///  - if `self` is -0.0 or +0.0, this returns `TINY`;
507    ///  - if `self` is [`MAX`] or [`INFINITY`], this returns [`INFINITY`];
508    ///  - otherwise the unique least value greater than `self` is returned.
509    ///
510    /// The identity `x.next_up() == -(-x).next_down()` holds for all non-NaN `x`. When `x`
511    /// is finite `x == x.next_up().next_down()` also holds.
512    ///
513    /// ```rust
514    /// #![feature(f128)]
515    /// # // FIXME(f16_f128): remove when `eqtf2` is available
516    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
517    ///
518    /// // f128::EPSILON is the difference between 1.0 and the next number up.
519    /// assert_eq!(1.0f128.next_up(), 1.0 + f128::EPSILON);
520    /// // But not for most numbers.
521    /// assert!(0.1f128.next_up() < 0.1 + f128::EPSILON);
522    /// assert_eq!(4611686018427387904f128.next_up(), 4611686018427387904.000000000000001);
523    /// # }
524    /// ```
525    ///
526    /// This operation corresponds to IEEE-754 `nextUp`.
527    ///
528    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
529    /// [`INFINITY`]: Self::INFINITY
530    /// [`MIN`]: Self::MIN
531    /// [`MAX`]: Self::MAX
532    #[inline]
533    #[doc(alias = "nextUp")]
534    #[unstable(feature = "f128", issue = "116909")]
535    pub const fn next_up(self) -> Self {
536        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
537        // denormals to zero. This is in general unsound and unsupported, but here
538        // we do our best to still produce the correct result on such targets.
539        let bits = self.to_bits();
540        if self.is_nan() || bits == Self::INFINITY.to_bits() {
541            return self;
542        }
543
544        let abs = bits & !Self::SIGN_MASK;
545        let next_bits = if abs == 0 {
546            Self::TINY_BITS
547        } else if bits == abs {
548            bits + 1
549        } else {
550            bits - 1
551        };
552        Self::from_bits(next_bits)
553    }
554
555    /// Returns the greatest number less than `self`.
556    ///
557    /// Let `TINY` be the smallest representable positive `f128`. Then,
558    ///  - if `self.is_nan()`, this returns `self`;
559    ///  - if `self` is [`INFINITY`], this returns [`MAX`];
560    ///  - if `self` is `TINY`, this returns 0.0;
561    ///  - if `self` is -0.0 or +0.0, this returns `-TINY`;
562    ///  - if `self` is [`MIN`] or [`NEG_INFINITY`], this returns [`NEG_INFINITY`];
563    ///  - otherwise the unique greatest value less than `self` is returned.
564    ///
565    /// The identity `x.next_down() == -(-x).next_up()` holds for all non-NaN `x`. When `x`
566    /// is finite `x == x.next_down().next_up()` also holds.
567    ///
568    /// ```rust
569    /// #![feature(f128)]
570    /// # // FIXME(f16_f128): remove when `eqtf2` is available
571    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
572    ///
573    /// let x = 1.0f128;
574    /// // Clamp value into range [0, 1).
575    /// let clamped = x.clamp(0.0, 1.0f128.next_down());
576    /// assert!(clamped < 1.0);
577    /// assert_eq!(clamped.next_up(), 1.0);
578    /// # }
579    /// ```
580    ///
581    /// This operation corresponds to IEEE-754 `nextDown`.
582    ///
583    /// [`NEG_INFINITY`]: Self::NEG_INFINITY
584    /// [`INFINITY`]: Self::INFINITY
585    /// [`MIN`]: Self::MIN
586    /// [`MAX`]: Self::MAX
587    #[inline]
588    #[doc(alias = "nextDown")]
589    #[unstable(feature = "f128", issue = "116909")]
590    pub const fn next_down(self) -> Self {
591        // Some targets violate Rust's assumption of IEEE semantics, e.g. by flushing
592        // denormals to zero. This is in general unsound and unsupported, but here
593        // we do our best to still produce the correct result on such targets.
594        let bits = self.to_bits();
595        if self.is_nan() || bits == Self::NEG_INFINITY.to_bits() {
596            return self;
597        }
598
599        let abs = bits & !Self::SIGN_MASK;
600        let next_bits = if abs == 0 {
601            Self::NEG_TINY_BITS
602        } else if bits == abs {
603            bits - 1
604        } else {
605            bits + 1
606        };
607        Self::from_bits(next_bits)
608    }
609
610    /// Takes the reciprocal (inverse) of a number, `1/x`.
611    ///
612    /// ```
613    /// #![feature(f128)]
614    /// # // FIXME(f16_f128): remove when `eqtf2` is available
615    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
616    ///
617    /// let x = 2.0_f128;
618    /// let abs_difference = (x.recip() - (1.0 / x)).abs();
619    ///
620    /// assert!(abs_difference <= f128::EPSILON);
621    /// # }
622    /// ```
623    #[inline]
624    #[unstable(feature = "f128", issue = "116909")]
625    #[must_use = "this returns the result of the operation, without modifying the original"]
626    pub const fn recip(self) -> Self {
627        1.0 / self
628    }
629
630    /// Converts radians to degrees.
631    ///
632    /// ```
633    /// #![feature(f128)]
634    /// # // FIXME(f16_f128): remove when `eqtf2` is available
635    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
636    ///
637    /// let angle = std::f128::consts::PI;
638    ///
639    /// let abs_difference = (angle.to_degrees() - 180.0).abs();
640    /// assert!(abs_difference <= f128::EPSILON);
641    /// # }
642    /// ```
643    #[inline]
644    #[unstable(feature = "f128", issue = "116909")]
645    #[must_use = "this returns the result of the operation, without modifying the original"]
646    pub const fn to_degrees(self) -> Self {
647        // Use a literal for better precision.
648        const PIS_IN_180: f128 = 57.2957795130823208767981548141051703324054724665643215491602_f128;
649        self * PIS_IN_180
650    }
651
652    /// Converts degrees to radians.
653    ///
654    /// ```
655    /// #![feature(f128)]
656    /// # // FIXME(f16_f128): remove when `eqtf2` is available
657    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
658    ///
659    /// let angle = 180.0f128;
660    ///
661    /// let abs_difference = (angle.to_radians() - std::f128::consts::PI).abs();
662    ///
663    /// assert!(abs_difference <= 1e-30);
664    /// # }
665    /// ```
666    #[inline]
667    #[unstable(feature = "f128", issue = "116909")]
668    #[must_use = "this returns the result of the operation, without modifying the original"]
669    pub const fn to_radians(self) -> f128 {
670        // Use a literal for better precision.
671        const RADS_PER_DEG: f128 =
672            0.0174532925199432957692369076848861271344287188854172545609719_f128;
673        self * RADS_PER_DEG
674    }
675
676    /// Returns the maximum of the two numbers, ignoring NaN.
677    ///
678    /// If one of the arguments is NaN, then the other argument is returned.
679    /// This follows the IEEE 754-2008 semantics for maxNum, except for handling of signaling NaNs;
680    /// this function handles all NaNs the same way and avoids maxNum's problems with associativity.
681    /// This also matches the behavior of libm’s fmax. In particular, if the inputs compare equal
682    /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
683    ///
684    /// ```
685    /// #![feature(f128)]
686    /// # // Using aarch64 because `reliable_f128_math` is needed
687    /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
688    ///
689    /// let x = 1.0f128;
690    /// let y = 2.0f128;
691    ///
692    /// assert_eq!(x.max(y), y);
693    /// # }
694    /// ```
695    #[inline]
696    #[unstable(feature = "f128", issue = "116909")]
697    #[rustc_const_unstable(feature = "f128", issue = "116909")]
698    #[must_use = "this returns the result of the comparison, without modifying either input"]
699    pub const fn max(self, other: f128) -> f128 {
700        intrinsics::maxnumf128(self, other)
701    }
702
703    /// Returns the minimum of the two numbers, ignoring NaN.
704    ///
705    /// If one of the arguments is NaN, then the other argument is returned.
706    /// This follows the IEEE 754-2008 semantics for minNum, except for handling of signaling NaNs;
707    /// this function handles all NaNs the same way and avoids minNum's problems with associativity.
708    /// This also matches the behavior of libm’s fmin. In particular, if the inputs compare equal
709    /// (such as for the case of `+0.0` and `-0.0`), either input may be returned non-deterministically.
710    ///
711    /// ```
712    /// #![feature(f128)]
713    /// # // Using aarch64 because `reliable_f128_math` is needed
714    /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
715    ///
716    /// let x = 1.0f128;
717    /// let y = 2.0f128;
718    ///
719    /// assert_eq!(x.min(y), x);
720    /// # }
721    /// ```
722    #[inline]
723    #[unstable(feature = "f128", issue = "116909")]
724    #[rustc_const_unstable(feature = "f128", issue = "116909")]
725    #[must_use = "this returns the result of the comparison, without modifying either input"]
726    pub const fn min(self, other: f128) -> f128 {
727        intrinsics::minnumf128(self, other)
728    }
729
730    /// Returns the maximum of the two numbers, propagating NaN.
731    ///
732    /// This returns NaN when *either* argument is NaN, as opposed to
733    /// [`f128::max`] which only returns NaN when *both* arguments are NaN.
734    ///
735    /// ```
736    /// #![feature(f128)]
737    /// #![feature(float_minimum_maximum)]
738    /// # // Using aarch64 because `reliable_f128_math` is needed
739    /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
740    ///
741    /// let x = 1.0f128;
742    /// let y = 2.0f128;
743    ///
744    /// assert_eq!(x.maximum(y), y);
745    /// assert!(x.maximum(f128::NAN).is_nan());
746    /// # }
747    /// ```
748    ///
749    /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the greater
750    /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
751    /// Note that this follows the semantics specified in IEEE 754-2019.
752    ///
753    /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
754    /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
755    #[inline]
756    #[unstable(feature = "f128", issue = "116909")]
757    // #[unstable(feature = "float_minimum_maximum", issue = "91079")]
758    #[must_use = "this returns the result of the comparison, without modifying either input"]
759    pub const fn maximum(self, other: f128) -> f128 {
760        intrinsics::maximumf128(self, other)
761    }
762
763    /// Returns the minimum of the two numbers, propagating NaN.
764    ///
765    /// This returns NaN when *either* argument is NaN, as opposed to
766    /// [`f128::min`] which only returns NaN when *both* arguments are NaN.
767    ///
768    /// ```
769    /// #![feature(f128)]
770    /// #![feature(float_minimum_maximum)]
771    /// # // Using aarch64 because `reliable_f128_math` is needed
772    /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
773    ///
774    /// let x = 1.0f128;
775    /// let y = 2.0f128;
776    ///
777    /// assert_eq!(x.minimum(y), x);
778    /// assert!(x.minimum(f128::NAN).is_nan());
779    /// # }
780    /// ```
781    ///
782    /// If one of the arguments is NaN, then NaN is returned. Otherwise this returns the lesser
783    /// of the two numbers. For this operation, -0.0 is considered to be less than +0.0.
784    /// Note that this follows the semantics specified in IEEE 754-2019.
785    ///
786    /// Also note that "propagation" of NaNs here doesn't necessarily mean that the bitpattern of a NaN
787    /// operand is conserved; see the [specification of NaN bit patterns](f32#nan-bit-patterns) for more info.
788    #[inline]
789    #[unstable(feature = "f128", issue = "116909")]
790    // #[unstable(feature = "float_minimum_maximum", issue = "91079")]
791    #[must_use = "this returns the result of the comparison, without modifying either input"]
792    pub const fn minimum(self, other: f128) -> f128 {
793        intrinsics::minimumf128(self, other)
794    }
795
796    /// Calculates the midpoint (average) between `self` and `rhs`.
797    ///
798    /// This returns NaN when *either* argument is NaN or if a combination of
799    /// +inf and -inf is provided as arguments.
800    ///
801    /// # Examples
802    ///
803    /// ```
804    /// #![feature(f128)]
805    /// # // Using aarch64 because `reliable_f128_math` is needed
806    /// # #[cfg(all(target_arch = "aarch64", target_os = "linux"))] {
807    ///
808    /// assert_eq!(1f128.midpoint(4.0), 2.5);
809    /// assert_eq!((-5.5f128).midpoint(8.0), 1.25);
810    /// # }
811    /// ```
812    #[inline]
813    #[doc(alias = "average")]
814    #[unstable(feature = "f128", issue = "116909")]
815    #[rustc_const_unstable(feature = "f128", issue = "116909")]
816    pub const fn midpoint(self, other: f128) -> f128 {
817        const LO: f128 = f128::MIN_POSITIVE * 2.;
818        const HI: f128 = f128::MAX / 2.;
819
820        let (a, b) = (self, other);
821        let abs_a = a.abs();
822        let abs_b = b.abs();
823
824        if abs_a <= HI && abs_b <= HI {
825            // Overflow is impossible
826            (a + b) / 2.
827        } else if abs_a < LO {
828            // Not safe to halve `a` (would underflow)
829            a + (b / 2.)
830        } else if abs_b < LO {
831            // Not safe to halve `b` (would underflow)
832            (a / 2.) + b
833        } else {
834            // Safe to halve `a` and `b`
835            (a / 2.) + (b / 2.)
836        }
837    }
838
839    /// Rounds toward zero and converts to any primitive integer type,
840    /// assuming that the value is finite and fits in that type.
841    ///
842    /// ```
843    /// #![feature(f128)]
844    /// # // FIXME(f16_f128): remove when `float*itf` is available
845    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
846    ///
847    /// let value = 4.6_f128;
848    /// let rounded = unsafe { value.to_int_unchecked::<u16>() };
849    /// assert_eq!(rounded, 4);
850    ///
851    /// let value = -128.9_f128;
852    /// let rounded = unsafe { value.to_int_unchecked::<i8>() };
853    /// assert_eq!(rounded, i8::MIN);
854    /// # }
855    /// ```
856    ///
857    /// # Safety
858    ///
859    /// The value must:
860    ///
861    /// * Not be `NaN`
862    /// * Not be infinite
863    /// * Be representable in the return type `Int`, after truncating off its fractional part
864    #[inline]
865    #[unstable(feature = "f128", issue = "116909")]
866    #[must_use = "this returns the result of the operation, without modifying the original"]
867    pub unsafe fn to_int_unchecked<Int>(self) -> Int
868    where
869        Self: FloatToInt<Int>,
870    {
871        // SAFETY: the caller must uphold the safety contract for
872        // `FloatToInt::to_int_unchecked`.
873        unsafe { FloatToInt::<Int>::to_int_unchecked(self) }
874    }
875
876    /// Raw transmutation to `u128`.
877    ///
878    /// This is currently identical to `transmute::<f128, u128>(self)` on all platforms.
879    ///
880    /// See [`from_bits`](#method.from_bits) for some discussion of the
881    /// portability of this operation (there are almost no issues).
882    ///
883    /// Note that this function is distinct from `as` casting, which attempts to
884    /// preserve the *numeric* value, and not the bitwise value.
885    ///
886    /// ```
887    /// #![feature(f128)]
888    ///
889    /// # // FIXME(f16_f128): enable this once const casting works
890    /// # // assert_ne!((1f128).to_bits(), 1f128 as u128); // to_bits() is not casting!
891    /// assert_eq!((12.5f128).to_bits(), 0x40029000000000000000000000000000);
892    /// ```
893    #[inline]
894    #[unstable(feature = "f128", issue = "116909")]
895    #[must_use = "this returns the result of the operation, without modifying the original"]
896    #[allow(unnecessary_transmutes)]
897    pub const fn to_bits(self) -> u128 {
898        // SAFETY: `u128` is a plain old datatype so we can always transmute to it.
899        unsafe { mem::transmute(self) }
900    }
901
902    /// Raw transmutation from `u128`.
903    ///
904    /// This is currently identical to `transmute::<u128, f128>(v)` on all platforms.
905    /// It turns out this is incredibly portable, for two reasons:
906    ///
907    /// * Floats and Ints have the same endianness on all supported platforms.
908    /// * IEEE 754 very precisely specifies the bit layout of floats.
909    ///
910    /// However there is one caveat: prior to the 2008 version of IEEE 754, how
911    /// to interpret the NaN signaling bit wasn't actually specified. Most platforms
912    /// (notably x86 and ARM) picked the interpretation that was ultimately
913    /// standardized in 2008, but some didn't (notably MIPS). As a result, all
914    /// signaling NaNs on MIPS are quiet NaNs on x86, and vice-versa.
915    ///
916    /// Rather than trying to preserve signaling-ness cross-platform, this
917    /// implementation favors preserving the exact bits. This means that
918    /// any payloads encoded in NaNs will be preserved even if the result of
919    /// this method is sent over the network from an x86 machine to a MIPS one.
920    ///
921    /// If the results of this method are only manipulated by the same
922    /// architecture that produced them, then there is no portability concern.
923    ///
924    /// If the input isn't NaN, then there is no portability concern.
925    ///
926    /// If you don't care about signalingness (very likely), then there is no
927    /// portability concern.
928    ///
929    /// Note that this function is distinct from `as` casting, which attempts to
930    /// preserve the *numeric* value, and not the bitwise value.
931    ///
932    /// ```
933    /// #![feature(f128)]
934    /// #  // FIXME(f16_f128): remove when `eqtf2` is available
935    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
936    ///
937    /// let v = f128::from_bits(0x40029000000000000000000000000000);
938    /// assert_eq!(v, 12.5);
939    /// # }
940    /// ```
941    #[inline]
942    #[must_use]
943    #[unstable(feature = "f128", issue = "116909")]
944    #[allow(unnecessary_transmutes)]
945    pub const fn from_bits(v: u128) -> Self {
946        // It turns out the safety issues with sNaN were overblown! Hooray!
947        // SAFETY: `u128` is a plain old datatype so we can always transmute from it.
948        unsafe { mem::transmute(v) }
949    }
950
951    /// Returns the memory representation of this floating point number as a byte array in
952    /// big-endian (network) byte order.
953    ///
954    /// See [`from_bits`](Self::from_bits) for some discussion of the
955    /// portability of this operation (there are almost no issues).
956    ///
957    /// # Examples
958    ///
959    /// ```
960    /// #![feature(f128)]
961    ///
962    /// let bytes = 12.5f128.to_be_bytes();
963    /// assert_eq!(
964    ///     bytes,
965    ///     [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
966    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
967    /// );
968    /// ```
969    #[inline]
970    #[unstable(feature = "f128", issue = "116909")]
971    #[must_use = "this returns the result of the operation, without modifying the original"]
972    pub const fn to_be_bytes(self) -> [u8; 16] {
973        self.to_bits().to_be_bytes()
974    }
975
976    /// Returns the memory representation of this floating point number as a byte array in
977    /// little-endian byte order.
978    ///
979    /// See [`from_bits`](Self::from_bits) for some discussion of the
980    /// portability of this operation (there are almost no issues).
981    ///
982    /// # Examples
983    ///
984    /// ```
985    /// #![feature(f128)]
986    ///
987    /// let bytes = 12.5f128.to_le_bytes();
988    /// assert_eq!(
989    ///     bytes,
990    ///     [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
991    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
992    /// );
993    /// ```
994    #[inline]
995    #[unstable(feature = "f128", issue = "116909")]
996    #[must_use = "this returns the result of the operation, without modifying the original"]
997    pub const fn to_le_bytes(self) -> [u8; 16] {
998        self.to_bits().to_le_bytes()
999    }
1000
1001    /// Returns the memory representation of this floating point number as a byte array in
1002    /// native byte order.
1003    ///
1004    /// As the target platform's native endianness is used, portable code
1005    /// should use [`to_be_bytes`] or [`to_le_bytes`], as appropriate, instead.
1006    ///
1007    /// [`to_be_bytes`]: f128::to_be_bytes
1008    /// [`to_le_bytes`]: f128::to_le_bytes
1009    ///
1010    /// See [`from_bits`](Self::from_bits) for some discussion of the
1011    /// portability of this operation (there are almost no issues).
1012    ///
1013    /// # Examples
1014    ///
1015    /// ```
1016    /// #![feature(f128)]
1017    ///
1018    /// let bytes = 12.5f128.to_ne_bytes();
1019    /// assert_eq!(
1020    ///     bytes,
1021    ///     if cfg!(target_endian = "big") {
1022    ///         [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
1023    ///          0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1024    ///     } else {
1025    ///         [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1026    ///          0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1027    ///     }
1028    /// );
1029    /// ```
1030    #[inline]
1031    #[unstable(feature = "f128", issue = "116909")]
1032    #[must_use = "this returns the result of the operation, without modifying the original"]
1033    pub const fn to_ne_bytes(self) -> [u8; 16] {
1034        self.to_bits().to_ne_bytes()
1035    }
1036
1037    /// Creates a floating point value from its representation as a byte array in big endian.
1038    ///
1039    /// See [`from_bits`](Self::from_bits) for some discussion of the
1040    /// portability of this operation (there are almost no issues).
1041    ///
1042    /// # Examples
1043    ///
1044    /// ```
1045    /// #![feature(f128)]
1046    /// # // FIXME(f16_f128): remove when `eqtf2` is available
1047    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1048    ///
1049    /// let value = f128::from_be_bytes(
1050    ///     [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
1051    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1052    /// );
1053    /// assert_eq!(value, 12.5);
1054    /// # }
1055    /// ```
1056    #[inline]
1057    #[must_use]
1058    #[unstable(feature = "f128", issue = "116909")]
1059    pub const fn from_be_bytes(bytes: [u8; 16]) -> Self {
1060        Self::from_bits(u128::from_be_bytes(bytes))
1061    }
1062
1063    /// Creates a floating point value from its representation as a byte array in little endian.
1064    ///
1065    /// See [`from_bits`](Self::from_bits) for some discussion of the
1066    /// portability of this operation (there are almost no issues).
1067    ///
1068    /// # Examples
1069    ///
1070    /// ```
1071    /// #![feature(f128)]
1072    /// # // FIXME(f16_f128): remove when `eqtf2` is available
1073    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1074    ///
1075    /// let value = f128::from_le_bytes(
1076    ///     [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1077    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1078    /// );
1079    /// assert_eq!(value, 12.5);
1080    /// # }
1081    /// ```
1082    #[inline]
1083    #[must_use]
1084    #[unstable(feature = "f128", issue = "116909")]
1085    pub const fn from_le_bytes(bytes: [u8; 16]) -> Self {
1086        Self::from_bits(u128::from_le_bytes(bytes))
1087    }
1088
1089    /// Creates a floating point value from its representation as a byte array in native endian.
1090    ///
1091    /// As the target platform's native endianness is used, portable code
1092    /// likely wants to use [`from_be_bytes`] or [`from_le_bytes`], as
1093    /// appropriate instead.
1094    ///
1095    /// [`from_be_bytes`]: f128::from_be_bytes
1096    /// [`from_le_bytes`]: f128::from_le_bytes
1097    ///
1098    /// See [`from_bits`](Self::from_bits) for some discussion of the
1099    /// portability of this operation (there are almost no issues).
1100    ///
1101    /// # Examples
1102    ///
1103    /// ```
1104    /// #![feature(f128)]
1105    /// # // FIXME(f16_f128): remove when `eqtf2` is available
1106    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1107    ///
1108    /// let value = f128::from_ne_bytes(if cfg!(target_endian = "big") {
1109    ///     [0x40, 0x02, 0x90, 0x00, 0x00, 0x00, 0x00, 0x00,
1110    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00]
1111    /// } else {
1112    ///     [0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
1113    ///      0x00, 0x00, 0x00, 0x00, 0x00, 0x90, 0x02, 0x40]
1114    /// });
1115    /// assert_eq!(value, 12.5);
1116    /// # }
1117    /// ```
1118    #[inline]
1119    #[must_use]
1120    #[unstable(feature = "f128", issue = "116909")]
1121    pub const fn from_ne_bytes(bytes: [u8; 16]) -> Self {
1122        Self::from_bits(u128::from_ne_bytes(bytes))
1123    }
1124
1125    /// Returns the ordering between `self` and `other`.
1126    ///
1127    /// Unlike the standard partial comparison between floating point numbers,
1128    /// this comparison always produces an ordering in accordance to
1129    /// the `totalOrder` predicate as defined in the IEEE 754 (2008 revision)
1130    /// floating point standard. The values are ordered in the following sequence:
1131    ///
1132    /// - negative quiet NaN
1133    /// - negative signaling NaN
1134    /// - negative infinity
1135    /// - negative numbers
1136    /// - negative subnormal numbers
1137    /// - negative zero
1138    /// - positive zero
1139    /// - positive subnormal numbers
1140    /// - positive numbers
1141    /// - positive infinity
1142    /// - positive signaling NaN
1143    /// - positive quiet NaN.
1144    ///
1145    /// The ordering established by this function does not always agree with the
1146    /// [`PartialOrd`] and [`PartialEq`] implementations of `f128`. For example,
1147    /// they consider negative and positive zero equal, while `total_cmp`
1148    /// doesn't.
1149    ///
1150    /// The interpretation of the signaling NaN bit follows the definition in
1151    /// the IEEE 754 standard, which may not match the interpretation by some of
1152    /// the older, non-conformant (e.g. MIPS) hardware implementations.
1153    ///
1154    /// # Example
1155    ///
1156    /// ```
1157    /// #![feature(f128)]
1158    ///
1159    /// struct GoodBoy {
1160    ///     name: &'static str,
1161    ///     weight: f128,
1162    /// }
1163    ///
1164    /// let mut bois = vec![
1165    ///     GoodBoy { name: "Pucci", weight: 0.1 },
1166    ///     GoodBoy { name: "Woofer", weight: 99.0 },
1167    ///     GoodBoy { name: "Yapper", weight: 10.0 },
1168    ///     GoodBoy { name: "Chonk", weight: f128::INFINITY },
1169    ///     GoodBoy { name: "Abs. Unit", weight: f128::NAN },
1170    ///     GoodBoy { name: "Floaty", weight: -5.0 },
1171    /// ];
1172    ///
1173    /// bois.sort_by(|a, b| a.weight.total_cmp(&b.weight));
1174    ///
1175    /// // `f128::NAN` could be positive or negative, which will affect the sort order.
1176    /// if f128::NAN.is_sign_negative() {
1177    ///     bois.into_iter().map(|b| b.weight)
1178    ///         .zip([f128::NAN, -5.0, 0.1, 10.0, 99.0, f128::INFINITY].iter())
1179    ///         .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
1180    /// } else {
1181    ///     bois.into_iter().map(|b| b.weight)
1182    ///         .zip([-5.0, 0.1, 10.0, 99.0, f128::INFINITY, f128::NAN].iter())
1183    ///         .for_each(|(a, b)| assert_eq!(a.to_bits(), b.to_bits()))
1184    /// }
1185    /// ```
1186    #[inline]
1187    #[must_use]
1188    #[unstable(feature = "f128", issue = "116909")]
1189    pub fn total_cmp(&self, other: &Self) -> crate::cmp::Ordering {
1190        let mut left = self.to_bits() as i128;
1191        let mut right = other.to_bits() as i128;
1192
1193        // In case of negatives, flip all the bits except the sign
1194        // to achieve a similar layout as two's complement integers
1195        //
1196        // Why does this work? IEEE 754 floats consist of three fields:
1197        // Sign bit, exponent and mantissa. The set of exponent and mantissa
1198        // fields as a whole have the property that their bitwise order is
1199        // equal to the numeric magnitude where the magnitude is defined.
1200        // The magnitude is not normally defined on NaN values, but
1201        // IEEE 754 totalOrder defines the NaN values also to follow the
1202        // bitwise order. This leads to order explained in the doc comment.
1203        // However, the representation of magnitude is the same for negative
1204        // and positive numbers – only the sign bit is different.
1205        // To easily compare the floats as signed integers, we need to
1206        // flip the exponent and mantissa bits in case of negative numbers.
1207        // We effectively convert the numbers to "two's complement" form.
1208        //
1209        // To do the flipping, we construct a mask and XOR against it.
1210        // We branchlessly calculate an "all-ones except for the sign bit"
1211        // mask from negative-signed values: right shifting sign-extends
1212        // the integer, so we "fill" the mask with sign bits, and then
1213        // convert to unsigned to push one more zero bit.
1214        // On positive values, the mask is all zeros, so it's a no-op.
1215        left ^= (((left >> 127) as u128) >> 1) as i128;
1216        right ^= (((right >> 127) as u128) >> 1) as i128;
1217
1218        left.cmp(&right)
1219    }
1220
1221    /// Restrict a value to a certain interval unless it is NaN.
1222    ///
1223    /// Returns `max` if `self` is greater than `max`, and `min` if `self` is
1224    /// less than `min`. Otherwise this returns `self`.
1225    ///
1226    /// Note that this function returns NaN if the initial value was NaN as
1227    /// well.
1228    ///
1229    /// # Panics
1230    ///
1231    /// Panics if `min > max`, `min` is NaN, or `max` is NaN.
1232    ///
1233    /// # Examples
1234    ///
1235    /// ```
1236    /// #![feature(f128)]
1237    /// # // FIXME(f16_f128): remove when `{eq,gt,unord}tf` are available
1238    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1239    ///
1240    /// assert!((-3.0f128).clamp(-2.0, 1.0) == -2.0);
1241    /// assert!((0.0f128).clamp(-2.0, 1.0) == 0.0);
1242    /// assert!((2.0f128).clamp(-2.0, 1.0) == 1.0);
1243    /// assert!((f128::NAN).clamp(-2.0, 1.0).is_nan());
1244    /// # }
1245    /// ```
1246    #[inline]
1247    #[unstable(feature = "f128", issue = "116909")]
1248    #[must_use = "method returns a new number and does not mutate the original value"]
1249    pub const fn clamp(mut self, min: f128, max: f128) -> f128 {
1250        const_assert!(
1251            min <= max,
1252            "min > max, or either was NaN",
1253            "min > max, or either was NaN. min = {min:?}, max = {max:?}",
1254            min: f128,
1255            max: f128,
1256        );
1257
1258        if self < min {
1259            self = min;
1260        }
1261        if self > max {
1262            self = max;
1263        }
1264        self
1265    }
1266
1267    /// Computes the absolute value of `self`.
1268    ///
1269    /// This function always returns the precise result.
1270    ///
1271    /// # Examples
1272    ///
1273    /// ```
1274    /// #![feature(f128)]
1275    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1276    ///
1277    /// let x = 3.5_f128;
1278    /// let y = -3.5_f128;
1279    ///
1280    /// assert_eq!(x.abs(), x);
1281    /// assert_eq!(y.abs(), -y);
1282    ///
1283    /// assert!(f128::NAN.abs().is_nan());
1284    /// # }
1285    /// ```
1286    #[inline]
1287    #[unstable(feature = "f128", issue = "116909")]
1288    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1289    #[must_use = "method returns a new number and does not mutate the original value"]
1290    pub const fn abs(self) -> Self {
1291        // FIXME(f16_f128): replace with `intrinsics::fabsf128` when available
1292        // We don't do this now because LLVM has lowering bugs for f128 math.
1293        Self::from_bits(self.to_bits() & !(1 << 127))
1294    }
1295
1296    /// Returns a number that represents the sign of `self`.
1297    ///
1298    /// - `1.0` if the number is positive, `+0.0` or `INFINITY`
1299    /// - `-1.0` if the number is negative, `-0.0` or `NEG_INFINITY`
1300    /// - NaN if the number is NaN
1301    ///
1302    /// # Examples
1303    ///
1304    /// ```
1305    /// #![feature(f128)]
1306    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1307    ///
1308    /// let f = 3.5_f128;
1309    ///
1310    /// assert_eq!(f.signum(), 1.0);
1311    /// assert_eq!(f128::NEG_INFINITY.signum(), -1.0);
1312    ///
1313    /// assert!(f128::NAN.signum().is_nan());
1314    /// # }
1315    /// ```
1316    #[inline]
1317    #[unstable(feature = "f128", issue = "116909")]
1318    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1319    #[must_use = "method returns a new number and does not mutate the original value"]
1320    pub const fn signum(self) -> f128 {
1321        if self.is_nan() { Self::NAN } else { 1.0_f128.copysign(self) }
1322    }
1323
1324    /// Returns a number composed of the magnitude of `self` and the sign of
1325    /// `sign`.
1326    ///
1327    /// Equal to `self` if the sign of `self` and `sign` are the same, otherwise equal to `-self`.
1328    /// If `self` is a NaN, then a NaN with the same payload as `self` and the sign bit of `sign` is
1329    /// returned.
1330    ///
1331    /// If `sign` is a NaN, then this operation will still carry over its sign into the result. Note
1332    /// that IEEE 754 doesn't assign any meaning to the sign bit in case of a NaN, and as Rust
1333    /// doesn't guarantee that the bit pattern of NaNs are conserved over arithmetic operations, the
1334    /// result of `copysign` with `sign` being a NaN might produce an unexpected or non-portable
1335    /// result. See the [specification of NaN bit patterns](primitive@f32#nan-bit-patterns) for more
1336    /// info.
1337    ///
1338    /// # Examples
1339    ///
1340    /// ```
1341    /// #![feature(f128)]
1342    /// # #[cfg(all(target_arch = "x86_64", target_os = "linux"))] {
1343    ///
1344    /// let f = 3.5_f128;
1345    ///
1346    /// assert_eq!(f.copysign(0.42), 3.5_f128);
1347    /// assert_eq!(f.copysign(-0.42), -3.5_f128);
1348    /// assert_eq!((-f).copysign(0.42), 3.5_f128);
1349    /// assert_eq!((-f).copysign(-0.42), -3.5_f128);
1350    ///
1351    /// assert!(f128::NAN.copysign(1.0).is_nan());
1352    /// # }
1353    /// ```
1354    #[inline]
1355    #[unstable(feature = "f128", issue = "116909")]
1356    #[rustc_const_unstable(feature = "f128", issue = "116909")]
1357    #[must_use = "method returns a new number and does not mutate the original value"]
1358    pub const fn copysign(self, sign: f128) -> f128 {
1359        // SAFETY: this is actually a safe intrinsic
1360        unsafe { intrinsics::copysignf128(self, sign) }
1361    }
1362
1363    /// Float addition that allows optimizations based on algebraic rules.
1364    ///
1365    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1366    #[must_use = "method returns a new number and does not mutate the original value"]
1367    #[unstable(feature = "float_algebraic", issue = "136469")]
1368    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1369    #[inline]
1370    pub const fn algebraic_add(self, rhs: f128) -> f128 {
1371        intrinsics::fadd_algebraic(self, rhs)
1372    }
1373
1374    /// Float subtraction that allows optimizations based on algebraic rules.
1375    ///
1376    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1377    #[must_use = "method returns a new number and does not mutate the original value"]
1378    #[unstable(feature = "float_algebraic", issue = "136469")]
1379    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1380    #[inline]
1381    pub const fn algebraic_sub(self, rhs: f128) -> f128 {
1382        intrinsics::fsub_algebraic(self, rhs)
1383    }
1384
1385    /// Float multiplication that allows optimizations based on algebraic rules.
1386    ///
1387    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1388    #[must_use = "method returns a new number and does not mutate the original value"]
1389    #[unstable(feature = "float_algebraic", issue = "136469")]
1390    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1391    #[inline]
1392    pub const fn algebraic_mul(self, rhs: f128) -> f128 {
1393        intrinsics::fmul_algebraic(self, rhs)
1394    }
1395
1396    /// Float division that allows optimizations based on algebraic rules.
1397    ///
1398    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1399    #[must_use = "method returns a new number and does not mutate the original value"]
1400    #[unstable(feature = "float_algebraic", issue = "136469")]
1401    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1402    #[inline]
1403    pub const fn algebraic_div(self, rhs: f128) -> f128 {
1404        intrinsics::fdiv_algebraic(self, rhs)
1405    }
1406
1407    /// Float remainder that allows optimizations based on algebraic rules.
1408    ///
1409    /// See [algebraic operators](primitive@f32#algebraic-operators) for more info.
1410    #[must_use = "method returns a new number and does not mutate the original value"]
1411    #[unstable(feature = "float_algebraic", issue = "136469")]
1412    #[rustc_const_unstable(feature = "float_algebraic", issue = "136469")]
1413    #[inline]
1414    pub const fn algebraic_rem(self, rhs: f128) -> f128 {
1415        intrinsics::frem_algebraic(self, rhs)
1416    }
1417}
1418
1419// Functions in this module fall into `core_float_math`
1420// FIXME(f16_f128): all doctests must be gated to platforms that have `long double` === `_Float128`
1421// due to https://github.com/llvm/llvm-project/issues/44744. aarch64 linux matches this.
1422// #[unstable(feature = "core_float_math", issue = "137578")]
1423#[cfg(not(test))]
1424impl f128 {
1425    /// Returns the largest integer less than or equal to `self`.
1426    ///
1427    /// This function always returns the precise result.
1428    ///
1429    /// # Examples
1430    ///
1431    /// ```
1432    /// #![feature(f128)]
1433    /// # #![feature(cfg_target_has_reliable_f16_f128)]
1434    /// # #![expect(internal_features)]
1435    /// # #[cfg(not(miri))]
1436    /// # #[cfg(target_has_reliable_f128_math)] {
1437    ///
1438    /// let f = 3.7_f128;
1439    /// let g = 3.0_f128;
1440    /// let h = -3.7_f128;
1441    ///
1442    /// assert_eq!(f.floor(), 3.0);
1443    /// assert_eq!(g.floor(), 3.0);
1444    /// assert_eq!(h.floor(), -4.0);
1445    /// # }
1446    /// ```
1447    #[inline]
1448    #[rustc_allow_incoherent_impl]
1449    #[unstable(feature = "f128", issue = "116909")]
1450    #[must_use = "method returns a new number and does not mutate the original value"]
1451    pub fn floor(self) -> f128 {
1452        // SAFETY: intrinsic with no preconditions
1453        unsafe { intrinsics::floorf128(self) }
1454    }
1455
1456    /// Returns the smallest integer greater than or equal to `self`.
1457    ///
1458    /// This function always returns the precise result.
1459    ///
1460    /// # Examples
1461    ///
1462    /// ```
1463    /// #![feature(f128)]
1464    /// # #![feature(cfg_target_has_reliable_f16_f128)]
1465    /// # #![expect(internal_features)]
1466    /// # #[cfg(not(miri))]
1467    /// # #[cfg(target_has_reliable_f128_math)] {
1468    ///
1469    /// let f = 3.01_f128;
1470    /// let g = 4.0_f128;
1471    ///
1472    /// assert_eq!(f.ceil(), 4.0);
1473    /// assert_eq!(g.ceil(), 4.0);
1474    /// # }
1475    /// ```
1476    #[inline]
1477    #[doc(alias = "ceiling")]
1478    #[rustc_allow_incoherent_impl]
1479    #[unstable(feature = "f128", issue = "116909")]
1480    #[must_use = "method returns a new number and does not mutate the original value"]
1481    pub fn ceil(self) -> f128 {
1482        // SAFETY: intrinsic with no preconditions
1483        unsafe { intrinsics::ceilf128(self) }
1484    }
1485
1486    /// Returns the nearest integer to `self`. If a value is half-way between two
1487    /// integers, round away from `0.0`.
1488    ///
1489    /// This function always returns the precise result.
1490    ///
1491    /// # Examples
1492    ///
1493    /// ```
1494    /// #![feature(f128)]
1495    /// # #![feature(cfg_target_has_reliable_f16_f128)]
1496    /// # #![expect(internal_features)]
1497    /// # #[cfg(not(miri))]
1498    /// # #[cfg(target_has_reliable_f128_math)] {
1499    ///
1500    /// let f = 3.3_f128;
1501    /// let g = -3.3_f128;
1502    /// let h = -3.7_f128;
1503    /// let i = 3.5_f128;
1504    /// let j = 4.5_f128;
1505    ///
1506    /// assert_eq!(f.round(), 3.0);
1507    /// assert_eq!(g.round(), -3.0);
1508    /// assert_eq!(h.round(), -4.0);
1509    /// assert_eq!(i.round(), 4.0);
1510    /// assert_eq!(j.round(), 5.0);
1511    /// # }
1512    /// ```
1513    #[inline]
1514    #[rustc_allow_incoherent_impl]
1515    #[unstable(feature = "f128", issue = "116909")]
1516    #[must_use = "method returns a new number and does not mutate the original value"]
1517    pub fn round(self) -> f128 {
1518        // SAFETY: intrinsic with no preconditions
1519        unsafe { intrinsics::roundf128(self) }
1520    }
1521
1522    /// Returns the nearest integer to a number. Rounds half-way cases to the number
1523    /// with an even least significant digit.
1524    ///
1525    /// This function always returns the precise result.
1526    ///
1527    /// # Examples
1528    ///
1529    /// ```
1530    /// #![feature(f128)]
1531    /// # #![feature(cfg_target_has_reliable_f16_f128)]
1532    /// # #![expect(internal_features)]
1533    /// # #[cfg(not(miri))]
1534    /// # #[cfg(target_has_reliable_f128_math)] {
1535    ///
1536    /// let f = 3.3_f128;
1537    /// let g = -3.3_f128;
1538    /// let h = 3.5_f128;
1539    /// let i = 4.5_f128;
1540    ///
1541    /// assert_eq!(f.round_ties_even(), 3.0);
1542    /// assert_eq!(g.round_ties_even(), -3.0);
1543    /// assert_eq!(h.round_ties_even(), 4.0);
1544    /// assert_eq!(i.round_ties_even(), 4.0);
1545    /// # }
1546    /// ```
1547    #[inline]
1548    #[rustc_allow_incoherent_impl]
1549    #[unstable(feature = "f128", issue = "116909")]
1550    #[must_use = "method returns a new number and does not mutate the original value"]
1551    pub fn round_ties_even(self) -> f128 {
1552        intrinsics::round_ties_even_f128(self)
1553    }
1554
1555    /// Returns the integer part of `self`.
1556    /// This means that non-integer numbers are always truncated towards zero.
1557    ///
1558    /// This function always returns the precise result.
1559    ///
1560    /// # Examples
1561    ///
1562    /// ```
1563    /// #![feature(f128)]
1564    /// # #![feature(cfg_target_has_reliable_f16_f128)]
1565    /// # #![expect(internal_features)]
1566    /// # #[cfg(not(miri))]
1567    /// # #[cfg(target_has_reliable_f128_math)] {
1568    ///
1569    /// let f = 3.7_f128;
1570    /// let g = 3.0_f128;
1571    /// let h = -3.7_f128;
1572    ///
1573    /// assert_eq!(f.trunc(), 3.0);
1574    /// assert_eq!(g.trunc(), 3.0);
1575    /// assert_eq!(h.trunc(), -3.0);
1576    /// # }
1577    /// ```
1578    #[inline]
1579    #[doc(alias = "truncate")]
1580    #[rustc_allow_incoherent_impl]
1581    #[unstable(feature = "f128", issue = "116909")]
1582    #[must_use = "method returns a new number and does not mutate the original value"]
1583    pub fn trunc(self) -> f128 {
1584        // SAFETY: intrinsic with no preconditions
1585        unsafe { intrinsics::truncf128(self) }
1586    }
1587
1588    /// Returns the fractional part of `self`.
1589    ///
1590    /// This function always returns the precise result.
1591    ///
1592    /// # Examples
1593    ///
1594    /// ```
1595    /// #![feature(f128)]
1596    /// # #![feature(cfg_target_has_reliable_f16_f128)]
1597    /// # #![expect(internal_features)]
1598    /// # #[cfg(not(miri))]
1599    /// # #[cfg(target_has_reliable_f128_math)] {
1600    ///
1601    /// let x = 3.6_f128;
1602    /// let y = -3.6_f128;
1603    /// let abs_difference_x = (x.fract() - 0.6).abs();
1604    /// let abs_difference_y = (y.fract() - (-0.6)).abs();
1605    ///
1606    /// assert!(abs_difference_x <= f128::EPSILON);
1607    /// assert!(abs_difference_y <= f128::EPSILON);
1608    /// # }
1609    /// ```
1610    #[inline]
1611    #[rustc_allow_incoherent_impl]
1612    #[unstable(feature = "f128", issue = "116909")]
1613    #[must_use = "method returns a new number and does not mutate the original value"]
1614    pub fn fract(self) -> f128 {
1615        self - self.trunc()
1616    }
1617
1618    /// Fused multiply-add. Computes `(self * a) + b` with only one rounding
1619    /// error, yielding a more accurate result than an unfused multiply-add.
1620    ///
1621    /// Using `mul_add` *may* be more performant than an unfused multiply-add if
1622    /// the target architecture has a dedicated `fma` CPU instruction. However,
1623    /// this is not always true, and will be heavily dependant on designing
1624    /// algorithms with specific target hardware in mind.
1625    ///
1626    /// # Precision
1627    ///
1628    /// The result of this operation is guaranteed to be the rounded
1629    /// infinite-precision result. It is specified by IEEE 754 as
1630    /// `fusedMultiplyAdd` and guaranteed not to change.
1631    ///
1632    /// # Examples
1633    ///
1634    /// ```
1635    /// #![feature(f128)]
1636    /// # #![feature(cfg_target_has_reliable_f16_f128)]
1637    /// # #![expect(internal_features)]
1638    /// # #[cfg(not(miri))]
1639    /// # #[cfg(target_has_reliable_f128_math)] {
1640    ///
1641    /// let m = 10.0_f128;
1642    /// let x = 4.0_f128;
1643    /// let b = 60.0_f128;
1644    ///
1645    /// assert_eq!(m.mul_add(x, b), 100.0);
1646    /// assert_eq!(m * x + b, 100.0);
1647    ///
1648    /// let one_plus_eps = 1.0_f128 + f128::EPSILON;
1649    /// let one_minus_eps = 1.0_f128 - f128::EPSILON;
1650    /// let minus_one = -1.0_f128;
1651    ///
1652    /// // The exact result (1 + eps) * (1 - eps) = 1 - eps * eps.
1653    /// assert_eq!(one_plus_eps.mul_add(one_minus_eps, minus_one), -f128::EPSILON * f128::EPSILON);
1654    /// // Different rounding with the non-fused multiply and add.
1655    /// assert_eq!(one_plus_eps * one_minus_eps + minus_one, 0.0);
1656    /// # }
1657    /// ```
1658    #[inline]
1659    #[rustc_allow_incoherent_impl]
1660    #[doc(alias = "fmaf128", alias = "fusedMultiplyAdd")]
1661    #[unstable(feature = "f128", issue = "116909")]
1662    #[must_use = "method returns a new number and does not mutate the original value"]
1663    pub fn mul_add(self, a: f128, b: f128) -> f128 {
1664        // SAFETY: intrinsic with no preconditions
1665        unsafe { intrinsics::fmaf128(self, a, b) }
1666    }
1667
1668    /// Calculates Euclidean division, the matching method for `rem_euclid`.
1669    ///
1670    /// This computes the integer `n` such that
1671    /// `self = n * rhs + self.rem_euclid(rhs)`.
1672    /// In other words, the result is `self / rhs` rounded to the integer `n`
1673    /// such that `self >= n * rhs`.
1674    ///
1675    /// # Precision
1676    ///
1677    /// The result of this operation is guaranteed to be the rounded
1678    /// infinite-precision result.
1679    ///
1680    /// # Examples
1681    ///
1682    /// ```
1683    /// #![feature(f128)]
1684    /// # #![feature(cfg_target_has_reliable_f16_f128)]
1685    /// # #![expect(internal_features)]
1686    /// # #[cfg(not(miri))]
1687    /// # #[cfg(target_has_reliable_f128_math)] {
1688    ///
1689    /// let a: f128 = 7.0;
1690    /// let b = 4.0;
1691    /// assert_eq!(a.div_euclid(b), 1.0); // 7.0 > 4.0 * 1.0
1692    /// assert_eq!((-a).div_euclid(b), -2.0); // -7.0 >= 4.0 * -2.0
1693    /// assert_eq!(a.div_euclid(-b), -1.0); // 7.0 >= -4.0 * -1.0
1694    /// assert_eq!((-a).div_euclid(-b), 2.0); // -7.0 >= -4.0 * 2.0
1695    /// # }
1696    /// ```
1697    #[inline]
1698    #[rustc_allow_incoherent_impl]
1699    #[unstable(feature = "f128", issue = "116909")]
1700    #[must_use = "method returns a new number and does not mutate the original value"]
1701    pub fn div_euclid(self, rhs: f128) -> f128 {
1702        let q = (self / rhs).trunc();
1703        if self % rhs < 0.0 {
1704            return if rhs > 0.0 { q - 1.0 } else { q + 1.0 };
1705        }
1706        q
1707    }
1708
1709    /// Calculates the least nonnegative remainder of `self (mod rhs)`.
1710    ///
1711    /// In particular, the return value `r` satisfies `0.0 <= r < rhs.abs()` in
1712    /// most cases. However, due to a floating point round-off error it can
1713    /// result in `r == rhs.abs()`, violating the mathematical definition, if
1714    /// `self` is much smaller than `rhs.abs()` in magnitude and `self < 0.0`.
1715    /// This result is not an element of the function's codomain, but it is the
1716    /// closest floating point number in the real numbers and thus fulfills the
1717    /// property `self == self.div_euclid(rhs) * rhs + self.rem_euclid(rhs)`
1718    /// approximately.
1719    ///
1720    /// # Precision
1721    ///
1722    /// The result of this operation is guaranteed to be the rounded
1723    /// infinite-precision result.
1724    ///
1725    /// # Examples
1726    ///
1727    /// ```
1728    /// #![feature(f128)]
1729    /// # #![feature(cfg_target_has_reliable_f16_f128)]
1730    /// # #![expect(internal_features)]
1731    /// # #[cfg(not(miri))]
1732    /// # #[cfg(target_has_reliable_f128_math)] {
1733    ///
1734    /// let a: f128 = 7.0;
1735    /// let b = 4.0;
1736    /// assert_eq!(a.rem_euclid(b), 3.0);
1737    /// assert_eq!((-a).rem_euclid(b), 1.0);
1738    /// assert_eq!(a.rem_euclid(-b), 3.0);
1739    /// assert_eq!((-a).rem_euclid(-b), 1.0);
1740    /// // limitation due to round-off error
1741    /// assert!((-f128::EPSILON).rem_euclid(3.0) != 0.0);
1742    /// # }
1743    /// ```
1744    #[inline]
1745    #[rustc_allow_incoherent_impl]
1746    #[doc(alias = "modulo", alias = "mod")]
1747    #[unstable(feature = "f128", issue = "116909")]
1748    #[must_use = "method returns a new number and does not mutate the original value"]
1749    pub fn rem_euclid(self, rhs: f128) -> f128 {
1750        let r = self % rhs;
1751        if r < 0.0 { r + rhs.abs() } else { r }
1752    }
1753
1754    /// Raises a number to an integer power.
1755    ///
1756    /// Using this function is generally faster than using `powf`.
1757    /// It might have a different sequence of rounding operations than `powf`,
1758    /// so the results are not guaranteed to agree.
1759    ///
1760    /// # Unspecified precision
1761    ///
1762    /// The precision of this function is non-deterministic. This means it varies by platform,
1763    /// Rust version, and can even differ within the same execution from one invocation to the next.
1764    ///
1765    /// # Examples
1766    ///
1767    /// ```
1768    /// #![feature(f128)]
1769    /// # #![feature(cfg_target_has_reliable_f16_f128)]
1770    /// # #![expect(internal_features)]
1771    /// # #[cfg(not(miri))]
1772    /// # #[cfg(target_has_reliable_f128_math)] {
1773    ///
1774    /// let x = 2.0_f128;
1775    /// let abs_difference = (x.powi(2) - (x * x)).abs();
1776    /// assert!(abs_difference <= f128::EPSILON);
1777    ///
1778    /// assert_eq!(f128::powi(f128::NAN, 0), 1.0);
1779    /// # }
1780    /// ```
1781    #[inline]
1782    #[rustc_allow_incoherent_impl]
1783    #[unstable(feature = "f128", issue = "116909")]
1784    #[must_use = "method returns a new number and does not mutate the original value"]
1785    pub fn powi(self, n: i32) -> f128 {
1786        // SAFETY: intrinsic with no preconditions
1787        unsafe { intrinsics::powif128(self, n) }
1788    }
1789
1790    /// Returns the square root of a number.
1791    ///
1792    /// Returns NaN if `self` is a negative number other than `-0.0`.
1793    ///
1794    /// # Precision
1795    ///
1796    /// The result of this operation is guaranteed to be the rounded
1797    /// infinite-precision result. It is specified by IEEE 754 as `squareRoot`
1798    /// and guaranteed not to change.
1799    ///
1800    /// # Examples
1801    ///
1802    /// ```
1803    /// #![feature(f128)]
1804    /// # #![feature(cfg_target_has_reliable_f16_f128)]
1805    /// # #![expect(internal_features)]
1806    /// # #[cfg(not(miri))]
1807    /// # #[cfg(target_has_reliable_f128_math)] {
1808    ///
1809    /// let positive = 4.0_f128;
1810    /// let negative = -4.0_f128;
1811    /// let negative_zero = -0.0_f128;
1812    ///
1813    /// assert_eq!(positive.sqrt(), 2.0);
1814    /// assert!(negative.sqrt().is_nan());
1815    /// assert!(negative_zero.sqrt() == negative_zero);
1816    /// # }
1817    /// ```
1818    #[inline]
1819    #[doc(alias = "squareRoot")]
1820    #[rustc_allow_incoherent_impl]
1821    #[unstable(feature = "f128", issue = "116909")]
1822    #[must_use = "method returns a new number and does not mutate the original value"]
1823    pub fn sqrt(self) -> f128 {
1824        // SAFETY: intrinsic with no preconditions
1825        unsafe { intrinsics::sqrtf128(self) }
1826    }
1827}