core/ffi/
c_str.rs

1//! [`CStr`] and its related types.
2
3use crate::cmp::Ordering;
4use crate::error::Error;
5use crate::ffi::c_char;
6use crate::intrinsics::const_eval_select;
7use crate::iter::FusedIterator;
8use crate::marker::PhantomData;
9use crate::ptr::NonNull;
10use crate::slice::memchr;
11use crate::{fmt, ops, slice, str};
12
13// FIXME: because this is doc(inline)d, we *have* to use intra-doc links because the actual link
14//   depends on where the item is being documented. however, since this is libcore, we can't
15//   actually reference libstd or liballoc in intra-doc links. so, the best we can do is remove the
16//   links to `CString` and `String` for now until a solution is developed
17
18/// Representation of a borrowed C string.
19///
20/// This type represents a borrowed reference to a nul-terminated
21/// array of bytes. It can be constructed safely from a <code>&[[u8]]</code>
22/// slice, or unsafely from a raw `*const c_char`. It can be expressed as a
23/// literal in the form `c"Hello world"`.
24///
25/// The `CStr` can then be converted to a Rust <code>&[str]</code> by performing
26/// UTF-8 validation, or into an owned `CString`.
27///
28/// `&CStr` is to `CString` as <code>&[str]</code> is to `String`: the former
29/// in each pair are borrowed references; the latter are owned
30/// strings.
31///
32/// Note that this structure does **not** have a guaranteed layout (the `repr(transparent)`
33/// notwithstanding) and should not be placed in the signatures of FFI functions.
34/// Instead, safe wrappers of FFI functions may leverage [`CStr::as_ptr`] and the unsafe
35/// [`CStr::from_ptr`] constructor to provide a safe interface to other consumers.
36///
37/// # Examples
38///
39/// Inspecting a foreign C string:
40///
41/// ```
42/// use std::ffi::CStr;
43/// use std::os::raw::c_char;
44///
45/// # /* Extern functions are awkward in doc comments - fake it instead
46/// extern "C" { fn my_string() -> *const c_char; }
47/// # */ unsafe extern "C" fn my_string() -> *const c_char { c"hello".as_ptr() }
48///
49/// unsafe {
50///     let slice = CStr::from_ptr(my_string());
51///     println!("string buffer size without nul terminator: {}", slice.to_bytes().len());
52/// }
53/// ```
54///
55/// Passing a Rust-originating C string:
56///
57/// ```
58/// use std::ffi::CStr;
59/// use std::os::raw::c_char;
60///
61/// fn work(data: &CStr) {
62///     unsafe extern "C" fn work_with(s: *const c_char) {}
63///     unsafe { work_with(data.as_ptr()) }
64/// }
65///
66/// let s = c"Hello world!";
67/// work(&s);
68/// ```
69///
70/// Converting a foreign C string into a Rust `String`:
71///
72/// ```
73/// use std::ffi::CStr;
74/// use std::os::raw::c_char;
75///
76/// # /* Extern functions are awkward in doc comments - fake it instead
77/// extern "C" { fn my_string() -> *const c_char; }
78/// # */ unsafe extern "C" fn my_string() -> *const c_char { c"hello".as_ptr() }
79///
80/// fn my_string_safe() -> String {
81///     let cstr = unsafe { CStr::from_ptr(my_string()) };
82///     // Get a copy-on-write Cow<'_, str>, then extract the
83///     // allocated String (or allocate a fresh one if needed).
84///     cstr.to_string_lossy().into_owned()
85/// }
86///
87/// println!("string: {}", my_string_safe());
88/// ```
89///
90/// [str]: prim@str "str"
91#[derive(PartialEq, Eq, Hash)]
92#[stable(feature = "core_c_str", since = "1.64.0")]
93#[rustc_diagnostic_item = "cstr_type"]
94#[rustc_has_incoherent_inherent_impls]
95#[lang = "CStr"]
96// `fn from` in `impl From<&CStr> for Box<CStr>` current implementation relies
97// on `CStr` being layout-compatible with `[u8]`.
98// However, `CStr` layout is considered an implementation detail and must not be relied upon. We
99// want `repr(transparent)` but we don't want it to show up in rustdoc, so we hide it under
100// `cfg(doc)`. This is an ad-hoc implementation of attribute privacy.
101#[repr(transparent)]
102pub struct CStr {
103    // FIXME: this should not be represented with a DST slice but rather with
104    //        just a raw `c_char` along with some form of marker to make
105    //        this an unsized type. Essentially `sizeof(&CStr)` should be the
106    //        same as `sizeof(&c_char)` but `CStr` should be an unsized type.
107    inner: [c_char],
108}
109
110/// An error indicating that a nul byte was not in the expected position.
111///
112/// The slice used to create a [`CStr`] must have one and only one nul byte,
113/// positioned at the end.
114///
115/// This error is created by the [`CStr::from_bytes_with_nul`] method.
116/// See its documentation for more.
117///
118/// # Examples
119///
120/// ```
121/// use std::ffi::{CStr, FromBytesWithNulError};
122///
123/// let _: FromBytesWithNulError = CStr::from_bytes_with_nul(b"f\0oo").unwrap_err();
124/// ```
125#[derive(Clone, Copy, PartialEq, Eq, Debug)]
126#[stable(feature = "core_c_str", since = "1.64.0")]
127pub enum FromBytesWithNulError {
128    /// Data provided contains an interior nul byte at byte `position`.
129    InteriorNul {
130        /// The position of the interior nul byte.
131        position: usize,
132    },
133    /// Data provided is not nul terminated.
134    NotNulTerminated,
135}
136
137#[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")]
138impl Error for FromBytesWithNulError {
139    #[allow(deprecated)]
140    fn description(&self) -> &str {
141        match self {
142            Self::InteriorNul { .. } => "data provided contains an interior nul byte",
143            Self::NotNulTerminated => "data provided is not nul terminated",
144        }
145    }
146}
147
148/// An error indicating that no nul byte was present.
149///
150/// A slice used to create a [`CStr`] must contain a nul byte somewhere
151/// within the slice.
152///
153/// This error is created by the [`CStr::from_bytes_until_nul`] method.
154#[derive(Clone, PartialEq, Eq, Debug)]
155#[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
156pub struct FromBytesUntilNulError(());
157
158#[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
159impl fmt::Display for FromBytesUntilNulError {
160    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
161        write!(f, "data provided does not contain a nul")
162    }
163}
164
165/// Shows the underlying bytes as a normal string, with invalid UTF-8
166/// presented as hex escape sequences.
167#[stable(feature = "cstr_debug", since = "1.3.0")]
168impl fmt::Debug for CStr {
169    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
170        fmt::Debug::fmt(crate::bstr::ByteStr::from_bytes(self.to_bytes()), f)
171    }
172}
173
174#[stable(feature = "cstr_default", since = "1.10.0")]
175impl Default for &CStr {
176    #[inline]
177    fn default() -> Self {
178        const SLICE: &[c_char] = &[0];
179        // SAFETY: `SLICE` is indeed pointing to a valid nul-terminated string.
180        unsafe { CStr::from_ptr(SLICE.as_ptr()) }
181    }
182}
183
184#[stable(feature = "frombyteswithnulerror_impls", since = "1.17.0")]
185impl fmt::Display for FromBytesWithNulError {
186    #[allow(deprecated, deprecated_in_future)]
187    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
188        f.write_str(self.description())?;
189        if let Self::InteriorNul { position } = self {
190            write!(f, " at byte pos {position}")?;
191        }
192        Ok(())
193    }
194}
195
196impl CStr {
197    /// Wraps a raw C string with a safe C string wrapper.
198    ///
199    /// This function will wrap the provided `ptr` with a `CStr` wrapper, which
200    /// allows inspection and interoperation of non-owned C strings. The total
201    /// size of the terminated buffer must be smaller than [`isize::MAX`] **bytes**
202    /// in memory (a restriction from [`slice::from_raw_parts`]).
203    ///
204    /// # Safety
205    ///
206    /// * The memory pointed to by `ptr` must contain a valid nul terminator at the
207    ///   end of the string.
208    ///
209    /// * `ptr` must be [valid] for reads of bytes up to and including the nul terminator.
210    ///   This means in particular:
211    ///
212    ///     * The entire memory range of this `CStr` must be contained within a single allocation!
213    ///     * `ptr` must be non-null even for a zero-length cstr.
214    ///
215    /// * The memory referenced by the returned `CStr` must not be mutated for
216    ///   the duration of lifetime `'a`.
217    ///
218    /// * The nul terminator must be within `isize::MAX` from `ptr`
219    ///
220    /// > **Note**: This operation is intended to be a 0-cost cast but it is
221    /// > currently implemented with an up-front calculation of the length of
222    /// > the string. This is not guaranteed to always be the case.
223    ///
224    /// # Caveat
225    ///
226    /// The lifetime for the returned slice is inferred from its usage. To prevent accidental misuse,
227    /// it's suggested to tie the lifetime to whichever source lifetime is safe in the context,
228    /// such as by providing a helper function taking the lifetime of a host value for the slice,
229    /// or by explicit annotation.
230    ///
231    /// # Examples
232    ///
233    /// ```
234    /// use std::ffi::{c_char, CStr};
235    ///
236    /// fn my_string() -> *const c_char {
237    ///     c"hello".as_ptr()
238    /// }
239    ///
240    /// unsafe {
241    ///     let slice = CStr::from_ptr(my_string());
242    ///     assert_eq!(slice.to_str().unwrap(), "hello");
243    /// }
244    /// ```
245    ///
246    /// ```
247    /// use std::ffi::{c_char, CStr};
248    ///
249    /// const HELLO_PTR: *const c_char = {
250    ///     const BYTES: &[u8] = b"Hello, world!\0";
251    ///     BYTES.as_ptr().cast()
252    /// };
253    /// const HELLO: &CStr = unsafe { CStr::from_ptr(HELLO_PTR) };
254    ///
255    /// assert_eq!(c"Hello, world!", HELLO);
256    /// ```
257    ///
258    /// [valid]: core::ptr#safety
259    #[inline] // inline is necessary for codegen to see strlen.
260    #[must_use]
261    #[stable(feature = "rust1", since = "1.0.0")]
262    #[rustc_const_stable(feature = "const_cstr_from_ptr", since = "1.81.0")]
263    pub const unsafe fn from_ptr<'a>(ptr: *const c_char) -> &'a CStr {
264        // SAFETY: The caller has provided a pointer that points to a valid C
265        // string with a NUL terminator less than `isize::MAX` from `ptr`.
266        let len = unsafe { strlen(ptr) };
267
268        // SAFETY: The caller has provided a valid pointer with length less than
269        // `isize::MAX`, so `from_raw_parts` is safe. The content remains valid
270        // and doesn't change for the lifetime of the returned `CStr`. This
271        // means the call to `from_bytes_with_nul_unchecked` is correct.
272        //
273        // The cast from c_char to u8 is ok because a c_char is always one byte.
274        unsafe { Self::from_bytes_with_nul_unchecked(slice::from_raw_parts(ptr.cast(), len + 1)) }
275    }
276
277    /// Creates a C string wrapper from a byte slice with any number of nuls.
278    ///
279    /// This method will create a `CStr` from any byte slice that contains at
280    /// least one nul byte. Unlike with [`CStr::from_bytes_with_nul`], the caller
281    /// does not need to know where the nul byte is located.
282    ///
283    /// If the first byte is a nul character, this method will return an
284    /// empty `CStr`. If multiple nul characters are present, the `CStr` will
285    /// end at the first one.
286    ///
287    /// If the slice only has a single nul byte at the end, this method is
288    /// equivalent to [`CStr::from_bytes_with_nul`].
289    ///
290    /// # Examples
291    /// ```
292    /// use std::ffi::CStr;
293    ///
294    /// let mut buffer = [0u8; 16];
295    /// unsafe {
296    ///     // Here we might call an unsafe C function that writes a string
297    ///     // into the buffer.
298    ///     let buf_ptr = buffer.as_mut_ptr();
299    ///     buf_ptr.write_bytes(b'A', 8);
300    /// }
301    /// // Attempt to extract a C nul-terminated string from the buffer.
302    /// let c_str = CStr::from_bytes_until_nul(&buffer[..]).unwrap();
303    /// assert_eq!(c_str.to_str().unwrap(), "AAAAAAAA");
304    /// ```
305    ///
306    #[stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
307    #[rustc_const_stable(feature = "cstr_from_bytes_until_nul", since = "1.69.0")]
308    pub const fn from_bytes_until_nul(bytes: &[u8]) -> Result<&CStr, FromBytesUntilNulError> {
309        let nul_pos = memchr::memchr(0, bytes);
310        match nul_pos {
311            Some(nul_pos) => {
312                // FIXME(const-hack) replace with range index
313                // SAFETY: nul_pos + 1 <= bytes.len()
314                let subslice = unsafe { crate::slice::from_raw_parts(bytes.as_ptr(), nul_pos + 1) };
315                // SAFETY: We know there is a nul byte at nul_pos, so this slice
316                // (ending at the nul byte) is a well-formed C string.
317                Ok(unsafe { CStr::from_bytes_with_nul_unchecked(subslice) })
318            }
319            None => Err(FromBytesUntilNulError(())),
320        }
321    }
322
323    /// Creates a C string wrapper from a byte slice with exactly one nul
324    /// terminator.
325    ///
326    /// This function will cast the provided `bytes` to a `CStr`
327    /// wrapper after ensuring that the byte slice is nul-terminated
328    /// and does not contain any interior nul bytes.
329    ///
330    /// If the nul byte may not be at the end,
331    /// [`CStr::from_bytes_until_nul`] can be used instead.
332    ///
333    /// # Examples
334    ///
335    /// ```
336    /// use std::ffi::CStr;
337    ///
338    /// let cstr = CStr::from_bytes_with_nul(b"hello\0");
339    /// assert_eq!(cstr, Ok(c"hello"));
340    /// ```
341    ///
342    /// Creating a `CStr` without a trailing nul terminator is an error:
343    ///
344    /// ```
345    /// use std::ffi::{CStr, FromBytesWithNulError};
346    ///
347    /// let cstr = CStr::from_bytes_with_nul(b"hello");
348    /// assert_eq!(cstr, Err(FromBytesWithNulError::NotNulTerminated));
349    /// ```
350    ///
351    /// Creating a `CStr` with an interior nul byte is an error:
352    ///
353    /// ```
354    /// use std::ffi::{CStr, FromBytesWithNulError};
355    ///
356    /// let cstr = CStr::from_bytes_with_nul(b"he\0llo\0");
357    /// assert_eq!(cstr, Err(FromBytesWithNulError::InteriorNul { position: 2 }));
358    /// ```
359    #[stable(feature = "cstr_from_bytes", since = "1.10.0")]
360    #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
361    pub const fn from_bytes_with_nul(bytes: &[u8]) -> Result<&Self, FromBytesWithNulError> {
362        let nul_pos = memchr::memchr(0, bytes);
363        match nul_pos {
364            Some(nul_pos) if nul_pos + 1 == bytes.len() => {
365                // SAFETY: We know there is only one nul byte, at the end
366                // of the byte slice.
367                Ok(unsafe { Self::from_bytes_with_nul_unchecked(bytes) })
368            }
369            Some(position) => Err(FromBytesWithNulError::InteriorNul { position }),
370            None => Err(FromBytesWithNulError::NotNulTerminated),
371        }
372    }
373
374    /// Unsafely creates a C string wrapper from a byte slice.
375    ///
376    /// This function will cast the provided `bytes` to a `CStr` wrapper without
377    /// performing any sanity checks.
378    ///
379    /// # Safety
380    /// The provided slice **must** be nul-terminated and not contain any interior
381    /// nul bytes.
382    ///
383    /// # Examples
384    ///
385    /// ```
386    /// use std::ffi::CStr;
387    ///
388    /// let bytes = b"Hello world!\0";
389    ///
390    /// let cstr = unsafe { CStr::from_bytes_with_nul_unchecked(bytes) };
391    /// assert_eq!(cstr.to_bytes_with_nul(), bytes);
392    /// ```
393    #[inline]
394    #[must_use]
395    #[stable(feature = "cstr_from_bytes", since = "1.10.0")]
396    #[rustc_const_stable(feature = "const_cstr_unchecked", since = "1.59.0")]
397    #[rustc_allow_const_fn_unstable(const_eval_select)]
398    pub const unsafe fn from_bytes_with_nul_unchecked(bytes: &[u8]) -> &CStr {
399        const_eval_select!(
400            @capture { bytes: &[u8] } -> &CStr:
401            if const {
402                // Saturating so that an empty slice panics in the assert with a good
403                // message, not here due to underflow.
404                let mut i = bytes.len().saturating_sub(1);
405                assert!(!bytes.is_empty() && bytes[i] == 0, "input was not nul-terminated");
406
407                // Ending nul byte exists, skip to the rest.
408                while i != 0 {
409                    i -= 1;
410                    let byte = bytes[i];
411                    assert!(byte != 0, "input contained interior nul");
412                }
413
414                // SAFETY: See runtime cast comment below.
415                unsafe { &*(bytes as *const [u8] as *const CStr) }
416            } else {
417                // Chance at catching some UB at runtime with debug builds.
418                debug_assert!(!bytes.is_empty() && bytes[bytes.len() - 1] == 0);
419
420                // SAFETY: Casting to CStr is safe because its internal representation
421                // is a [u8] too (safe only inside std).
422                // Dereferencing the obtained pointer is safe because it comes from a
423                // reference. Making a reference is then safe because its lifetime
424                // is bound by the lifetime of the given `bytes`.
425                unsafe { &*(bytes as *const [u8] as *const CStr) }
426            }
427        )
428    }
429
430    /// Returns the inner pointer to this C string.
431    ///
432    /// The returned pointer will be valid for as long as `self` is, and points
433    /// to a contiguous region of memory terminated with a 0 byte to represent
434    /// the end of the string.
435    ///
436    /// The type of the returned pointer is
437    /// [`*const c_char`][crate::ffi::c_char], and whether it's
438    /// an alias for `*const i8` or `*const u8` is platform-specific.
439    ///
440    /// **WARNING**
441    ///
442    /// The returned pointer is read-only; writing to it (including passing it
443    /// to C code that writes to it) causes undefined behavior.
444    ///
445    /// It is your responsibility to make sure that the underlying memory is not
446    /// freed too early. For example, the following code will cause undefined
447    /// behavior when `ptr` is used inside the `unsafe` block:
448    ///
449    /// ```no_run
450    /// # #![expect(dangling_pointers_from_temporaries)]
451    /// use std::ffi::{CStr, CString};
452    ///
453    /// // 💀 The meaning of this entire program is undefined,
454    /// // 💀 and nothing about its behavior is guaranteed,
455    /// // 💀 not even that its behavior resembles the code as written,
456    /// // 💀 just because it contains a single instance of undefined behavior!
457    ///
458    /// // 🚨 creates a dangling pointer to a temporary `CString`
459    /// // 🚨 that is deallocated at the end of the statement
460    /// let ptr = CString::new("Hi!".to_uppercase()).unwrap().as_ptr();
461    ///
462    /// // without undefined behavior, you would expect that `ptr` equals:
463    /// dbg!(CStr::from_bytes_with_nul(b"HI!\0").unwrap());
464    ///
465    /// // 🙏 Possibly the program behaved as expected so far,
466    /// // 🙏 and this just shows `ptr` is now garbage..., but
467    /// // 💀 this violates `CStr::from_ptr`'s safety contract
468    /// // 💀 leading to a dereference of a dangling pointer,
469    /// // 💀 which is immediate undefined behavior.
470    /// // 💀 *BOOM*, you're dead, your entire program has no meaning.
471    /// dbg!(unsafe { CStr::from_ptr(ptr) });
472    /// ```
473    ///
474    /// This happens because, the pointer returned by `as_ptr` does not carry any
475    /// lifetime information, and the `CString` is deallocated immediately after
476    /// the expression that it is part of has been evaluated.
477    /// To fix the problem, bind the `CString` to a local variable:
478    ///
479    /// ```
480    /// use std::ffi::{CStr, CString};
481    ///
482    /// let c_str = CString::new("Hi!".to_uppercase()).unwrap();
483    /// let ptr = c_str.as_ptr();
484    ///
485    /// assert_eq!(unsafe { CStr::from_ptr(ptr) }, c"HI!");
486    /// ```
487    #[inline]
488    #[must_use]
489    #[stable(feature = "rust1", since = "1.0.0")]
490    #[rustc_const_stable(feature = "const_str_as_ptr", since = "1.32.0")]
491    #[rustc_as_ptr]
492    #[rustc_never_returns_null_ptr]
493    pub const fn as_ptr(&self) -> *const c_char {
494        self.inner.as_ptr()
495    }
496
497    /// We could eventually expose this publicly, if we wanted.
498    #[inline]
499    #[must_use]
500    const fn as_non_null_ptr(&self) -> NonNull<c_char> {
501        // FIXME(const_trait_impl) replace with `NonNull::from`
502        // SAFETY: a reference is never null
503        unsafe { NonNull::new_unchecked(&self.inner as *const [c_char] as *mut [c_char]) }
504            .as_non_null_ptr()
505    }
506
507    /// Returns the length of `self`. Like C's `strlen`, this does not include the nul terminator.
508    ///
509    /// > **Note**: This method is currently implemented as a constant-time
510    /// > cast, but it is planned to alter its definition in the future to
511    /// > perform the length calculation whenever this method is called.
512    ///
513    /// # Examples
514    ///
515    /// ```
516    /// assert_eq!(c"foo".count_bytes(), 3);
517    /// assert_eq!(c"".count_bytes(), 0);
518    /// ```
519    #[inline]
520    #[must_use]
521    #[doc(alias("len", "strlen"))]
522    #[stable(feature = "cstr_count_bytes", since = "1.79.0")]
523    #[rustc_const_stable(feature = "const_cstr_from_ptr", since = "1.81.0")]
524    pub const fn count_bytes(&self) -> usize {
525        self.inner.len() - 1
526    }
527
528    /// Returns `true` if `self.to_bytes()` has a length of 0.
529    ///
530    /// # Examples
531    ///
532    /// ```
533    /// assert!(!c"foo".is_empty());
534    /// assert!(c"".is_empty());
535    /// ```
536    #[inline]
537    #[stable(feature = "cstr_is_empty", since = "1.71.0")]
538    #[rustc_const_stable(feature = "cstr_is_empty", since = "1.71.0")]
539    pub const fn is_empty(&self) -> bool {
540        // SAFETY: We know there is at least one byte; for empty strings it
541        // is the NUL terminator.
542        // FIXME(const-hack): use get_unchecked
543        unsafe { *self.inner.as_ptr() == 0 }
544    }
545
546    /// Converts this C string to a byte slice.
547    ///
548    /// The returned slice will **not** contain the trailing nul terminator that this C
549    /// string has.
550    ///
551    /// > **Note**: This method is currently implemented as a constant-time
552    /// > cast, but it is planned to alter its definition in the future to
553    /// > perform the length calculation whenever this method is called.
554    ///
555    /// # Examples
556    ///
557    /// ```
558    /// assert_eq!(c"foo".to_bytes(), b"foo");
559    /// ```
560    #[inline]
561    #[must_use = "this returns the result of the operation, \
562                  without modifying the original"]
563    #[stable(feature = "rust1", since = "1.0.0")]
564    #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
565    pub const fn to_bytes(&self) -> &[u8] {
566        let bytes = self.to_bytes_with_nul();
567        // FIXME(const-hack) replace with range index
568        // SAFETY: to_bytes_with_nul returns slice with length at least 1
569        unsafe { slice::from_raw_parts(bytes.as_ptr(), bytes.len() - 1) }
570    }
571
572    /// Converts this C string to a byte slice containing the trailing 0 byte.
573    ///
574    /// This function is the equivalent of [`CStr::to_bytes`] except that it
575    /// will retain the trailing nul terminator instead of chopping it off.
576    ///
577    /// > **Note**: This method is currently implemented as a 0-cost cast, but
578    /// > it is planned to alter its definition in the future to perform the
579    /// > length calculation whenever this method is called.
580    ///
581    /// # Examples
582    ///
583    /// ```
584    /// assert_eq!(c"foo".to_bytes_with_nul(), b"foo\0");
585    /// ```
586    #[inline]
587    #[must_use = "this returns the result of the operation, \
588                  without modifying the original"]
589    #[stable(feature = "rust1", since = "1.0.0")]
590    #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
591    pub const fn to_bytes_with_nul(&self) -> &[u8] {
592        // SAFETY: Transmuting a slice of `c_char`s to a slice of `u8`s
593        // is safe on all supported targets.
594        unsafe { &*((&raw const self.inner) as *const [u8]) }
595    }
596
597    /// Iterates over the bytes in this C string.
598    ///
599    /// The returned iterator will **not** contain the trailing nul terminator
600    /// that this C string has.
601    ///
602    /// # Examples
603    ///
604    /// ```
605    /// #![feature(cstr_bytes)]
606    ///
607    /// assert!(c"foo".bytes().eq(*b"foo"));
608    /// ```
609    #[inline]
610    #[unstable(feature = "cstr_bytes", issue = "112115")]
611    pub fn bytes(&self) -> Bytes<'_> {
612        Bytes::new(self)
613    }
614
615    /// Yields a <code>&[str]</code> slice if the `CStr` contains valid UTF-8.
616    ///
617    /// If the contents of the `CStr` are valid UTF-8 data, this
618    /// function will return the corresponding <code>&[str]</code> slice. Otherwise,
619    /// it will return an error with details of where UTF-8 validation failed.
620    ///
621    /// [str]: prim@str "str"
622    ///
623    /// # Examples
624    ///
625    /// ```
626    /// assert_eq!(c"foo".to_str(), Ok("foo"));
627    /// ```
628    #[stable(feature = "cstr_to_str", since = "1.4.0")]
629    #[rustc_const_stable(feature = "const_cstr_methods", since = "1.72.0")]
630    pub const fn to_str(&self) -> Result<&str, str::Utf8Error> {
631        // N.B., when `CStr` is changed to perform the length check in `.to_bytes()`
632        // instead of in `from_ptr()`, it may be worth considering if this should
633        // be rewritten to do the UTF-8 check inline with the length calculation
634        // instead of doing it afterwards.
635        str::from_utf8(self.to_bytes())
636    }
637
638    /// Returns an object that implements [`Display`] for safely printing a [`CStr`] that may
639    /// contain non-Unicode data.
640    ///
641    /// Behaves as if `self` were first lossily converted to a `str`, with invalid UTF-8 presented
642    /// as the Unicode replacement character: �.
643    ///
644    /// [`Display`]: fmt::Display
645    ///
646    /// # Examples
647    ///
648    /// ```
649    /// #![feature(cstr_display)]
650    ///
651    /// let cstr = c"Hello, world!";
652    /// println!("{}", cstr.display());
653    /// ```
654    #[unstable(feature = "cstr_display", issue = "139984")]
655    #[must_use = "this does not display the `CStr`; \
656                  it returns an object that can be displayed"]
657    #[inline]
658    pub fn display(&self) -> impl fmt::Display {
659        crate::bstr::ByteStr::from_bytes(self.to_bytes())
660    }
661}
662
663#[stable(feature = "c_string_eq_c_str", since = "CURRENT_RUSTC_VERSION")]
664impl PartialEq<&Self> for CStr {
665    #[inline]
666    fn eq(&self, other: &&Self) -> bool {
667        *self == **other
668    }
669
670    #[inline]
671    fn ne(&self, other: &&Self) -> bool {
672        *self != **other
673    }
674}
675
676// `.to_bytes()` representations are compared instead of the inner `[c_char]`s,
677// because `c_char` is `i8` (not `u8`) on some platforms.
678// That is why this is implemented manually and not derived.
679#[stable(feature = "rust1", since = "1.0.0")]
680impl PartialOrd for CStr {
681    #[inline]
682    fn partial_cmp(&self, other: &CStr) -> Option<Ordering> {
683        self.to_bytes().partial_cmp(&other.to_bytes())
684    }
685}
686
687#[stable(feature = "rust1", since = "1.0.0")]
688impl Ord for CStr {
689    #[inline]
690    fn cmp(&self, other: &CStr) -> Ordering {
691        self.to_bytes().cmp(&other.to_bytes())
692    }
693}
694
695#[stable(feature = "cstr_range_from", since = "1.47.0")]
696impl ops::Index<ops::RangeFrom<usize>> for CStr {
697    type Output = CStr;
698
699    #[inline]
700    fn index(&self, index: ops::RangeFrom<usize>) -> &CStr {
701        let bytes = self.to_bytes_with_nul();
702        // we need to manually check the starting index to account for the null
703        // byte, since otherwise we could get an empty string that doesn't end
704        // in a null.
705        if index.start < bytes.len() {
706            // SAFETY: Non-empty tail of a valid `CStr` is still a valid `CStr`.
707            unsafe { CStr::from_bytes_with_nul_unchecked(&bytes[index.start..]) }
708        } else {
709            panic!(
710                "index out of bounds: the len is {} but the index is {}",
711                bytes.len(),
712                index.start
713            );
714        }
715    }
716}
717
718#[stable(feature = "cstring_asref", since = "1.7.0")]
719impl AsRef<CStr> for CStr {
720    #[inline]
721    fn as_ref(&self) -> &CStr {
722        self
723    }
724}
725
726/// Calculate the length of a nul-terminated string. Defers to C's `strlen` when possible.
727///
728/// # Safety
729///
730/// The pointer must point to a valid buffer that contains a NUL terminator. The NUL must be
731/// located within `isize::MAX` from `ptr`.
732#[inline]
733#[unstable(feature = "cstr_internals", issue = "none")]
734#[rustc_allow_const_fn_unstable(const_eval_select)]
735const unsafe fn strlen(ptr: *const c_char) -> usize {
736    const_eval_select!(
737        @capture { s: *const c_char = ptr } -> usize:
738        if const {
739            let mut len = 0;
740
741            // SAFETY: Outer caller has provided a pointer to a valid C string.
742            while unsafe { *s.add(len) } != 0 {
743                len += 1;
744            }
745
746            len
747        } else {
748            unsafe extern "C" {
749                /// Provided by libc or compiler_builtins.
750                fn strlen(s: *const c_char) -> usize;
751            }
752
753            // SAFETY: Outer caller has provided a pointer to a valid C string.
754            unsafe { strlen(s) }
755        }
756    )
757}
758
759/// An iterator over the bytes of a [`CStr`], without the nul terminator.
760///
761/// This struct is created by the [`bytes`] method on [`CStr`].
762/// See its documentation for more.
763///
764/// [`bytes`]: CStr::bytes
765#[must_use = "iterators are lazy and do nothing unless consumed"]
766#[unstable(feature = "cstr_bytes", issue = "112115")]
767#[derive(Clone, Debug)]
768pub struct Bytes<'a> {
769    // since we know the string is nul-terminated, we only need one pointer
770    ptr: NonNull<u8>,
771    phantom: PhantomData<&'a [c_char]>,
772}
773
774#[unstable(feature = "cstr_bytes", issue = "112115")]
775unsafe impl Send for Bytes<'_> {}
776
777#[unstable(feature = "cstr_bytes", issue = "112115")]
778unsafe impl Sync for Bytes<'_> {}
779
780impl<'a> Bytes<'a> {
781    #[inline]
782    fn new(s: &'a CStr) -> Self {
783        Self { ptr: s.as_non_null_ptr().cast(), phantom: PhantomData }
784    }
785
786    #[inline]
787    fn is_empty(&self) -> bool {
788        // SAFETY: We uphold that the pointer is always valid to dereference
789        // by starting with a valid C string and then never incrementing beyond
790        // the nul terminator.
791        unsafe { self.ptr.read() == 0 }
792    }
793}
794
795#[unstable(feature = "cstr_bytes", issue = "112115")]
796impl Iterator for Bytes<'_> {
797    type Item = u8;
798
799    #[inline]
800    fn next(&mut self) -> Option<u8> {
801        // SAFETY: We only choose a pointer from a valid C string, which must
802        // be non-null and contain at least one value. Since we always stop at
803        // the nul terminator, which is guaranteed to exist, we can assume that
804        // the pointer is non-null and valid. This lets us safely dereference
805        // it and assume that adding 1 will create a new, non-null, valid
806        // pointer.
807        unsafe {
808            let ret = self.ptr.read();
809            if ret == 0 {
810                None
811            } else {
812                self.ptr = self.ptr.add(1);
813                Some(ret)
814            }
815        }
816    }
817
818    #[inline]
819    fn size_hint(&self) -> (usize, Option<usize>) {
820        if self.is_empty() { (0, Some(0)) } else { (1, None) }
821    }
822
823    #[inline]
824    fn count(self) -> usize {
825        // SAFETY: We always hold a valid pointer to a C string
826        unsafe { strlen(self.ptr.as_ptr().cast()) }
827    }
828}
829
830#[unstable(feature = "cstr_bytes", issue = "112115")]
831impl FusedIterator for Bytes<'_> {}