core/ffi/c_str.rs
1//! [`CStr`] and its related types.
2
3use crate::cmp::Ordering;
4use crate::error::Error;
5use crate::ffi::c_char;
6use crate::intrinsics::const_eval_select;
7use crate::iter::FusedIterator;
8use crate::marker::PhantomData;
9use crate::ptr::NonNull;
10use crate::slice::memchr;
11use crate::{fmt, ops, slice, str};
12
13// FIXME: because this is doc(inline)d, we *have* to use intra-doc links because the actual link
14// depends on where the item is being documented. however, since this is libcore, we can't
15// actually reference libstd or liballoc in intra-doc links. so, the best we can do is remove the
16// links to `CString` and `String` for now until a solution is developed
17
18/// Representation of a borrowed C string.
19///
20/// This type represents a borrowed reference to a nul-terminated
21/// array of bytes. It can be constructed safely from a <code>&[[u8]]</code>
22/// slice, or unsafely from a raw `*const c_char`. It can be expressed as a
23/// literal in the form `c"Hello world"`.
24///
25/// The `CStr` can then be converted to a Rust <code>&[str]</code> by performing
26/// UTF-8 validation, or into an owned `CString`.
27///
28/// `&CStr` is to `CString` as <code>&[str]</code> is to `String`: the former
29/// in each pair are borrowed references; the latter are owned
30/// strings.
31///
32/// Note that this structure does **not** have a guaranteed layout (the `repr(transparent)`
33/// notwithstanding) and should not be placed in the signatures of FFI functions.
34/// Instead, safe wrappers of FFI functions may leverage [`CStr::as_ptr`] and the unsafe
35/// [`CStr::from_ptr`] constructor to provide a safe interface to other consumers.
36///
37/// # Examples
38///
39/// Inspecting a foreign C string:
40///
41/// ```
42/// use std::ffi::CStr;
43/// use std::os::raw::c_char;
44///
45/// # /* Extern functions are awkward in doc comments - fake it instead
46/// extern "C" { fn my_string() -> *const c_char; }
47/// # */ unsafe extern "C" fn my_string() -> *const c_char { c"hello".as_ptr() }
48///
49/// unsafe {
50/// let slice = CStr::from_ptr(my_string());
51/// println!("string buffer size without nul terminator: {}", slice.to_bytes().len());
52/// }
53/// ```
54///
55/// Passing a Rust-originating C string:
56///
57/// ```
58/// use std::ffi::CStr;
59/// use std::os::raw::c_char;
60///
61/// fn work(data: &CStr) {
62/// unsafe extern "C" fn work_with(s: *const c_char) {}
63/// unsafe { work_with(data.as_ptr()) }
64/// }
65///
66/// let s = c"Hello world!";
67/// work(&s);
68/// ```
69///
70/// Converting a foreign C string into a Rust `String`:
71///
72/// ```
73/// use std::ffi::CStr;
74/// use std::os::raw::c_char;
75///
76/// # /* Extern functions are awkward in doc comments - fake it instead
77/// extern "C" { fn my_string() -> *const c_char; }
78/// # */ unsafe extern "C" fn my_string() -> *const c_char { c"hello".as_ptr() }
79///
80/// fn my_string_safe() -> String {
81/// let cstr = unsafe { CStr::from_ptr(my_string()) };
82/// // Get a copy-on-write Cow<'_, str>, then extract the
83/// // allocated String (or allocate a fresh one if needed).
84/// cstr.to_string_lossy().into_owned()
85/// }
86///
87/// println!("string: {}", my_string_safe());
88/// ```
89///
90/// [str]: prim@str "str"
91#[derive(PartialEq, Eq, Hash)]
92#[stable(feature = "core_c_str", since = "1.64.0")]
93#[rustc_diagnostic_item = "cstr_type"]
94#[rustc_has_incoherent_inherent_impls]
95#[lang = "CStr"]
96// `fn from` in `impl From<&CStr> for Box<CStr>` current implementation relies
97// on `CStr` being layout-compatible with `[u8]`.
98// However, `CStr` layout is considered an implementation detail and must not be relied upon. We
99// want `repr(transparent)` but we don't want it to show up in rustdoc, so we hide it under
100// `cfg(doc)`. This is an ad-hoc implementation of attribute privacy.
101#[repr(transparent)]
102pub struct CStr {
103 // FIXME: this should not be represented with a DST slice but rather with
104 // just a raw `c_char` along with some form of marker to make
105 // this an unsized type. Essentially `sizeof(&CStr)` should be the
106 // same as `sizeof(&c_char)` but `CStr` should be an unsized type.
107 inner: [c_char],
108}
109
110/// An error indicating that a nul byte was not in the expected position.
111///
112/// The slice used to create a [`CStr`] must have one and only one nul byte,
113/// positioned at the end.
114///
115/// This error is created by the [`CStr::from_bytes_with_nul`] method.
116/// See its documentation for more.
117///
118/// # Examples
119///
120/// ```
121/// use std::ffi::{CStr, FromBytesWithNulError};
122///
123/// let _: FromBytesWithNulError = CStr::from_bytes_with_nul(b"f\0oo").unwrap_err();
124/// ```
125#[derive(Clone, Copy, PartialEq, Eq, Debug)]
126#[stable(feature = "core_c_str", since = "1.64.0")]
127pub enum FromBytesWithNulError {
128 /// Data provided contains an interior nul byte at byte `position`.
129 InteriorNul {
130 /// The position of the interior nul byte.
131 position: usize,
132 },
133 /// Data provided is not nul terminated.
134 NotNulTerminated,
135}
136
137#[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")]
138impl Error for FromBytesWithNulError {
139 #[allow(deprecated)]
140 fn description(&self) -> &str {
141 match self {
142 Self::InteriorNul { .. } => "data provided contains an interior nul byte",
143 Self::NotNulTerminated => "data provided is not nul terminated",
144 }
145 }
146}
147
148/// An error indicating that no nul byte was present.
149///
150/// A slice used to create a [`CStr`] must contain a nul byte somewhere
151/// within the slice.
152///
153/// This error is created by the [`CStr::from_bytes_until_nul`] method.
154#[derive(Clone, PartialEq, Eq, Debug)]
155#[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
156pub struct FromBytesUntilNulError(());
157
158#[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
159impl fmt::Display for FromBytesUntilNulError {
160 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
161 write!(f, "data provided does not contain a nul")
162 }
163}
164
165/// Shows the underlying bytes as a normal string, with invalid UTF-8
166/// presented as hex escape sequences.
167#[stable(feature = "cstr_debug", since = "1.3.0")]
168impl fmt::Debug for CStr {
169 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
170 fmt::Debug::fmt(crate::bstr::ByteStr::from_bytes(self.to_bytes()), f)
171 }
172}
173
174#[stable(feature = "cstr_default", since = "1.10.0")]
175impl Default for &CStr {
176 #[inline]
177 fn default() -> Self {
178 const SLICE: &[c_char] = &[0];
179 // SAFETY: `SLICE` is indeed pointing to a valid nul-terminated string.
180 unsafe { CStr::from_ptr(SLICE.as_ptr()) }
181 }
182}
183
184#[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")]
185impl fmt::Display for FromBytesWithNulError {
186 #[allow(deprecated, deprecated_in_future)]
187 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
188 f.write_str(self.description())?;
189 if let Self::InteriorNul { position } = self {
190 write!(f, " at byte pos {position}")?;
191 }
192 Ok(())
193 }
194}
195
196impl CStr {
197 /// Wraps a raw C string with a safe C string wrapper.
198 ///
199 /// This function will wrap the provided `ptr` with a `CStr` wrapper, which
200 /// allows inspection and interoperation of non-owned C strings. The total
201 /// size of the terminated buffer must be smaller than [`isize::MAX`] **bytes**
202 /// in memory (a restriction from [`slice::from_raw_parts`]).
203 ///
204 /// # Safety
205 ///
206 /// * The memory pointed to by `ptr` must contain a valid nul terminator at the
207 /// end of the string.
208 ///
209 /// * `ptr` must be [valid] for reads of bytes up to and including the nul terminator.
210 /// This means in particular:
211 ///
212 /// * The entire memory range of this `CStr` must be contained within a single allocation!
213 /// * `ptr` must be non-null even for a zero-length cstr.
214 ///
215 /// * The memory referenced by the returned `CStr` must not be mutated for
216 /// the duration of lifetime `'a`.
217 ///
218 /// * The nul terminator must be within `isize::MAX` from `ptr`
219 ///
220 /// > **Note**: This operation is intended to be a 0-cost cast but it is
221 /// > currently implemented with an up-front calculation of the length of
222 /// > the string. This is not guaranteed to always be the case.
223 ///
224 /// # Caveat
225 ///
226 /// The lifetime for the returned slice is inferred from its usage. To prevent accidental misuse,
227 /// it's suggested to tie the lifetime to whichever source lifetime is safe in the context,
228 /// such as by providing a helper function taking the lifetime of a host value for the slice,
229 /// or by explicit annotation.
230 ///
231 /// # Examples
232 ///
233 /// ```
234 /// use std::ffi::{c_char, CStr};
235 ///
236 /// fn my_string() -> *const c_char {
237 /// c"hello".as_ptr()
238 /// }
239 ///
240 /// unsafe {
241 /// let slice = CStr::from_ptr(my_string());
242 /// assert_eq!(slice.to_str().unwrap(), "hello");
243 /// }
244 /// ```
245 ///
246 /// ```
247 /// use std::ffi::{c_char, CStr};
248 ///
249 /// const HELLO_PTR: *const c_char = {
250 /// const BYTES: &[u8] = b"Hello, world!\0";
251 /// BYTES.as_ptr().cast()
252 /// };
253 /// const HELLO: &CStr = unsafe { CStr::from_ptr(HELLO_PTR) };
254 ///
255 /// assert_eq!(c"Hello, world!", HELLO);
256 /// ```
257 ///
258 /// [valid]: core::ptr#safety
259 #[inline] // inline is necessary for codegen to see strlen.
260 #[must_use]
261 #[stable(feature = "rust1", since = "1.0.0")]
262 #[rustc_const_stable(feature = "const_cstr_from_ptr", since = "1.81.0")]
263 pub const unsafe fn from_ptr<'a>(ptr: *const c_char) -> &'a CStr {
264 // SAFETY: The caller has provided a pointer that points to a valid C
265 // string with a NUL terminator less than `isize::MAX` from `ptr`.
266 let len = unsafe { strlen(ptr) };
267
268 // SAFETY: The caller has provided a valid pointer with length less than
269 // `isize::MAX`, so `from_raw_parts` is safe. The content remains valid
270 // and doesn't change for the lifetime of the returned `CStr`. This
271 // means the call to `from_bytes_with_nul_unchecked` is correct.
272 //
273 // The cast from c_char to u8 is ok because a c_char is always one byte.
274 unsafe { Self::from_bytes_with_nul_unchecked(slice::from_raw_parts(ptr.cast(), len + 1)) }
275 }
276
277 /// Creates a C string wrapper from a byte slice with any number of nuls.
278 ///
279 /// This method will create a `CStr` from any byte slice that contains at
280 /// least one nul byte. Unlike with [`CStr::from_bytes_with_nul`], the caller
281 /// does not need to know where the nul byte is located.
282 ///
283 /// If the first byte is a nul character, this method will return an
284 /// empty `CStr`. If multiple nul characters are present, the `CStr` will
285 /// end at the first one.
286 ///
287 /// If the slice only has a single nul byte at the end, this method is
288 /// equivalent to [`CStr::from_bytes_with_nul`].
289 ///
290 /// # Examples
291 /// ```
292 /// use std::ffi::CStr;
293 ///
294 /// let mut buffer = [0u8; 16];
295 /// unsafe {
296 /// // Here we might call an unsafe C function that writes a string
297 /// // into the buffer.
298 /// let buf_ptr = buffer.as_mut_ptr();
299 /// buf_ptr.write_bytes(b'A', 8);
300 /// }
301 /// // Attempt to extract a C nul-terminated string from the buffer.
302 /// let c_str = CStr::from_bytes_until_nul(&buffer[..]).unwrap();
303 /// assert_eq!(c_str.to_str().unwrap(), "AAAAAAAA");
304 /// ```
305 ///
306 #[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
307 #[rustc_const_stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
308 pub const fn from_bytes_until_nul(bytes: &[u8]) -> Result<&CStr, FromBytesUntilNulError> {
309 let nul_pos = memchr::memchr(0, bytes);
310 match nul_pos {
311 Some(nul_pos) => {
312 // FIXME(const-hack) replace with range index
313 // SAFETY: nul_pos + 1 <= bytes.len()
314 let subslice = unsafe { crate::slice::from_raw_parts(bytes.as_ptr(), nul_pos + 1) };
315 // SAFETY: We know there is a nul byte at nul_pos, so this slice
316 // (ending at the nul byte) is a well-formed C string.
317 Ok(unsafe { CStr::from_bytes_with_nul_unchecked(subslice) })
318 }
319 None => Err(FromBytesUntilNulError(())),
320 }
321 }
322
323 /// Creates a C string wrapper from a byte slice with exactly one nul
324 /// terminator.
325 ///
326 /// This function will cast the provided `bytes` to a `CStr`
327 /// wrapper after ensuring that the byte slice is nul-terminated
328 /// and does not contain any interior nul bytes.
329 ///
330 /// If the nul byte may not be at the end,
331 /// [`CStr::from_bytes_until_nul`] can be used instead.
332 ///
333 /// # Examples
334 ///
335 /// ```
336 /// use std::ffi::CStr;
337 ///
338 /// let cstr = CStr::from_bytes_with_nul(b"hello\0");
339 /// assert_eq!(cstr, Ok(c"hello"));
340 /// ```
341 ///
342 /// Creating a `CStr` without a trailing nul terminator is an error:
343 ///
344 /// ```
345 /// use std::ffi::{CStr, FromBytesWithNulError};
346 ///
347 /// let cstr = CStr::from_bytes_with_nul(b"hello");
348 /// assert_eq!(cstr, Err(FromBytesWithNulError::NotNulTerminated));
349 /// ```
350 ///
351 /// Creating a `CStr` with an interior nul byte is an error:
352 ///
353 /// ```
354 /// use std::ffi::{CStr, FromBytesWithNulError};
355 ///
356 /// let cstr = CStr::from_bytes_with_nul(b"he\0llo\0");
357 /// assert_eq!(cstr, Err(FromBytesWithNulError::InteriorNul { position: 2 }));
358 /// ```
359 #[stable(feature = "cstr_from_bytes", since = "1.10.0")]
360 #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
361 pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, FromBytesWithNulError> {
362 let nul_pos = memchr::memchr(0, bytes);
363 match nul_pos {
364 Some(nul_pos) if nul_pos + 1 == bytes.len() => {
365 // SAFETY: We know there is only one nul byte, at the end
366 // of the byte slice.
367 Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
368 }
369 Some(position) => Err(FromBytesWithNulError::InteriorNul { position }),
370 None => Err(FromBytesWithNulError::NotNulTerminated),
371 }
372 }
373
374 /// Unsafely creates a C string wrapper from a byte slice.
375 ///
376 /// This function will cast the provided `bytes` to a `CStr` wrapper without
377 /// performing any sanity checks.
378 ///
379 /// # Safety
380 /// The provided slice **must** be nul-terminated and not contain any interior
381 /// nul bytes.
382 ///
383 /// # Examples
384 ///
385 /// ```
386 /// use std::ffi::CStr;
387 ///
388 /// let bytes = b"Hello world!\0";
389 ///
390 /// let cstr = unsafe { CStr::from_bytes_with_nul_unchecked(bytes) };
391 /// assert_eq!(cstr.to_bytes_with_nul(), bytes);
392 /// ```
393 #[inline]
394 #[must_use]
395 #[stable(feature = "cstr_from_bytes", since = "1.10.0")]
396 #[rustc_const_stable(feature = "const_cstr_unchecked", since = "1.59.0")]
397 #[rustc_allow_const_fn_unstable(const_eval_select)]
398 pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
399 const_eval_select!(
400 @capture { bytes: &[u8] } -> &CStr:
401 if const {
402 // Saturating so that an empty slice panics in the assert with a good
403 // message, not here due to underflow.
404 let mut i = bytes.len().saturating_sub(1);
405 assert!(!bytes.is_empty() && bytes[i] == 0, "input was not nul-terminated");
406
407 // Ending nul byte exists, skip to the rest.
408 while i != 0 {
409 i -= 1;
410 let byte = bytes[i];
411 assert!(byte != 0, "input contained interior nul");
412 }
413
414 // SAFETY: See runtime cast comment below.
415 unsafe { &*(bytes as *const [u8] as *const CStr) }
416 } else {
417 // Chance at catching some UB at runtime with debug builds.
418 debug_assert!(!bytes.is_empty() && bytes[bytes.len() - 1] == 0);
419
420 // SAFETY: Casting to CStr is safe because its internal representation
421 // is a [u8] too (safe only inside std).
422 // Dereferencing the obtained pointer is safe because it comes from a
423 // reference. Making a reference is then safe because its lifetime
424 // is bound by the lifetime of the given `bytes`.
425 unsafe { &*(bytes as *const [u8] as *const CStr) }
426 }
427 )
428 }
429
430 /// Returns the inner pointer to this C string.
431 ///
432 /// The returned pointer will be valid for as long as `self` is, and points
433 /// to a contiguous region of memory terminated with a 0 byte to represent
434 /// the end of the string.
435 ///
436 /// The type of the returned pointer is
437 /// [`*const c_char`][crate::ffi::c_char], and whether it's
438 /// an alias for `*const i8` or `*const u8` is platform-specific.
439 ///
440 /// **WARNING**
441 ///
442 /// The returned pointer is read-only; writing to it (including passing it
443 /// to C code that writes to it) causes undefined behavior.
444 ///
445 /// It is your responsibility to make sure that the underlying memory is not
446 /// freed too early. For example, the following code will cause undefined
447 /// behavior when `ptr` is used inside the `unsafe` block:
448 ///
449 /// ```no_run
450 /// # #![expect(dangling_pointers_from_temporaries)]
451 /// use std::ffi::{CStr, CString};
452 ///
453 /// // 💀 The meaning of this entire program is undefined,
454 /// // 💀 and nothing about its behavior is guaranteed,
455 /// // 💀 not even that its behavior resembles the code as written,
456 /// // 💀 just because it contains a single instance of undefined behavior!
457 ///
458 /// // 🚨 creates a dangling pointer to a temporary `CString`
459 /// // 🚨 that is deallocated at the end of the statement
460 /// let ptr = CString::new("Hi!".to_uppercase()).unwrap().as_ptr();
461 ///
462 /// // without undefined behavior, you would expect that `ptr` equals:
463 /// dbg!(CStr::from_bytes_with_nul(b"HI!\0").unwrap());
464 ///
465 /// // 🙏 Possibly the program behaved as expected so far,
466 /// // 🙏 and this just shows `ptr` is now garbage..., but
467 /// // 💀 this violates `CStr::from_ptr`'s safety contract
468 /// // 💀 leading to a dereference of a dangling pointer,
469 /// // 💀 which is immediate undefined behavior.
470 /// // 💀 *BOOM*, you're dead, your entire program has no meaning.
471 /// dbg!(unsafe { CStr::from_ptr(ptr) });
472 /// ```
473 ///
474 /// This happens because, the pointer returned by `as_ptr` does not carry any
475 /// lifetime information, and the `CString` is deallocated immediately after
476 /// the expression that it is part of has been evaluated.
477 /// To fix the problem, bind the `CString` to a local variable:
478 ///
479 /// ```
480 /// use std::ffi::{CStr, CString};
481 ///
482 /// let c_str = CString::new("Hi!".to_uppercase()).unwrap();
483 /// let ptr = c_str.as_ptr();
484 ///
485 /// assert_eq!(unsafe { CStr::from_ptr(ptr) }, c"HI!");
486 /// ```
487 #[inline]
488 #[must_use]
489 #[stable(feature = "rust1", since = "1.0.0")]
490 #[rustc_const_stable(feature = "const_str_as_ptr", since = "1.32.0")]
491 #[rustc_as_ptr]
492 #[rustc_never_returns_null_ptr]
493 pub const fn as_ptr(&self) -> *const c_char {
494 self.inner.as_ptr()
495 }
496
497 /// We could eventually expose this publicly, if we wanted.
498 #[inline]
499 #[must_use]
500 const fn as_non_null_ptr(&self) -> NonNull<c_char> {
501 // FIXME(const_trait_impl) replace with `NonNull::from`
502 // SAFETY: a reference is never null
503 unsafe { NonNull::new_unchecked(&self.inner as *const [c_char] as *mut [c_char]) }
504 .as_non_null_ptr()
505 }
506
507 /// Returns the length of `self`. Like C's `strlen`, this does not include the nul terminator.
508 ///
509 /// > **Note**: This method is currently implemented as a constant-time
510 /// > cast, but it is planned to alter its definition in the future to
511 /// > perform the length calculation whenever this method is called.
512 ///
513 /// # Examples
514 ///
515 /// ```
516 /// assert_eq!(c"foo".count_bytes(), 3);
517 /// assert_eq!(c"".count_bytes(), 0);
518 /// ```
519 #[inline]
520 #[must_use]
521 #[doc(alias("len", "strlen"))]
522 #[stable(feature = "cstr_count_bytes", since = "1.79.0")]
523 #[rustc_const_stable(feature = "const_cstr_from_ptr", since = "1.81.0")]
524 pub const fn count_bytes(&self) -> usize {
525 self.inner.len() - 1
526 }
527
528 /// Returns `true` if `self.to_bytes()` has a length of 0.
529 ///
530 /// # Examples
531 ///
532 /// ```
533 /// assert!(!c"foo".is_empty());
534 /// assert!(c"".is_empty());
535 /// ```
536 #[inline]
537 #[stable(feature = "cstr_is_empty", since = "1.71.0")]
538 #[rustc_const_stable(feature = "cstr_is_empty", since = "1.71.0")]
539 pub const fn is_empty(&self) -> bool {
540 // SAFETY: We know there is at least one byte; for empty strings it
541 // is the NUL terminator.
542 // FIXME(const-hack): use get_unchecked
543 unsafe { *self.inner.as_ptr() == 0 }
544 }
545
546 /// Converts this C string to a byte slice.
547 ///
548 /// The returned slice will **not** contain the trailing nul terminator that this C
549 /// string has.
550 ///
551 /// > **Note**: This method is currently implemented as a constant-time
552 /// > cast, but it is planned to alter its definition in the future to
553 /// > perform the length calculation whenever this method is called.
554 ///
555 /// # Examples
556 ///
557 /// ```
558 /// assert_eq!(c"foo".to_bytes(), b"foo");
559 /// ```
560 #[inline]
561 #[must_use = "this returns the result of the operation, \
562 without modifying the original"]
563 #[stable(feature = "rust1", since = "1.0.0")]
564 #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
565 pub const fn to_bytes(&self) -> &[u8] {
566 let bytes = self.to_bytes_with_nul();
567 // FIXME(const-hack) replace with range index
568 // SAFETY: to_bytes_with_nul returns slice with length at least 1
569 unsafe { slice::from_raw_parts(bytes.as_ptr(), bytes.len() - 1) }
570 }
571
572 /// Converts this C string to a byte slice containing the trailing 0 byte.
573 ///
574 /// This function is the equivalent of [`CStr::to_bytes`] except that it
575 /// will retain the trailing nul terminator instead of chopping it off.
576 ///
577 /// > **Note**: This method is currently implemented as a 0-cost cast, but
578 /// > it is planned to alter its definition in the future to perform the
579 /// > length calculation whenever this method is called.
580 ///
581 /// # Examples
582 ///
583 /// ```
584 /// assert_eq!(c"foo".to_bytes_with_nul(), b"foo\0");
585 /// ```
586 #[inline]
587 #[must_use = "this returns the result of the operation, \
588 without modifying the original"]
589 #[stable(feature = "rust1", since = "1.0.0")]
590 #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
591 pub const fn to_bytes_with_nul(&self) -> &[u8] {
592 // SAFETY: Transmuting a slice of `c_char`s to a slice of `u8`s
593 // is safe on all supported targets.
594 unsafe { &*((&raw const self.inner) as *const [u8]) }
595 }
596
597 /// Iterates over the bytes in this C string.
598 ///
599 /// The returned iterator will **not** contain the trailing nul terminator
600 /// that this C string has.
601 ///
602 /// # Examples
603 ///
604 /// ```
605 /// #![feature(cstr_bytes)]
606 ///
607 /// assert!(c"foo".bytes().eq(*b"foo"));
608 /// ```
609 #[inline]
610 #[unstable(feature = "cstr_bytes", issue = "112115")]
611 pub fn bytes(&self) -> Bytes<'_> {
612 Bytes::new(self)
613 }
614
615 /// Yields a <code>&[str]</code> slice if the `CStr` contains valid UTF-8.
616 ///
617 /// If the contents of the `CStr` are valid UTF-8 data, this
618 /// function will return the corresponding <code>&[str]</code> slice. Otherwise,
619 /// it will return an error with details of where UTF-8 validation failed.
620 ///
621 /// [str]: prim@str "str"
622 ///
623 /// # Examples
624 ///
625 /// ```
626 /// assert_eq!(c"foo".to_str(), Ok("foo"));
627 /// ```
628 #[stable(feature = "cstr_to_str", since = "1.4.0")]
629 #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
630 pub const fn to_str(&self) -> Result<&str, str::Utf8Error> {
631 // N.B., when `CStr` is changed to perform the length check in `.to_bytes()`
632 // instead of in `from_ptr()`, it may be worth considering if this should
633 // be rewritten to do the UTF-8 check inline with the length calculation
634 // instead of doing it afterwards.
635 str::from_utf8(self.to_bytes())
636 }
637
638 /// Returns an object that implements [`Display`] for safely printing a [`CStr`] that may
639 /// contain non-Unicode data.
640 ///
641 /// Behaves as if `self` were first lossily converted to a `str`, with invalid UTF-8 presented
642 /// as the Unicode replacement character: �.
643 ///
644 /// [`Display`]: fmt::Display
645 ///
646 /// # Examples
647 ///
648 /// ```
649 /// #![feature(cstr_display)]
650 ///
651 /// let cstr = c"Hello, world!";
652 /// println!("{}", cstr.display());
653 /// ```
654 #[unstable(feature = "cstr_display", issue = "139984")]
655 #[must_use = "this does not display the `CStr`; \
656 it returns an object that can be displayed"]
657 #[inline]
658 pub fn display(&self) -> impl fmt::Display {
659 crate::bstr::ByteStr::from_bytes(self.to_bytes())
660 }
661}
662
663#[stable(feature = "c_string_eq_c_str", since = "CURRENT_RUSTC_VERSION")]
664impl PartialEq<&Self> for CStr {
665 #[inline]
666 fn eq(&self, other: &&Self) -> bool {
667 *self == **other
668 }
669
670 #[inline]
671 fn ne(&self, other: &&Self) -> bool {
672 *self != **other
673 }
674}
675
676// `.to_bytes()` representations are compared instead of the inner `[c_char]`s,
677// because `c_char` is `i8` (not `u8`) on some platforms.
678// That is why this is implemented manually and not derived.
679#[stable(feature = "rust1", since = "1.0.0")]
680impl PartialOrd for CStr {
681 #[inline]
682 fn partial_cmp(&self, other: &CStr) -> Option<Ordering> {
683 self.to_bytes().partial_cmp(&other.to_bytes())
684 }
685}
686
687#[stable(feature = "rust1", since = "1.0.0")]
688impl Ord for CStr {
689 #[inline]
690 fn cmp(&self, other: &CStr) -> Ordering {
691 self.to_bytes().cmp(&other.to_bytes())
692 }
693}
694
695#[stable(feature = "cstr_range_from", since = "1.47.0")]
696impl ops::Index<ops::RangeFrom<usize>> for CStr {
697 type Output = CStr;
698
699 #[inline]
700 fn index(&self, index: ops::RangeFrom<usize>) -> &CStr {
701 let bytes = self.to_bytes_with_nul();
702 // we need to manually check the starting index to account for the null
703 // byte, since otherwise we could get an empty string that doesn't end
704 // in a null.
705 if index.start < bytes.len() {
706 // SAFETY: Non-empty tail of a valid `CStr` is still a valid `CStr`.
707 unsafe { CStr::from_bytes_with_nul_unchecked(&bytes[index.start..]) }
708 } else {
709 panic!(
710 "index out of bounds: the len is {} but the index is {}",
711 bytes.len(),
712 index.start
713 );
714 }
715 }
716}
717
718#[stable(feature = "cstring_asref", since = "1.7.0")]
719impl AsRef<CStr> for CStr {
720 #[inline]
721 fn as_ref(&self) -> &CStr {
722 self
723 }
724}
725
726/// Calculate the length of a nul-terminated string. Defers to C's `strlen` when possible.
727///
728/// # Safety
729///
730/// The pointer must point to a valid buffer that contains a NUL terminator. The NUL must be
731/// located within `isize::MAX` from `ptr`.
732#[inline]
733#[unstable(feature = "cstr_internals", issue = "none")]
734#[rustc_allow_const_fn_unstable(const_eval_select)]
735const unsafe fn strlen(ptr: *const c_char) -> usize {
736 const_eval_select!(
737 @capture { s: *const c_char = ptr } -> usize:
738 if const {
739 let mut len = 0;
740
741 // SAFETY: Outer caller has provided a pointer to a valid C string.
742 while unsafe { *s.add(len) } != 0 {
743 len += 1;
744 }
745
746 len
747 } else {
748 unsafe extern "C" {
749 /// Provided by libc or compiler_builtins.
750 fn strlen(s: *const c_char) -> usize;
751 }
752
753 // SAFETY: Outer caller has provided a pointer to a valid C string.
754 unsafe { strlen(s) }
755 }
756 )
757}
758
759/// An iterator over the bytes of a [`CStr`], without the nul terminator.
760///
761/// This struct is created by the [`bytes`] method on [`CStr`].
762/// See its documentation for more.
763///
764/// [`bytes`]: CStr::bytes
765#[must_use = "iterators are lazy and do nothing unless consumed"]
766#[unstable(feature = "cstr_bytes", issue = "112115")]
767#[derive(Clone, Debug)]
768pub struct Bytes<'a> {
769 // since we know the string is nul-terminated, we only need one pointer
770 ptr: NonNull<u8>,
771 phantom: PhantomData<&'a [c_char]>,
772}
773
774#[unstable(feature = "cstr_bytes", issue = "112115")]
775unsafe impl Send for Bytes<'_> {}
776
777#[unstable(feature = "cstr_bytes", issue = "112115")]
778unsafe impl Sync for Bytes<'_> {}
779
780impl<'a> Bytes<'a> {
781 #[inline]
782 fn new(s: &'a CStr) -> Self {
783 Self { ptr: s.as_non_null_ptr().cast(), phantom: PhantomData }
784 }
785
786 #[inline]
787 fn is_empty(&self) -> bool {
788 // SAFETY: We uphold that the pointer is always valid to dereference
789 // by starting with a valid C string and then never incrementing beyond
790 // the nul terminator.
791 unsafe { self.ptr.read() == 0 }
792 }
793}
794
795#[unstable(feature = "cstr_bytes", issue = "112115")]
796impl Iterator for Bytes<'_> {
797 type Item = u8;
798
799 #[inline]
800 fn next(&mut self) -> Option<u8> {
801 // SAFETY: We only choose a pointer from a valid C string, which must
802 // be non-null and contain at least one value. Since we always stop at
803 // the nul terminator, which is guaranteed to exist, we can assume that
804 // the pointer is non-null and valid. This lets us safely dereference
805 // it and assume that adding 1 will create a new, non-null, valid
806 // pointer.
807 unsafe {
808 let ret = self.ptr.read();
809 if ret == 0 {
810 None
811 } else {
812 self.ptr = self.ptr.add(1);
813 Some(ret)
814 }
815 }
816 }
817
818 #[inline]
819 fn size_hint(&self) -> (usize, Option<usize>) {
820 if self.is_empty() { (0, Some(0)) } else { (1, None) }
821 }
822
823 #[inline]
824 fn count(self) -> usize {
825 // SAFETY: We always hold a valid pointer to a C string
826 unsafe { strlen(self.ptr.as_ptr().cast()) }
827 }
828}
829
830#[unstable(feature = "cstr_bytes", issue = "112115")]
831impl FusedIterator for Bytes<'_> {}