core/num/dec2flt/
parse.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
//! Functions to parse floating-point numbers.

use crate::num::dec2flt::common::{ByteSlice, is_8digits};
use crate::num::dec2flt::float::RawFloat;
use crate::num::dec2flt::number::Number;

const MIN_19DIGIT_INT: u64 = 100_0000_0000_0000_0000;

/// Parse 8 digits, loaded as bytes in little-endian order.
///
/// This uses the trick where every digit is in [0x030, 0x39],
/// and therefore can be parsed in 3 multiplications, much
/// faster than the normal 8.
///
/// This is based off the algorithm described in "Fast numeric string to
/// int", available here: <https://johnnylee-sde.github.io/Fast-numeric-string-to-int/>.
fn parse_8digits(mut v: u64) -> u64 {
    const MASK: u64 = 0x0000_00FF_0000_00FF;
    const MUL1: u64 = 0x000F_4240_0000_0064;
    const MUL2: u64 = 0x0000_2710_0000_0001;
    v -= 0x3030_3030_3030_3030;
    v = (v * 10) + (v >> 8); // will not overflow, fits in 63 bits
    let v1 = (v & MASK).wrapping_mul(MUL1);
    let v2 = ((v >> 16) & MASK).wrapping_mul(MUL2);
    ((v1.wrapping_add(v2) >> 32) as u32) as u64
}

/// Parse digits until a non-digit character is found.
fn try_parse_digits(mut s: &[u8], mut x: u64) -> (&[u8], u64) {
    // may cause overflows, to be handled later

    while s.len() >= 8 {
        let num = s.read_u64();
        if is_8digits(num) {
            x = x.wrapping_mul(1_0000_0000).wrapping_add(parse_8digits(num));
            s = &s[8..];
        } else {
            break;
        }
    }

    s = s.parse_digits(|digit| {
        x = x.wrapping_mul(10).wrapping_add(digit as _);
    });

    (s, x)
}

/// Parse up to 19 digits (the max that can be stored in a 64-bit integer).
fn try_parse_19digits(s_ref: &mut &[u8], x: &mut u64) {
    let mut s = *s_ref;

    while *x < MIN_19DIGIT_INT {
        if let Some((c, s_next)) = s.split_first() {
            let digit = c.wrapping_sub(b'0');

            if digit < 10 {
                *x = (*x * 10) + digit as u64; // no overflows here
                s = s_next;
            } else {
                break;
            }
        } else {
            break;
        }
    }

    *s_ref = s;
}

/// Parse the scientific notation component of a float.
fn parse_scientific(s_ref: &mut &[u8]) -> Option<i64> {
    let mut exponent = 0i64;
    let mut negative = false;

    let mut s = *s_ref;

    if let Some((&c, s_next)) = s.split_first() {
        negative = c == b'-';
        if c == b'-' || c == b'+' {
            s = s_next;
        }
    }

    if matches!(s.first(), Some(&x) if x.is_ascii_digit()) {
        *s_ref = s.parse_digits(|digit| {
            // no overflows here, saturate well before overflow
            if exponent < 0x10000 {
                exponent = 10 * exponent + digit as i64;
            }
        });
        if negative { Some(-exponent) } else { Some(exponent) }
    } else {
        *s_ref = s;
        None
    }
}

/// Parse a partial, non-special floating point number.
///
/// This creates a representation of the float as the
/// significant digits and the decimal exponent.
fn parse_partial_number(mut s: &[u8]) -> Option<(Number, usize)> {
    debug_assert!(!s.is_empty());

    // parse initial digits before dot
    let mut mantissa = 0_u64;
    let start = s;
    let tmp = try_parse_digits(s, mantissa);
    s = tmp.0;
    mantissa = tmp.1;
    let mut n_digits = s.offset_from(start);

    // handle dot with the following digits
    let mut n_after_dot = 0;
    let mut exponent = 0_i64;
    let int_end = s;

    if let Some((&b'.', s_next)) = s.split_first() {
        s = s_next;
        let before = s;
        let tmp = try_parse_digits(s, mantissa);
        s = tmp.0;
        mantissa = tmp.1;
        n_after_dot = s.offset_from(before);
        exponent = -n_after_dot as i64;
    }

    n_digits += n_after_dot;
    if n_digits == 0 {
        return None;
    }

    // handle scientific format
    let mut exp_number = 0_i64;
    if let Some((&c, s_next)) = s.split_first() {
        if c == b'e' || c == b'E' {
            s = s_next;
            // If None, we have no trailing digits after exponent, or an invalid float.
            exp_number = parse_scientific(&mut s)?;
            exponent += exp_number;
        }
    }

    let len = s.offset_from(start) as _;

    // handle uncommon case with many digits
    if n_digits <= 19 {
        return Some((Number { exponent, mantissa, negative: false, many_digits: false }, len));
    }

    n_digits -= 19;
    let mut many_digits = false;
    let mut p = start;
    while let Some((&c, p_next)) = p.split_first() {
        if c == b'.' || c == b'0' {
            n_digits -= c.saturating_sub(b'0' - 1) as isize;
            p = p_next;
        } else {
            break;
        }
    }
    if n_digits > 0 {
        // at this point we have more than 19 significant digits, let's try again
        many_digits = true;
        mantissa = 0;
        let mut s = start;
        try_parse_19digits(&mut s, &mut mantissa);
        exponent = if mantissa >= MIN_19DIGIT_INT {
            // big int
            int_end.offset_from(s)
        } else {
            s = &s[1..];
            let before = s;
            try_parse_19digits(&mut s, &mut mantissa);
            -s.offset_from(before)
        } as i64;
        // add back the explicit part
        exponent += exp_number;
    }

    Some((Number { exponent, mantissa, negative: false, many_digits }, len))
}

/// Try to parse a non-special floating point number,
/// as well as two slices with integer and fractional parts
/// and the parsed exponent.
pub fn parse_number(s: &[u8]) -> Option<Number> {
    if let Some((float, rest)) = parse_partial_number(s) {
        if rest == s.len() {
            return Some(float);
        }
    }
    None
}

/// Try to parse a special, non-finite float.
pub(crate) fn parse_inf_nan<F: RawFloat>(s: &[u8], negative: bool) -> Option<F> {
    // Since a valid string has at most the length 8, we can load
    // all relevant characters into a u64 and work from there.
    // This also generates much better code.

    let mut register;
    let len: usize;

    // All valid strings are either of length 8 or 3.
    if s.len() == 8 {
        register = s.read_u64();
        len = 8;
    } else if s.len() == 3 {
        let a = s[0] as u64;
        let b = s[1] as u64;
        let c = s[2] as u64;
        register = (c << 16) | (b << 8) | a;
        len = 3;
    } else {
        return None;
    }

    // Clear out the bits which turn ASCII uppercase characters into
    // lowercase characters. The resulting string is all uppercase.
    // What happens to other characters is irrelevant.
    register &= 0xDFDFDFDFDFDFDFDF;

    // u64 values corresponding to relevant cases
    const INF_3: u64 = 0x464E49; // "INF"
    const INF_8: u64 = 0x5954494E49464E49; // "INFINITY"
    const NAN: u64 = 0x4E414E; // "NAN"

    // Match register value to constant to parse string.
    // Also match on the string length to catch edge cases
    // like "inf\0\0\0\0\0".
    let float = match (register, len) {
        (INF_3, 3) => F::INFINITY,
        (INF_8, 8) => F::INFINITY,
        (NAN, 3) => F::NAN,
        _ => return None,
    };

    if negative { Some(-float) } else { Some(float) }
}