core/cell.rs
1//! Shareable mutable containers.
2//!
3//! Rust memory safety is based on this rule: Given an object `T`, it is only possible to
4//! have one of the following:
5//!
6//! - Several immutable references (`&T`) to the object (also known as **aliasing**).
7//! - One mutable reference (`&mut T`) to the object (also known as **mutability**).
8//!
9//! This is enforced by the Rust compiler. However, there are situations where this rule is not
10//! flexible enough. Sometimes it is required to have multiple references to an object and yet
11//! mutate it.
12//!
13//! Shareable mutable containers exist to permit mutability in a controlled manner, even in the
14//! presence of aliasing. [`Cell<T>`], [`RefCell<T>`], and [`OnceCell<T>`] allow doing this in
15//! a single-threaded way—they do not implement [`Sync`]. (If you need to do aliasing and
16//! mutation among multiple threads, [`Mutex<T>`], [`RwLock<T>`], [`OnceLock<T>`] or [`atomic`]
17//! types are the correct data structures to do so).
18//!
19//! Values of the `Cell<T>`, `RefCell<T>`, and `OnceCell<T>` types may be mutated through shared
20//! references (i.e. the common `&T` type), whereas most Rust types can only be mutated through
21//! unique (`&mut T`) references. We say these cell types provide 'interior mutability'
22//! (mutable via `&T`), in contrast with typical Rust types that exhibit 'inherited mutability'
23//! (mutable only via `&mut T`).
24//!
25//! Cell types come in four flavors: `Cell<T>`, `RefCell<T>`, `OnceCell<T>`, and `LazyCell<T>`.
26//! Each provides a different way of providing safe interior mutability.
27//!
28//! ## `Cell<T>`
29//!
30//! [`Cell<T>`] implements interior mutability by moving values in and out of the cell. That is, an
31//! `&mut T` to the inner value can never be obtained, and the value itself cannot be directly
32//! obtained without replacing it with something else. Both of these rules ensure that there is
33//! never more than one reference pointing to the inner value. This type provides the following
34//! methods:
35//!
36//! - For types that implement [`Copy`], the [`get`](Cell::get) method retrieves the current
37//! interior value by duplicating it.
38//! - For types that implement [`Default`], the [`take`](Cell::take) method replaces the current
39//! interior value with [`Default::default()`] and returns the replaced value.
40//! - All types have:
41//! - [`replace`](Cell::replace): replaces the current interior value and returns the replaced
42//! value.
43//! - [`into_inner`](Cell::into_inner): this method consumes the `Cell<T>` and returns the
44//! interior value.
45//! - [`set`](Cell::set): this method replaces the interior value, dropping the replaced value.
46//!
47//! `Cell<T>` is typically used for more simple types where copying or moving values isn't too
48//! resource intensive (e.g. numbers), and should usually be preferred over other cell types when
49//! possible. For larger and non-copy types, `RefCell` provides some advantages.
50//!
51//! ## `RefCell<T>`
52//!
53//! [`RefCell<T>`] uses Rust's lifetimes to implement "dynamic borrowing", a process whereby one can
54//! claim temporary, exclusive, mutable access to the inner value. Borrows for `RefCell<T>`s are
55//! tracked at _runtime_, unlike Rust's native reference types which are entirely tracked
56//! statically, at compile time.
57//!
58//! An immutable reference to a `RefCell`'s inner value (`&T`) can be obtained with
59//! [`borrow`](`RefCell::borrow`), and a mutable borrow (`&mut T`) can be obtained with
60//! [`borrow_mut`](`RefCell::borrow_mut`). When these functions are called, they first verify that
61//! Rust's borrow rules will be satisfied: any number of immutable borrows are allowed or a
62//! single mutable borrow is allowed, but never both. If a borrow is attempted that would violate
63//! these rules, the thread will panic.
64//!
65//! The corresponding [`Sync`] version of `RefCell<T>` is [`RwLock<T>`].
66//!
67//! ## `OnceCell<T>`
68//!
69//! [`OnceCell<T>`] is somewhat of a hybrid of `Cell` and `RefCell` that works for values that
70//! typically only need to be set once. This means that a reference `&T` can be obtained without
71//! moving or copying the inner value (unlike `Cell`) but also without runtime checks (unlike
72//! `RefCell`). However, its value can also not be updated once set unless you have a mutable
73//! reference to the `OnceCell`.
74//!
75//! `OnceCell` provides the following methods:
76//!
77//! - [`get`](OnceCell::get): obtain a reference to the inner value
78//! - [`set`](OnceCell::set): set the inner value if it is unset (returns a `Result`)
79//! - [`get_or_init`](OnceCell::get_or_init): return the inner value, initializing it if needed
80//! - [`get_mut`](OnceCell::get_mut): provide a mutable reference to the inner value, only available
81//! if you have a mutable reference to the cell itself.
82//!
83//! The corresponding [`Sync`] version of `OnceCell<T>` is [`OnceLock<T>`].
84//!
85//! ## `LazyCell<T, F>`
86//!
87//! A common pattern with OnceCell is, for a given OnceCell, to use the same function on every
88//! call to [`OnceCell::get_or_init`] with that cell. This is what is offered by [`LazyCell`],
89//! which pairs cells of `T` with functions of `F`, and always calls `F` before it yields `&T`.
90//! This happens implicitly by simply attempting to dereference the LazyCell to get its contents,
91//! so its use is much more transparent with a place which has been initialized by a constant.
92//!
93//! More complicated patterns that don't fit this description can be built on `OnceCell<T>` instead.
94//!
95//! `LazyCell` works by providing an implementation of `impl Deref` that calls the function,
96//! so you can just use it by dereference (e.g. `*lazy_cell` or `lazy_cell.deref()`).
97//!
98//! The corresponding [`Sync`] version of `LazyCell<T, F>` is [`LazyLock<T, F>`].
99//!
100//! # When to choose interior mutability
101//!
102//! The more common inherited mutability, where one must have unique access to mutate a value, is
103//! one of the key language elements that enables Rust to reason strongly about pointer aliasing,
104//! statically preventing crash bugs. Because of that, inherited mutability is preferred, and
105//! interior mutability is something of a last resort. Since cell types enable mutation where it
106//! would otherwise be disallowed though, there are occasions when interior mutability might be
107//! appropriate, or even *must* be used, e.g.
108//!
109//! * Introducing mutability 'inside' of something immutable
110//! * Implementation details of logically-immutable methods.
111//! * Mutating implementations of [`Clone`].
112//!
113//! ## Introducing mutability 'inside' of something immutable
114//!
115//! Many shared smart pointer types, including [`Rc<T>`] and [`Arc<T>`], provide containers that can
116//! be cloned and shared between multiple parties. Because the contained values may be
117//! multiply-aliased, they can only be borrowed with `&`, not `&mut`. Without cells it would be
118//! impossible to mutate data inside of these smart pointers at all.
119//!
120//! It's very common then to put a `RefCell<T>` inside shared pointer types to reintroduce
121//! mutability:
122//!
123//! ```
124//! use std::cell::{RefCell, RefMut};
125//! use std::collections::HashMap;
126//! use std::rc::Rc;
127//!
128//! fn main() {
129//! let shared_map: Rc<RefCell<_>> = Rc::new(RefCell::new(HashMap::new()));
130//! // Create a new block to limit the scope of the dynamic borrow
131//! {
132//! let mut map: RefMut<'_, _> = shared_map.borrow_mut();
133//! map.insert("africa", 92388);
134//! map.insert("kyoto", 11837);
135//! map.insert("piccadilly", 11826);
136//! map.insert("marbles", 38);
137//! }
138//!
139//! // Note that if we had not let the previous borrow of the cache fall out
140//! // of scope then the subsequent borrow would cause a dynamic thread panic.
141//! // This is the major hazard of using `RefCell`.
142//! let total: i32 = shared_map.borrow().values().sum();
143//! println!("{total}");
144//! }
145//! ```
146//!
147//! Note that this example uses `Rc<T>` and not `Arc<T>`. `RefCell<T>`s are for single-threaded
148//! scenarios. Consider using [`RwLock<T>`] or [`Mutex<T>`] if you need shared mutability in a
149//! multi-threaded situation.
150//!
151//! ## Implementation details of logically-immutable methods
152//!
153//! Occasionally it may be desirable not to expose in an API that there is mutation happening
154//! "under the hood". This may be because logically the operation is immutable, but e.g., caching
155//! forces the implementation to perform mutation; or because you must employ mutation to implement
156//! a trait method that was originally defined to take `&self`.
157//!
158//! ```
159//! # #![allow(dead_code)]
160//! use std::cell::OnceCell;
161//!
162//! struct Graph {
163//! edges: Vec<(i32, i32)>,
164//! span_tree_cache: OnceCell<Vec<(i32, i32)>>
165//! }
166//!
167//! impl Graph {
168//! fn minimum_spanning_tree(&self) -> Vec<(i32, i32)> {
169//! self.span_tree_cache
170//! .get_or_init(|| self.calc_span_tree())
171//! .clone()
172//! }
173//!
174//! fn calc_span_tree(&self) -> Vec<(i32, i32)> {
175//! // Expensive computation goes here
176//! vec![]
177//! }
178//! }
179//! ```
180//!
181//! ## Mutating implementations of `Clone`
182//!
183//! This is simply a special - but common - case of the previous: hiding mutability for operations
184//! that appear to be immutable. The [`clone`](Clone::clone) method is expected to not change the
185//! source value, and is declared to take `&self`, not `&mut self`. Therefore, any mutation that
186//! happens in the `clone` method must use cell types. For example, [`Rc<T>`] maintains its
187//! reference counts within a `Cell<T>`.
188//!
189//! ```
190//! use std::cell::Cell;
191//! use std::ptr::NonNull;
192//! use std::process::abort;
193//! use std::marker::PhantomData;
194//!
195//! struct Rc<T: ?Sized> {
196//! ptr: NonNull<RcInner<T>>,
197//! phantom: PhantomData<RcInner<T>>,
198//! }
199//!
200//! struct RcInner<T: ?Sized> {
201//! strong: Cell<usize>,
202//! refcount: Cell<usize>,
203//! value: T,
204//! }
205//!
206//! impl<T: ?Sized> Clone for Rc<T> {
207//! fn clone(&self) -> Rc<T> {
208//! self.inc_strong();
209//! Rc {
210//! ptr: self.ptr,
211//! phantom: PhantomData,
212//! }
213//! }
214//! }
215//!
216//! trait RcInnerPtr<T: ?Sized> {
217//!
218//! fn inner(&self) -> &RcInner<T>;
219//!
220//! fn strong(&self) -> usize {
221//! self.inner().strong.get()
222//! }
223//!
224//! fn inc_strong(&self) {
225//! self.inner()
226//! .strong
227//! .set(self.strong()
228//! .checked_add(1)
229//! .unwrap_or_else(|| abort() ));
230//! }
231//! }
232//!
233//! impl<T: ?Sized> RcInnerPtr<T> for Rc<T> {
234//! fn inner(&self) -> &RcInner<T> {
235//! unsafe {
236//! self.ptr.as_ref()
237//! }
238//! }
239//! }
240//! ```
241//!
242//! [`Arc<T>`]: ../../std/sync/struct.Arc.html
243//! [`Rc<T>`]: ../../std/rc/struct.Rc.html
244//! [`RwLock<T>`]: ../../std/sync/struct.RwLock.html
245//! [`Mutex<T>`]: ../../std/sync/struct.Mutex.html
246//! [`OnceLock<T>`]: ../../std/sync/struct.OnceLock.html
247//! [`LazyLock<T, F>`]: ../../std/sync/struct.LazyLock.html
248//! [`Sync`]: ../../std/marker/trait.Sync.html
249//! [`atomic`]: crate::sync::atomic
250
251#![stable(feature = "rust1", since = "1.0.0")]
252
253use crate::cmp::Ordering;
254use crate::fmt::{self, Debug, Display};
255use crate::marker::{PhantomData, Unsize};
256use crate::mem;
257use crate::ops::{CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn};
258use crate::panic::const_panic;
259use crate::pin::PinCoerceUnsized;
260use crate::ptr::{self, NonNull};
261
262mod lazy;
263mod once;
264
265#[stable(feature = "lazy_cell", since = "1.80.0")]
266pub use lazy::LazyCell;
267#[stable(feature = "once_cell", since = "1.70.0")]
268pub use once::OnceCell;
269
270/// A mutable memory location.
271///
272/// # Memory layout
273///
274/// `Cell<T>` has the same [memory layout and caveats as
275/// `UnsafeCell<T>`](UnsafeCell#memory-layout). In particular, this means that
276/// `Cell<T>` has the same in-memory representation as its inner type `T`.
277///
278/// # Examples
279///
280/// In this example, you can see that `Cell<T>` enables mutation inside an
281/// immutable struct. In other words, it enables "interior mutability".
282///
283/// ```
284/// use std::cell::Cell;
285///
286/// struct SomeStruct {
287/// regular_field: u8,
288/// special_field: Cell<u8>,
289/// }
290///
291/// let my_struct = SomeStruct {
292/// regular_field: 0,
293/// special_field: Cell::new(1),
294/// };
295///
296/// let new_value = 100;
297///
298/// // ERROR: `my_struct` is immutable
299/// // my_struct.regular_field = new_value;
300///
301/// // WORKS: although `my_struct` is immutable, `special_field` is a `Cell`,
302/// // which can always be mutated
303/// my_struct.special_field.set(new_value);
304/// assert_eq!(my_struct.special_field.get(), new_value);
305/// ```
306///
307/// See the [module-level documentation](self) for more.
308#[rustc_diagnostic_item = "Cell"]
309#[stable(feature = "rust1", since = "1.0.0")]
310#[repr(transparent)]
311#[rustc_pub_transparent]
312pub struct Cell<T: ?Sized> {
313 value: UnsafeCell<T>,
314}
315
316#[stable(feature = "rust1", since = "1.0.0")]
317unsafe impl<T: ?Sized> Send for Cell<T> where T: Send {}
318
319// Note that this negative impl isn't strictly necessary for correctness,
320// as `Cell` wraps `UnsafeCell`, which is itself `!Sync`.
321// However, given how important `Cell`'s `!Sync`-ness is,
322// having an explicit negative impl is nice for documentation purposes
323// and results in nicer error messages.
324#[stable(feature = "rust1", since = "1.0.0")]
325impl<T: ?Sized> !Sync for Cell<T> {}
326
327#[stable(feature = "rust1", since = "1.0.0")]
328impl<T: Copy> Clone for Cell<T> {
329 #[inline]
330 fn clone(&self) -> Cell<T> {
331 Cell::new(self.get())
332 }
333}
334
335#[stable(feature = "rust1", since = "1.0.0")]
336#[rustc_const_unstable(feature = "const_default", issue = "67792")]
337impl<T: ~const Default> const Default for Cell<T> {
338 /// Creates a `Cell<T>`, with the `Default` value for T.
339 #[inline]
340 fn default() -> Cell<T> {
341 Cell::new(Default::default())
342 }
343}
344
345#[stable(feature = "rust1", since = "1.0.0")]
346impl<T: PartialEq + Copy> PartialEq for Cell<T> {
347 #[inline]
348 fn eq(&self, other: &Cell<T>) -> bool {
349 self.get() == other.get()
350 }
351}
352
353#[stable(feature = "cell_eq", since = "1.2.0")]
354impl<T: Eq + Copy> Eq for Cell<T> {}
355
356#[stable(feature = "cell_ord", since = "1.10.0")]
357impl<T: PartialOrd + Copy> PartialOrd for Cell<T> {
358 #[inline]
359 fn partial_cmp(&self, other: &Cell<T>) -> Option<Ordering> {
360 self.get().partial_cmp(&other.get())
361 }
362
363 #[inline]
364 fn lt(&self, other: &Cell<T>) -> bool {
365 self.get() < other.get()
366 }
367
368 #[inline]
369 fn le(&self, other: &Cell<T>) -> bool {
370 self.get() <= other.get()
371 }
372
373 #[inline]
374 fn gt(&self, other: &Cell<T>) -> bool {
375 self.get() > other.get()
376 }
377
378 #[inline]
379 fn ge(&self, other: &Cell<T>) -> bool {
380 self.get() >= other.get()
381 }
382}
383
384#[stable(feature = "cell_ord", since = "1.10.0")]
385impl<T: Ord + Copy> Ord for Cell<T> {
386 #[inline]
387 fn cmp(&self, other: &Cell<T>) -> Ordering {
388 self.get().cmp(&other.get())
389 }
390}
391
392#[stable(feature = "cell_from", since = "1.12.0")]
393impl<T> From<T> for Cell<T> {
394 /// Creates a new `Cell<T>` containing the given value.
395 fn from(t: T) -> Cell<T> {
396 Cell::new(t)
397 }
398}
399
400impl<T> Cell<T> {
401 /// Creates a new `Cell` containing the given value.
402 ///
403 /// # Examples
404 ///
405 /// ```
406 /// use std::cell::Cell;
407 ///
408 /// let c = Cell::new(5);
409 /// ```
410 #[stable(feature = "rust1", since = "1.0.0")]
411 #[rustc_const_stable(feature = "const_cell_new", since = "1.24.0")]
412 #[inline]
413 pub const fn new(value: T) -> Cell<T> {
414 Cell { value: UnsafeCell::new(value) }
415 }
416
417 /// Sets the contained value.
418 ///
419 /// # Examples
420 ///
421 /// ```
422 /// use std::cell::Cell;
423 ///
424 /// let c = Cell::new(5);
425 ///
426 /// c.set(10);
427 /// ```
428 #[inline]
429 #[stable(feature = "rust1", since = "1.0.0")]
430 pub fn set(&self, val: T) {
431 self.replace(val);
432 }
433
434 /// Swaps the values of two `Cell`s.
435 ///
436 /// The difference with `std::mem::swap` is that this function doesn't
437 /// require a `&mut` reference.
438 ///
439 /// # Panics
440 ///
441 /// This function will panic if `self` and `other` are different `Cell`s that partially overlap.
442 /// (Using just standard library methods, it is impossible to create such partially overlapping `Cell`s.
443 /// However, unsafe code is allowed to e.g. create two `&Cell<[i32; 2]>` that partially overlap.)
444 ///
445 /// # Examples
446 ///
447 /// ```
448 /// use std::cell::Cell;
449 ///
450 /// let c1 = Cell::new(5i32);
451 /// let c2 = Cell::new(10i32);
452 /// c1.swap(&c2);
453 /// assert_eq!(10, c1.get());
454 /// assert_eq!(5, c2.get());
455 /// ```
456 #[inline]
457 #[stable(feature = "move_cell", since = "1.17.0")]
458 pub fn swap(&self, other: &Self) {
459 // This function documents that it *will* panic, and intrinsics::is_nonoverlapping doesn't
460 // do the check in const, so trying to use it here would be inviting unnecessary fragility.
461 fn is_nonoverlapping<T>(src: *const T, dst: *const T) -> bool {
462 let src_usize = src.addr();
463 let dst_usize = dst.addr();
464 let diff = src_usize.abs_diff(dst_usize);
465 diff >= size_of::<T>()
466 }
467
468 if ptr::eq(self, other) {
469 // Swapping wouldn't change anything.
470 return;
471 }
472 if !is_nonoverlapping(self, other) {
473 // See <https://github.com/rust-lang/rust/issues/80778> for why we need to stop here.
474 panic!("`Cell::swap` on overlapping non-identical `Cell`s");
475 }
476 // SAFETY: This can be risky if called from separate threads, but `Cell`
477 // is `!Sync` so this won't happen. This also won't invalidate any
478 // pointers since `Cell` makes sure nothing else will be pointing into
479 // either of these `Cell`s. We also excluded shenanigans like partially overlapping `Cell`s,
480 // so `swap` will just properly copy two full values of type `T` back and forth.
481 unsafe {
482 mem::swap(&mut *self.value.get(), &mut *other.value.get());
483 }
484 }
485
486 /// Replaces the contained value with `val`, and returns the old contained value.
487 ///
488 /// # Examples
489 ///
490 /// ```
491 /// use std::cell::Cell;
492 ///
493 /// let cell = Cell::new(5);
494 /// assert_eq!(cell.get(), 5);
495 /// assert_eq!(cell.replace(10), 5);
496 /// assert_eq!(cell.get(), 10);
497 /// ```
498 #[inline]
499 #[stable(feature = "move_cell", since = "1.17.0")]
500 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
501 #[rustc_confusables("swap")]
502 pub const fn replace(&self, val: T) -> T {
503 // SAFETY: This can cause data races if called from a separate thread,
504 // but `Cell` is `!Sync` so this won't happen.
505 mem::replace(unsafe { &mut *self.value.get() }, val)
506 }
507
508 /// Unwraps the value, consuming the cell.
509 ///
510 /// # Examples
511 ///
512 /// ```
513 /// use std::cell::Cell;
514 ///
515 /// let c = Cell::new(5);
516 /// let five = c.into_inner();
517 ///
518 /// assert_eq!(five, 5);
519 /// ```
520 #[stable(feature = "move_cell", since = "1.17.0")]
521 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
522 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
523 pub const fn into_inner(self) -> T {
524 self.value.into_inner()
525 }
526}
527
528impl<T: Copy> Cell<T> {
529 /// Returns a copy of the contained value.
530 ///
531 /// # Examples
532 ///
533 /// ```
534 /// use std::cell::Cell;
535 ///
536 /// let c = Cell::new(5);
537 ///
538 /// let five = c.get();
539 /// ```
540 #[inline]
541 #[stable(feature = "rust1", since = "1.0.0")]
542 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
543 pub const fn get(&self) -> T {
544 // SAFETY: This can cause data races if called from a separate thread,
545 // but `Cell` is `!Sync` so this won't happen.
546 unsafe { *self.value.get() }
547 }
548
549 /// Updates the contained value using a function.
550 ///
551 /// # Examples
552 ///
553 /// ```
554 /// use std::cell::Cell;
555 ///
556 /// let c = Cell::new(5);
557 /// c.update(|x| x + 1);
558 /// assert_eq!(c.get(), 6);
559 /// ```
560 #[inline]
561 #[stable(feature = "cell_update", since = "1.88.0")]
562 pub fn update(&self, f: impl FnOnce(T) -> T) {
563 let old = self.get();
564 self.set(f(old));
565 }
566}
567
568impl<T: ?Sized> Cell<T> {
569 /// Returns a raw pointer to the underlying data in this cell.
570 ///
571 /// # Examples
572 ///
573 /// ```
574 /// use std::cell::Cell;
575 ///
576 /// let c = Cell::new(5);
577 ///
578 /// let ptr = c.as_ptr();
579 /// ```
580 #[inline]
581 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
582 #[rustc_const_stable(feature = "const_cell_as_ptr", since = "1.32.0")]
583 #[rustc_as_ptr]
584 #[rustc_never_returns_null_ptr]
585 pub const fn as_ptr(&self) -> *mut T {
586 self.value.get()
587 }
588
589 /// Returns a mutable reference to the underlying data.
590 ///
591 /// This call borrows `Cell` mutably (at compile-time) which guarantees
592 /// that we possess the only reference.
593 ///
594 /// However be cautious: this method expects `self` to be mutable, which is
595 /// generally not the case when using a `Cell`. If you require interior
596 /// mutability by reference, consider using `RefCell` which provides
597 /// run-time checked mutable borrows through its [`borrow_mut`] method.
598 ///
599 /// [`borrow_mut`]: RefCell::borrow_mut()
600 ///
601 /// # Examples
602 ///
603 /// ```
604 /// use std::cell::Cell;
605 ///
606 /// let mut c = Cell::new(5);
607 /// *c.get_mut() += 1;
608 ///
609 /// assert_eq!(c.get(), 6);
610 /// ```
611 #[inline]
612 #[stable(feature = "cell_get_mut", since = "1.11.0")]
613 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
614 pub const fn get_mut(&mut self) -> &mut T {
615 self.value.get_mut()
616 }
617
618 /// Returns a `&Cell<T>` from a `&mut T`
619 ///
620 /// # Examples
621 ///
622 /// ```
623 /// use std::cell::Cell;
624 ///
625 /// let slice: &mut [i32] = &mut [1, 2, 3];
626 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
627 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
628 ///
629 /// assert_eq!(slice_cell.len(), 3);
630 /// ```
631 #[inline]
632 #[stable(feature = "as_cell", since = "1.37.0")]
633 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
634 pub const fn from_mut(t: &mut T) -> &Cell<T> {
635 // SAFETY: `&mut` ensures unique access.
636 unsafe { &*(t as *mut T as *const Cell<T>) }
637 }
638}
639
640impl<T: Default> Cell<T> {
641 /// Takes the value of the cell, leaving `Default::default()` in its place.
642 ///
643 /// # Examples
644 ///
645 /// ```
646 /// use std::cell::Cell;
647 ///
648 /// let c = Cell::new(5);
649 /// let five = c.take();
650 ///
651 /// assert_eq!(five, 5);
652 /// assert_eq!(c.into_inner(), 0);
653 /// ```
654 #[stable(feature = "move_cell", since = "1.17.0")]
655 pub fn take(&self) -> T {
656 self.replace(Default::default())
657 }
658}
659
660#[unstable(feature = "coerce_unsized", issue = "18598")]
661impl<T: CoerceUnsized<U>, U> CoerceUnsized<Cell<U>> for Cell<T> {}
662
663// Allow types that wrap `Cell` to also implement `DispatchFromDyn`
664// and become dyn-compatible method receivers.
665// Note that currently `Cell` itself cannot be a method receiver
666// because it does not implement Deref.
667// In other words:
668// `self: Cell<&Self>` won't work
669// `self: CellWrapper<Self>` becomes possible
670#[unstable(feature = "dispatch_from_dyn", issue = "none")]
671impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<Cell<U>> for Cell<T> {}
672
673impl<T> Cell<[T]> {
674 /// Returns a `&[Cell<T>]` from a `&Cell<[T]>`
675 ///
676 /// # Examples
677 ///
678 /// ```
679 /// use std::cell::Cell;
680 ///
681 /// let slice: &mut [i32] = &mut [1, 2, 3];
682 /// let cell_slice: &Cell<[i32]> = Cell::from_mut(slice);
683 /// let slice_cell: &[Cell<i32>] = cell_slice.as_slice_of_cells();
684 ///
685 /// assert_eq!(slice_cell.len(), 3);
686 /// ```
687 #[stable(feature = "as_cell", since = "1.37.0")]
688 #[rustc_const_stable(feature = "const_cell", since = "1.88.0")]
689 pub const fn as_slice_of_cells(&self) -> &[Cell<T>] {
690 // SAFETY: `Cell<T>` has the same memory layout as `T`.
691 unsafe { &*(self as *const Cell<[T]> as *const [Cell<T>]) }
692 }
693}
694
695impl<T, const N: usize> Cell<[T; N]> {
696 /// Returns a `&[Cell<T>; N]` from a `&Cell<[T; N]>`
697 ///
698 /// # Examples
699 ///
700 /// ```
701 /// #![feature(as_array_of_cells)]
702 /// use std::cell::Cell;
703 ///
704 /// let mut array: [i32; 3] = [1, 2, 3];
705 /// let cell_array: &Cell<[i32; 3]> = Cell::from_mut(&mut array);
706 /// let array_cell: &[Cell<i32>; 3] = cell_array.as_array_of_cells();
707 /// ```
708 #[unstable(feature = "as_array_of_cells", issue = "88248")]
709 pub const fn as_array_of_cells(&self) -> &[Cell<T>; N] {
710 // SAFETY: `Cell<T>` has the same memory layout as `T`.
711 unsafe { &*(self as *const Cell<[T; N]> as *const [Cell<T>; N]) }
712 }
713}
714
715/// A mutable memory location with dynamically checked borrow rules
716///
717/// See the [module-level documentation](self) for more.
718#[rustc_diagnostic_item = "RefCell"]
719#[stable(feature = "rust1", since = "1.0.0")]
720pub struct RefCell<T: ?Sized> {
721 borrow: Cell<BorrowCounter>,
722 // Stores the location of the earliest currently active borrow.
723 // This gets updated whenever we go from having zero borrows
724 // to having a single borrow. When a borrow occurs, this gets included
725 // in the generated `BorrowError`/`BorrowMutError`
726 #[cfg(feature = "debug_refcell")]
727 borrowed_at: Cell<Option<&'static crate::panic::Location<'static>>>,
728 value: UnsafeCell<T>,
729}
730
731/// An error returned by [`RefCell::try_borrow`].
732#[stable(feature = "try_borrow", since = "1.13.0")]
733#[non_exhaustive]
734#[derive(Debug)]
735pub struct BorrowError {
736 #[cfg(feature = "debug_refcell")]
737 location: &'static crate::panic::Location<'static>,
738}
739
740#[stable(feature = "try_borrow", since = "1.13.0")]
741impl Display for BorrowError {
742 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
743 #[cfg(feature = "debug_refcell")]
744 let res = write!(
745 f,
746 "RefCell already mutably borrowed; a previous borrow was at {}",
747 self.location
748 );
749
750 #[cfg(not(feature = "debug_refcell"))]
751 let res = Display::fmt("RefCell already mutably borrowed", f);
752
753 res
754 }
755}
756
757/// An error returned by [`RefCell::try_borrow_mut`].
758#[stable(feature = "try_borrow", since = "1.13.0")]
759#[non_exhaustive]
760#[derive(Debug)]
761pub struct BorrowMutError {
762 #[cfg(feature = "debug_refcell")]
763 location: &'static crate::panic::Location<'static>,
764}
765
766#[stable(feature = "try_borrow", since = "1.13.0")]
767impl Display for BorrowMutError {
768 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
769 #[cfg(feature = "debug_refcell")]
770 let res = write!(f, "RefCell already borrowed; a previous borrow was at {}", self.location);
771
772 #[cfg(not(feature = "debug_refcell"))]
773 let res = Display::fmt("RefCell already borrowed", f);
774
775 res
776 }
777}
778
779// This ensures the panicking code is outlined from `borrow_mut` for `RefCell`.
780#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
781#[track_caller]
782#[cold]
783const fn panic_already_borrowed(err: BorrowMutError) -> ! {
784 const_panic!(
785 "RefCell already borrowed",
786 "{err}",
787 err: BorrowMutError = err,
788 )
789}
790
791// This ensures the panicking code is outlined from `borrow` for `RefCell`.
792#[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
793#[track_caller]
794#[cold]
795const fn panic_already_mutably_borrowed(err: BorrowError) -> ! {
796 const_panic!(
797 "RefCell already mutably borrowed",
798 "{err}",
799 err: BorrowError = err,
800 )
801}
802
803// Positive values represent the number of `Ref` active. Negative values
804// represent the number of `RefMut` active. Multiple `RefMut`s can only be
805// active at a time if they refer to distinct, nonoverlapping components of a
806// `RefCell` (e.g., different ranges of a slice).
807//
808// `Ref` and `RefMut` are both two words in size, and so there will likely never
809// be enough `Ref`s or `RefMut`s in existence to overflow half of the `usize`
810// range. Thus, a `BorrowCounter` will probably never overflow or underflow.
811// However, this is not a guarantee, as a pathological program could repeatedly
812// create and then mem::forget `Ref`s or `RefMut`s. Thus, all code must
813// explicitly check for overflow and underflow in order to avoid unsafety, or at
814// least behave correctly in the event that overflow or underflow happens (e.g.,
815// see BorrowRef::new).
816type BorrowCounter = isize;
817const UNUSED: BorrowCounter = 0;
818
819#[inline(always)]
820const fn is_writing(x: BorrowCounter) -> bool {
821 x < UNUSED
822}
823
824#[inline(always)]
825const fn is_reading(x: BorrowCounter) -> bool {
826 x > UNUSED
827}
828
829impl<T> RefCell<T> {
830 /// Creates a new `RefCell` containing `value`.
831 ///
832 /// # Examples
833 ///
834 /// ```
835 /// use std::cell::RefCell;
836 ///
837 /// let c = RefCell::new(5);
838 /// ```
839 #[stable(feature = "rust1", since = "1.0.0")]
840 #[rustc_const_stable(feature = "const_refcell_new", since = "1.24.0")]
841 #[inline]
842 pub const fn new(value: T) -> RefCell<T> {
843 RefCell {
844 value: UnsafeCell::new(value),
845 borrow: Cell::new(UNUSED),
846 #[cfg(feature = "debug_refcell")]
847 borrowed_at: Cell::new(None),
848 }
849 }
850
851 /// Consumes the `RefCell`, returning the wrapped value.
852 ///
853 /// # Examples
854 ///
855 /// ```
856 /// use std::cell::RefCell;
857 ///
858 /// let c = RefCell::new(5);
859 ///
860 /// let five = c.into_inner();
861 /// ```
862 #[stable(feature = "rust1", since = "1.0.0")]
863 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
864 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
865 #[inline]
866 pub const fn into_inner(self) -> T {
867 // Since this function takes `self` (the `RefCell`) by value, the
868 // compiler statically verifies that it is not currently borrowed.
869 self.value.into_inner()
870 }
871
872 /// Replaces the wrapped value with a new one, returning the old value,
873 /// without deinitializing either one.
874 ///
875 /// This function corresponds to [`std::mem::replace`](../mem/fn.replace.html).
876 ///
877 /// # Panics
878 ///
879 /// Panics if the value is currently borrowed.
880 ///
881 /// # Examples
882 ///
883 /// ```
884 /// use std::cell::RefCell;
885 /// let cell = RefCell::new(5);
886 /// let old_value = cell.replace(6);
887 /// assert_eq!(old_value, 5);
888 /// assert_eq!(cell, RefCell::new(6));
889 /// ```
890 #[inline]
891 #[stable(feature = "refcell_replace", since = "1.24.0")]
892 #[track_caller]
893 #[rustc_confusables("swap")]
894 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
895 pub const fn replace(&self, t: T) -> T {
896 mem::replace(&mut self.borrow_mut(), t)
897 }
898
899 /// Replaces the wrapped value with a new one computed from `f`, returning
900 /// the old value, without deinitializing either one.
901 ///
902 /// # Panics
903 ///
904 /// Panics if the value is currently borrowed.
905 ///
906 /// # Examples
907 ///
908 /// ```
909 /// use std::cell::RefCell;
910 /// let cell = RefCell::new(5);
911 /// let old_value = cell.replace_with(|&mut old| old + 1);
912 /// assert_eq!(old_value, 5);
913 /// assert_eq!(cell, RefCell::new(6));
914 /// ```
915 #[inline]
916 #[stable(feature = "refcell_replace_swap", since = "1.35.0")]
917 #[track_caller]
918 pub fn replace_with<F: FnOnce(&mut T) -> T>(&self, f: F) -> T {
919 let mut_borrow = &mut *self.borrow_mut();
920 let replacement = f(mut_borrow);
921 mem::replace(mut_borrow, replacement)
922 }
923
924 /// Swaps the wrapped value of `self` with the wrapped value of `other`,
925 /// without deinitializing either one.
926 ///
927 /// This function corresponds to [`std::mem::swap`](../mem/fn.swap.html).
928 ///
929 /// # Panics
930 ///
931 /// Panics if the value in either `RefCell` is currently borrowed, or
932 /// if `self` and `other` point to the same `RefCell`.
933 ///
934 /// # Examples
935 ///
936 /// ```
937 /// use std::cell::RefCell;
938 /// let c = RefCell::new(5);
939 /// let d = RefCell::new(6);
940 /// c.swap(&d);
941 /// assert_eq!(c, RefCell::new(6));
942 /// assert_eq!(d, RefCell::new(5));
943 /// ```
944 #[inline]
945 #[stable(feature = "refcell_swap", since = "1.24.0")]
946 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
947 pub const fn swap(&self, other: &Self) {
948 mem::swap(&mut *self.borrow_mut(), &mut *other.borrow_mut())
949 }
950}
951
952impl<T: ?Sized> RefCell<T> {
953 /// Immutably borrows the wrapped value.
954 ///
955 /// The borrow lasts until the returned `Ref` exits scope. Multiple
956 /// immutable borrows can be taken out at the same time.
957 ///
958 /// # Panics
959 ///
960 /// Panics if the value is currently mutably borrowed. For a non-panicking variant, use
961 /// [`try_borrow`](#method.try_borrow).
962 ///
963 /// # Examples
964 ///
965 /// ```
966 /// use std::cell::RefCell;
967 ///
968 /// let c = RefCell::new(5);
969 ///
970 /// let borrowed_five = c.borrow();
971 /// let borrowed_five2 = c.borrow();
972 /// ```
973 ///
974 /// An example of panic:
975 ///
976 /// ```should_panic
977 /// use std::cell::RefCell;
978 ///
979 /// let c = RefCell::new(5);
980 ///
981 /// let m = c.borrow_mut();
982 /// let b = c.borrow(); // this causes a panic
983 /// ```
984 #[stable(feature = "rust1", since = "1.0.0")]
985 #[inline]
986 #[track_caller]
987 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
988 pub const fn borrow(&self) -> Ref<'_, T> {
989 match self.try_borrow() {
990 Ok(b) => b,
991 Err(err) => panic_already_mutably_borrowed(err),
992 }
993 }
994
995 /// Immutably borrows the wrapped value, returning an error if the value is currently mutably
996 /// borrowed.
997 ///
998 /// The borrow lasts until the returned `Ref` exits scope. Multiple immutable borrows can be
999 /// taken out at the same time.
1000 ///
1001 /// This is the non-panicking variant of [`borrow`](#method.borrow).
1002 ///
1003 /// # Examples
1004 ///
1005 /// ```
1006 /// use std::cell::RefCell;
1007 ///
1008 /// let c = RefCell::new(5);
1009 ///
1010 /// {
1011 /// let m = c.borrow_mut();
1012 /// assert!(c.try_borrow().is_err());
1013 /// }
1014 ///
1015 /// {
1016 /// let m = c.borrow();
1017 /// assert!(c.try_borrow().is_ok());
1018 /// }
1019 /// ```
1020 #[stable(feature = "try_borrow", since = "1.13.0")]
1021 #[inline]
1022 #[cfg_attr(feature = "debug_refcell", track_caller)]
1023 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1024 pub const fn try_borrow(&self) -> Result<Ref<'_, T>, BorrowError> {
1025 match BorrowRef::new(&self.borrow) {
1026 Some(b) => {
1027 #[cfg(feature = "debug_refcell")]
1028 {
1029 // `borrowed_at` is always the *first* active borrow
1030 if b.borrow.get() == 1 {
1031 self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1032 }
1033 }
1034
1035 // SAFETY: `BorrowRef` ensures that there is only immutable access
1036 // to the value while borrowed.
1037 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1038 Ok(Ref { value, borrow: b })
1039 }
1040 None => Err(BorrowError {
1041 // If a borrow occurred, then we must already have an outstanding borrow,
1042 // so `borrowed_at` will be `Some`
1043 #[cfg(feature = "debug_refcell")]
1044 location: self.borrowed_at.get().unwrap(),
1045 }),
1046 }
1047 }
1048
1049 /// Mutably borrows the wrapped value.
1050 ///
1051 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1052 /// from it exit scope. The value cannot be borrowed while this borrow is
1053 /// active.
1054 ///
1055 /// # Panics
1056 ///
1057 /// Panics if the value is currently borrowed. For a non-panicking variant, use
1058 /// [`try_borrow_mut`](#method.try_borrow_mut).
1059 ///
1060 /// # Examples
1061 ///
1062 /// ```
1063 /// use std::cell::RefCell;
1064 ///
1065 /// let c = RefCell::new("hello".to_owned());
1066 ///
1067 /// *c.borrow_mut() = "bonjour".to_owned();
1068 ///
1069 /// assert_eq!(&*c.borrow(), "bonjour");
1070 /// ```
1071 ///
1072 /// An example of panic:
1073 ///
1074 /// ```should_panic
1075 /// use std::cell::RefCell;
1076 ///
1077 /// let c = RefCell::new(5);
1078 /// let m = c.borrow();
1079 ///
1080 /// let b = c.borrow_mut(); // this causes a panic
1081 /// ```
1082 #[stable(feature = "rust1", since = "1.0.0")]
1083 #[inline]
1084 #[track_caller]
1085 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1086 pub const fn borrow_mut(&self) -> RefMut<'_, T> {
1087 match self.try_borrow_mut() {
1088 Ok(b) => b,
1089 Err(err) => panic_already_borrowed(err),
1090 }
1091 }
1092
1093 /// Mutably borrows the wrapped value, returning an error if the value is currently borrowed.
1094 ///
1095 /// The borrow lasts until the returned `RefMut` or all `RefMut`s derived
1096 /// from it exit scope. The value cannot be borrowed while this borrow is
1097 /// active.
1098 ///
1099 /// This is the non-panicking variant of [`borrow_mut`](#method.borrow_mut).
1100 ///
1101 /// # Examples
1102 ///
1103 /// ```
1104 /// use std::cell::RefCell;
1105 ///
1106 /// let c = RefCell::new(5);
1107 ///
1108 /// {
1109 /// let m = c.borrow();
1110 /// assert!(c.try_borrow_mut().is_err());
1111 /// }
1112 ///
1113 /// assert!(c.try_borrow_mut().is_ok());
1114 /// ```
1115 #[stable(feature = "try_borrow", since = "1.13.0")]
1116 #[inline]
1117 #[cfg_attr(feature = "debug_refcell", track_caller)]
1118 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1119 pub const fn try_borrow_mut(&self) -> Result<RefMut<'_, T>, BorrowMutError> {
1120 match BorrowRefMut::new(&self.borrow) {
1121 Some(b) => {
1122 #[cfg(feature = "debug_refcell")]
1123 {
1124 self.borrowed_at.replace(Some(crate::panic::Location::caller()));
1125 }
1126
1127 // SAFETY: `BorrowRefMut` guarantees unique access.
1128 let value = unsafe { NonNull::new_unchecked(self.value.get()) };
1129 Ok(RefMut { value, borrow: b, marker: PhantomData })
1130 }
1131 None => Err(BorrowMutError {
1132 // If a borrow occurred, then we must already have an outstanding borrow,
1133 // so `borrowed_at` will be `Some`
1134 #[cfg(feature = "debug_refcell")]
1135 location: self.borrowed_at.get().unwrap(),
1136 }),
1137 }
1138 }
1139
1140 /// Returns a raw pointer to the underlying data in this cell.
1141 ///
1142 /// # Examples
1143 ///
1144 /// ```
1145 /// use std::cell::RefCell;
1146 ///
1147 /// let c = RefCell::new(5);
1148 ///
1149 /// let ptr = c.as_ptr();
1150 /// ```
1151 #[inline]
1152 #[stable(feature = "cell_as_ptr", since = "1.12.0")]
1153 #[rustc_as_ptr]
1154 #[rustc_never_returns_null_ptr]
1155 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1156 pub const fn as_ptr(&self) -> *mut T {
1157 self.value.get()
1158 }
1159
1160 /// Returns a mutable reference to the underlying data.
1161 ///
1162 /// Since this method borrows `RefCell` mutably, it is statically guaranteed
1163 /// that no borrows to the underlying data exist. The dynamic checks inherent
1164 /// in [`borrow_mut`] and most other methods of `RefCell` are therefore
1165 /// unnecessary. Note that this method does not reset the borrowing state if borrows were previously leaked
1166 /// (e.g., via [`forget()`] on a [`Ref`] or [`RefMut`]). For that purpose,
1167 /// consider using the unstable [`undo_leak`] method.
1168 ///
1169 /// This method can only be called if `RefCell` can be mutably borrowed,
1170 /// which in general is only the case directly after the `RefCell` has
1171 /// been created. In these situations, skipping the aforementioned dynamic
1172 /// borrowing checks may yield better ergonomics and runtime-performance.
1173 ///
1174 /// In most situations where `RefCell` is used, it can't be borrowed mutably.
1175 /// Use [`borrow_mut`] to get mutable access to the underlying data then.
1176 ///
1177 /// [`borrow_mut`]: RefCell::borrow_mut()
1178 /// [`forget()`]: mem::forget
1179 /// [`undo_leak`]: RefCell::undo_leak()
1180 ///
1181 /// # Examples
1182 ///
1183 /// ```
1184 /// use std::cell::RefCell;
1185 ///
1186 /// let mut c = RefCell::new(5);
1187 /// *c.get_mut() += 1;
1188 ///
1189 /// assert_eq!(c, RefCell::new(6));
1190 /// ```
1191 #[inline]
1192 #[stable(feature = "cell_get_mut", since = "1.11.0")]
1193 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1194 pub const fn get_mut(&mut self) -> &mut T {
1195 self.value.get_mut()
1196 }
1197
1198 /// Undo the effect of leaked guards on the borrow state of the `RefCell`.
1199 ///
1200 /// This call is similar to [`get_mut`] but more specialized. It borrows `RefCell` mutably to
1201 /// ensure no borrows exist and then resets the state tracking shared borrows. This is relevant
1202 /// if some `Ref` or `RefMut` borrows have been leaked.
1203 ///
1204 /// [`get_mut`]: RefCell::get_mut()
1205 ///
1206 /// # Examples
1207 ///
1208 /// ```
1209 /// #![feature(cell_leak)]
1210 /// use std::cell::RefCell;
1211 ///
1212 /// let mut c = RefCell::new(0);
1213 /// std::mem::forget(c.borrow_mut());
1214 ///
1215 /// assert!(c.try_borrow().is_err());
1216 /// c.undo_leak();
1217 /// assert!(c.try_borrow().is_ok());
1218 /// ```
1219 #[unstable(feature = "cell_leak", issue = "69099")]
1220 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1221 pub const fn undo_leak(&mut self) -> &mut T {
1222 *self.borrow.get_mut() = UNUSED;
1223 self.get_mut()
1224 }
1225
1226 /// Immutably borrows the wrapped value, returning an error if the value is
1227 /// currently mutably borrowed.
1228 ///
1229 /// # Safety
1230 ///
1231 /// Unlike `RefCell::borrow`, this method is unsafe because it does not
1232 /// return a `Ref`, thus leaving the borrow flag untouched. Mutably
1233 /// borrowing the `RefCell` while the reference returned by this method
1234 /// is alive is undefined behavior.
1235 ///
1236 /// # Examples
1237 ///
1238 /// ```
1239 /// use std::cell::RefCell;
1240 ///
1241 /// let c = RefCell::new(5);
1242 ///
1243 /// {
1244 /// let m = c.borrow_mut();
1245 /// assert!(unsafe { c.try_borrow_unguarded() }.is_err());
1246 /// }
1247 ///
1248 /// {
1249 /// let m = c.borrow();
1250 /// assert!(unsafe { c.try_borrow_unguarded() }.is_ok());
1251 /// }
1252 /// ```
1253 #[stable(feature = "borrow_state", since = "1.37.0")]
1254 #[inline]
1255 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1256 pub const unsafe fn try_borrow_unguarded(&self) -> Result<&T, BorrowError> {
1257 if !is_writing(self.borrow.get()) {
1258 // SAFETY: We check that nobody is actively writing now, but it is
1259 // the caller's responsibility to ensure that nobody writes until
1260 // the returned reference is no longer in use.
1261 // Also, `self.value.get()` refers to the value owned by `self`
1262 // and is thus guaranteed to be valid for the lifetime of `self`.
1263 Ok(unsafe { &*self.value.get() })
1264 } else {
1265 Err(BorrowError {
1266 // If a borrow occurred, then we must already have an outstanding borrow,
1267 // so `borrowed_at` will be `Some`
1268 #[cfg(feature = "debug_refcell")]
1269 location: self.borrowed_at.get().unwrap(),
1270 })
1271 }
1272 }
1273}
1274
1275impl<T: Default> RefCell<T> {
1276 /// Takes the wrapped value, leaving `Default::default()` in its place.
1277 ///
1278 /// # Panics
1279 ///
1280 /// Panics if the value is currently borrowed.
1281 ///
1282 /// # Examples
1283 ///
1284 /// ```
1285 /// use std::cell::RefCell;
1286 ///
1287 /// let c = RefCell::new(5);
1288 /// let five = c.take();
1289 ///
1290 /// assert_eq!(five, 5);
1291 /// assert_eq!(c.into_inner(), 0);
1292 /// ```
1293 #[stable(feature = "refcell_take", since = "1.50.0")]
1294 pub fn take(&self) -> T {
1295 self.replace(Default::default())
1296 }
1297}
1298
1299#[stable(feature = "rust1", since = "1.0.0")]
1300unsafe impl<T: ?Sized> Send for RefCell<T> where T: Send {}
1301
1302#[stable(feature = "rust1", since = "1.0.0")]
1303impl<T: ?Sized> !Sync for RefCell<T> {}
1304
1305#[stable(feature = "rust1", since = "1.0.0")]
1306impl<T: Clone> Clone for RefCell<T> {
1307 /// # Panics
1308 ///
1309 /// Panics if the value is currently mutably borrowed.
1310 #[inline]
1311 #[track_caller]
1312 fn clone(&self) -> RefCell<T> {
1313 RefCell::new(self.borrow().clone())
1314 }
1315
1316 /// # Panics
1317 ///
1318 /// Panics if `source` is currently mutably borrowed.
1319 #[inline]
1320 #[track_caller]
1321 fn clone_from(&mut self, source: &Self) {
1322 self.get_mut().clone_from(&source.borrow())
1323 }
1324}
1325
1326#[stable(feature = "rust1", since = "1.0.0")]
1327#[rustc_const_unstable(feature = "const_default", issue = "67792")]
1328impl<T: ~const Default> const Default for RefCell<T> {
1329 /// Creates a `RefCell<T>`, with the `Default` value for T.
1330 #[inline]
1331 fn default() -> RefCell<T> {
1332 RefCell::new(Default::default())
1333 }
1334}
1335
1336#[stable(feature = "rust1", since = "1.0.0")]
1337impl<T: ?Sized + PartialEq> PartialEq for RefCell<T> {
1338 /// # Panics
1339 ///
1340 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1341 #[inline]
1342 fn eq(&self, other: &RefCell<T>) -> bool {
1343 *self.borrow() == *other.borrow()
1344 }
1345}
1346
1347#[stable(feature = "cell_eq", since = "1.2.0")]
1348impl<T: ?Sized + Eq> Eq for RefCell<T> {}
1349
1350#[stable(feature = "cell_ord", since = "1.10.0")]
1351impl<T: ?Sized + PartialOrd> PartialOrd for RefCell<T> {
1352 /// # Panics
1353 ///
1354 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1355 #[inline]
1356 fn partial_cmp(&self, other: &RefCell<T>) -> Option<Ordering> {
1357 self.borrow().partial_cmp(&*other.borrow())
1358 }
1359
1360 /// # Panics
1361 ///
1362 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1363 #[inline]
1364 fn lt(&self, other: &RefCell<T>) -> bool {
1365 *self.borrow() < *other.borrow()
1366 }
1367
1368 /// # Panics
1369 ///
1370 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1371 #[inline]
1372 fn le(&self, other: &RefCell<T>) -> bool {
1373 *self.borrow() <= *other.borrow()
1374 }
1375
1376 /// # Panics
1377 ///
1378 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1379 #[inline]
1380 fn gt(&self, other: &RefCell<T>) -> bool {
1381 *self.borrow() > *other.borrow()
1382 }
1383
1384 /// # Panics
1385 ///
1386 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1387 #[inline]
1388 fn ge(&self, other: &RefCell<T>) -> bool {
1389 *self.borrow() >= *other.borrow()
1390 }
1391}
1392
1393#[stable(feature = "cell_ord", since = "1.10.0")]
1394impl<T: ?Sized + Ord> Ord for RefCell<T> {
1395 /// # Panics
1396 ///
1397 /// Panics if the value in either `RefCell` is currently mutably borrowed.
1398 #[inline]
1399 fn cmp(&self, other: &RefCell<T>) -> Ordering {
1400 self.borrow().cmp(&*other.borrow())
1401 }
1402}
1403
1404#[stable(feature = "cell_from", since = "1.12.0")]
1405impl<T> From<T> for RefCell<T> {
1406 /// Creates a new `RefCell<T>` containing the given value.
1407 fn from(t: T) -> RefCell<T> {
1408 RefCell::new(t)
1409 }
1410}
1411
1412#[unstable(feature = "coerce_unsized", issue = "18598")]
1413impl<T: CoerceUnsized<U>, U> CoerceUnsized<RefCell<U>> for RefCell<T> {}
1414
1415struct BorrowRef<'b> {
1416 borrow: &'b Cell<BorrowCounter>,
1417}
1418
1419impl<'b> BorrowRef<'b> {
1420 #[inline]
1421 const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRef<'b>> {
1422 let b = borrow.get().wrapping_add(1);
1423 if !is_reading(b) {
1424 // Incrementing borrow can result in a non-reading value (<= 0) in these cases:
1425 // 1. It was < 0, i.e. there are writing borrows, so we can't allow a read borrow
1426 // due to Rust's reference aliasing rules
1427 // 2. It was isize::MAX (the max amount of reading borrows) and it overflowed
1428 // into isize::MIN (the max amount of writing borrows) so we can't allow
1429 // an additional read borrow because isize can't represent so many read borrows
1430 // (this can only happen if you mem::forget more than a small constant amount of
1431 // `Ref`s, which is not good practice)
1432 None
1433 } else {
1434 // Incrementing borrow can result in a reading value (> 0) in these cases:
1435 // 1. It was = 0, i.e. it wasn't borrowed, and we are taking the first read borrow
1436 // 2. It was > 0 and < isize::MAX, i.e. there were read borrows, and isize
1437 // is large enough to represent having one more read borrow
1438 borrow.replace(b);
1439 Some(BorrowRef { borrow })
1440 }
1441 }
1442}
1443
1444#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1445impl const Drop for BorrowRef<'_> {
1446 #[inline]
1447 fn drop(&mut self) {
1448 let borrow = self.borrow.get();
1449 debug_assert!(is_reading(borrow));
1450 self.borrow.replace(borrow - 1);
1451 }
1452}
1453
1454#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1455impl const Clone for BorrowRef<'_> {
1456 #[inline]
1457 fn clone(&self) -> Self {
1458 // Since this Ref exists, we know the borrow flag
1459 // is a reading borrow.
1460 let borrow = self.borrow.get();
1461 debug_assert!(is_reading(borrow));
1462 // Prevent the borrow counter from overflowing into
1463 // a writing borrow.
1464 assert!(borrow != BorrowCounter::MAX);
1465 self.borrow.replace(borrow + 1);
1466 BorrowRef { borrow: self.borrow }
1467 }
1468}
1469
1470/// Wraps a borrowed reference to a value in a `RefCell` box.
1471/// A wrapper type for an immutably borrowed value from a `RefCell<T>`.
1472///
1473/// See the [module-level documentation](self) for more.
1474#[stable(feature = "rust1", since = "1.0.0")]
1475#[must_not_suspend = "holding a Ref across suspend points can cause BorrowErrors"]
1476#[rustc_diagnostic_item = "RefCellRef"]
1477pub struct Ref<'b, T: ?Sized + 'b> {
1478 // NB: we use a pointer instead of `&'b T` to avoid `noalias` violations, because a
1479 // `Ref` argument doesn't hold immutability for its whole scope, only until it drops.
1480 // `NonNull` is also covariant over `T`, just like we would have with `&T`.
1481 value: NonNull<T>,
1482 borrow: BorrowRef<'b>,
1483}
1484
1485#[stable(feature = "rust1", since = "1.0.0")]
1486#[rustc_const_unstable(feature = "const_deref", issue = "88955")]
1487impl<T: ?Sized> const Deref for Ref<'_, T> {
1488 type Target = T;
1489
1490 #[inline]
1491 fn deref(&self) -> &T {
1492 // SAFETY: the value is accessible as long as we hold our borrow.
1493 unsafe { self.value.as_ref() }
1494 }
1495}
1496
1497#[unstable(feature = "deref_pure_trait", issue = "87121")]
1498unsafe impl<T: ?Sized> DerefPure for Ref<'_, T> {}
1499
1500impl<'b, T: ?Sized> Ref<'b, T> {
1501 /// Copies a `Ref`.
1502 ///
1503 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1504 ///
1505 /// This is an associated function that needs to be used as
1506 /// `Ref::clone(...)`. A `Clone` implementation or a method would interfere
1507 /// with the widespread use of `r.borrow().clone()` to clone the contents of
1508 /// a `RefCell`.
1509 #[stable(feature = "cell_extras", since = "1.15.0")]
1510 #[must_use]
1511 #[inline]
1512 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1513 pub const fn clone(orig: &Ref<'b, T>) -> Ref<'b, T> {
1514 Ref { value: orig.value, borrow: orig.borrow.clone() }
1515 }
1516
1517 /// Makes a new `Ref` for a component of the borrowed data.
1518 ///
1519 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1520 ///
1521 /// This is an associated function that needs to be used as `Ref::map(...)`.
1522 /// A method would interfere with methods of the same name on the contents
1523 /// of a `RefCell` used through `Deref`.
1524 ///
1525 /// # Examples
1526 ///
1527 /// ```
1528 /// use std::cell::{RefCell, Ref};
1529 ///
1530 /// let c = RefCell::new((5, 'b'));
1531 /// let b1: Ref<'_, (u32, char)> = c.borrow();
1532 /// let b2: Ref<'_, u32> = Ref::map(b1, |t| &t.0);
1533 /// assert_eq!(*b2, 5)
1534 /// ```
1535 #[stable(feature = "cell_map", since = "1.8.0")]
1536 #[inline]
1537 pub fn map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Ref<'b, U>
1538 where
1539 F: FnOnce(&T) -> &U,
1540 {
1541 Ref { value: NonNull::from(f(&*orig)), borrow: orig.borrow }
1542 }
1543
1544 /// Makes a new `Ref` for an optional component of the borrowed data. The
1545 /// original guard is returned as an `Err(..)` if the closure returns
1546 /// `None`.
1547 ///
1548 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1549 ///
1550 /// This is an associated function that needs to be used as
1551 /// `Ref::filter_map(...)`. A method would interfere with methods of the same
1552 /// name on the contents of a `RefCell` used through `Deref`.
1553 ///
1554 /// # Examples
1555 ///
1556 /// ```
1557 /// use std::cell::{RefCell, Ref};
1558 ///
1559 /// let c = RefCell::new(vec![1, 2, 3]);
1560 /// let b1: Ref<'_, Vec<u32>> = c.borrow();
1561 /// let b2: Result<Ref<'_, u32>, _> = Ref::filter_map(b1, |v| v.get(1));
1562 /// assert_eq!(*b2.unwrap(), 2);
1563 /// ```
1564 #[stable(feature = "cell_filter_map", since = "1.63.0")]
1565 #[inline]
1566 pub fn filter_map<U: ?Sized, F>(orig: Ref<'b, T>, f: F) -> Result<Ref<'b, U>, Self>
1567 where
1568 F: FnOnce(&T) -> Option<&U>,
1569 {
1570 match f(&*orig) {
1571 Some(value) => Ok(Ref { value: NonNull::from(value), borrow: orig.borrow }),
1572 None => Err(orig),
1573 }
1574 }
1575
1576 /// Splits a `Ref` into multiple `Ref`s for different components of the
1577 /// borrowed data.
1578 ///
1579 /// The `RefCell` is already immutably borrowed, so this cannot fail.
1580 ///
1581 /// This is an associated function that needs to be used as
1582 /// `Ref::map_split(...)`. A method would interfere with methods of the same
1583 /// name on the contents of a `RefCell` used through `Deref`.
1584 ///
1585 /// # Examples
1586 ///
1587 /// ```
1588 /// use std::cell::{Ref, RefCell};
1589 ///
1590 /// let cell = RefCell::new([1, 2, 3, 4]);
1591 /// let borrow = cell.borrow();
1592 /// let (begin, end) = Ref::map_split(borrow, |slice| slice.split_at(2));
1593 /// assert_eq!(*begin, [1, 2]);
1594 /// assert_eq!(*end, [3, 4]);
1595 /// ```
1596 #[stable(feature = "refcell_map_split", since = "1.35.0")]
1597 #[inline]
1598 pub fn map_split<U: ?Sized, V: ?Sized, F>(orig: Ref<'b, T>, f: F) -> (Ref<'b, U>, Ref<'b, V>)
1599 where
1600 F: FnOnce(&T) -> (&U, &V),
1601 {
1602 let (a, b) = f(&*orig);
1603 let borrow = orig.borrow.clone();
1604 (
1605 Ref { value: NonNull::from(a), borrow },
1606 Ref { value: NonNull::from(b), borrow: orig.borrow },
1607 )
1608 }
1609
1610 /// Converts into a reference to the underlying data.
1611 ///
1612 /// The underlying `RefCell` can never be mutably borrowed from again and will always appear
1613 /// already immutably borrowed. It is not a good idea to leak more than a constant number of
1614 /// references. The `RefCell` can be immutably borrowed again if only a smaller number of leaks
1615 /// have occurred in total.
1616 ///
1617 /// This is an associated function that needs to be used as
1618 /// `Ref::leak(...)`. A method would interfere with methods of the
1619 /// same name on the contents of a `RefCell` used through `Deref`.
1620 ///
1621 /// # Examples
1622 ///
1623 /// ```
1624 /// #![feature(cell_leak)]
1625 /// use std::cell::{RefCell, Ref};
1626 /// let cell = RefCell::new(0);
1627 ///
1628 /// let value = Ref::leak(cell.borrow());
1629 /// assert_eq!(*value, 0);
1630 ///
1631 /// assert!(cell.try_borrow().is_ok());
1632 /// assert!(cell.try_borrow_mut().is_err());
1633 /// ```
1634 #[unstable(feature = "cell_leak", issue = "69099")]
1635 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1636 pub const fn leak(orig: Ref<'b, T>) -> &'b T {
1637 // By forgetting this Ref we ensure that the borrow counter in the RefCell can't go back to
1638 // UNUSED within the lifetime `'b`. Resetting the reference tracking state would require a
1639 // unique reference to the borrowed RefCell. No further mutable references can be created
1640 // from the original cell.
1641 mem::forget(orig.borrow);
1642 // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1643 unsafe { orig.value.as_ref() }
1644 }
1645}
1646
1647#[unstable(feature = "coerce_unsized", issue = "18598")]
1648impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<Ref<'b, U>> for Ref<'b, T> {}
1649
1650#[stable(feature = "std_guard_impls", since = "1.20.0")]
1651impl<T: ?Sized + fmt::Display> fmt::Display for Ref<'_, T> {
1652 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1653 (**self).fmt(f)
1654 }
1655}
1656
1657impl<'b, T: ?Sized> RefMut<'b, T> {
1658 /// Makes a new `RefMut` for a component of the borrowed data, e.g., an enum
1659 /// variant.
1660 ///
1661 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1662 ///
1663 /// This is an associated function that needs to be used as
1664 /// `RefMut::map(...)`. A method would interfere with methods of the same
1665 /// name on the contents of a `RefCell` used through `Deref`.
1666 ///
1667 /// # Examples
1668 ///
1669 /// ```
1670 /// use std::cell::{RefCell, RefMut};
1671 ///
1672 /// let c = RefCell::new((5, 'b'));
1673 /// {
1674 /// let b1: RefMut<'_, (u32, char)> = c.borrow_mut();
1675 /// let mut b2: RefMut<'_, u32> = RefMut::map(b1, |t| &mut t.0);
1676 /// assert_eq!(*b2, 5);
1677 /// *b2 = 42;
1678 /// }
1679 /// assert_eq!(*c.borrow(), (42, 'b'));
1680 /// ```
1681 #[stable(feature = "cell_map", since = "1.8.0")]
1682 #[inline]
1683 pub fn map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> RefMut<'b, U>
1684 where
1685 F: FnOnce(&mut T) -> &mut U,
1686 {
1687 let value = NonNull::from(f(&mut *orig));
1688 RefMut { value, borrow: orig.borrow, marker: PhantomData }
1689 }
1690
1691 /// Makes a new `RefMut` for an optional component of the borrowed data. The
1692 /// original guard is returned as an `Err(..)` if the closure returns
1693 /// `None`.
1694 ///
1695 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1696 ///
1697 /// This is an associated function that needs to be used as
1698 /// `RefMut::filter_map(...)`. A method would interfere with methods of the
1699 /// same name on the contents of a `RefCell` used through `Deref`.
1700 ///
1701 /// # Examples
1702 ///
1703 /// ```
1704 /// use std::cell::{RefCell, RefMut};
1705 ///
1706 /// let c = RefCell::new(vec![1, 2, 3]);
1707 ///
1708 /// {
1709 /// let b1: RefMut<'_, Vec<u32>> = c.borrow_mut();
1710 /// let mut b2: Result<RefMut<'_, u32>, _> = RefMut::filter_map(b1, |v| v.get_mut(1));
1711 ///
1712 /// if let Ok(mut b2) = b2 {
1713 /// *b2 += 2;
1714 /// }
1715 /// }
1716 ///
1717 /// assert_eq!(*c.borrow(), vec![1, 4, 3]);
1718 /// ```
1719 #[stable(feature = "cell_filter_map", since = "1.63.0")]
1720 #[inline]
1721 pub fn filter_map<U: ?Sized, F>(mut orig: RefMut<'b, T>, f: F) -> Result<RefMut<'b, U>, Self>
1722 where
1723 F: FnOnce(&mut T) -> Option<&mut U>,
1724 {
1725 // SAFETY: function holds onto an exclusive reference for the duration
1726 // of its call through `orig`, and the pointer is only de-referenced
1727 // inside of the function call never allowing the exclusive reference to
1728 // escape.
1729 match f(&mut *orig) {
1730 Some(value) => {
1731 Ok(RefMut { value: NonNull::from(value), borrow: orig.borrow, marker: PhantomData })
1732 }
1733 None => Err(orig),
1734 }
1735 }
1736
1737 /// Splits a `RefMut` into multiple `RefMut`s for different components of the
1738 /// borrowed data.
1739 ///
1740 /// The underlying `RefCell` will remain mutably borrowed until both
1741 /// returned `RefMut`s go out of scope.
1742 ///
1743 /// The `RefCell` is already mutably borrowed, so this cannot fail.
1744 ///
1745 /// This is an associated function that needs to be used as
1746 /// `RefMut::map_split(...)`. A method would interfere with methods of the
1747 /// same name on the contents of a `RefCell` used through `Deref`.
1748 ///
1749 /// # Examples
1750 ///
1751 /// ```
1752 /// use std::cell::{RefCell, RefMut};
1753 ///
1754 /// let cell = RefCell::new([1, 2, 3, 4]);
1755 /// let borrow = cell.borrow_mut();
1756 /// let (mut begin, mut end) = RefMut::map_split(borrow, |slice| slice.split_at_mut(2));
1757 /// assert_eq!(*begin, [1, 2]);
1758 /// assert_eq!(*end, [3, 4]);
1759 /// begin.copy_from_slice(&[4, 3]);
1760 /// end.copy_from_slice(&[2, 1]);
1761 /// ```
1762 #[stable(feature = "refcell_map_split", since = "1.35.0")]
1763 #[inline]
1764 pub fn map_split<U: ?Sized, V: ?Sized, F>(
1765 mut orig: RefMut<'b, T>,
1766 f: F,
1767 ) -> (RefMut<'b, U>, RefMut<'b, V>)
1768 where
1769 F: FnOnce(&mut T) -> (&mut U, &mut V),
1770 {
1771 let borrow = orig.borrow.clone();
1772 let (a, b) = f(&mut *orig);
1773 (
1774 RefMut { value: NonNull::from(a), borrow, marker: PhantomData },
1775 RefMut { value: NonNull::from(b), borrow: orig.borrow, marker: PhantomData },
1776 )
1777 }
1778
1779 /// Converts into a mutable reference to the underlying data.
1780 ///
1781 /// The underlying `RefCell` can not be borrowed from again and will always appear already
1782 /// mutably borrowed, making the returned reference the only to the interior.
1783 ///
1784 /// This is an associated function that needs to be used as
1785 /// `RefMut::leak(...)`. A method would interfere with methods of the
1786 /// same name on the contents of a `RefCell` used through `Deref`.
1787 ///
1788 /// # Examples
1789 ///
1790 /// ```
1791 /// #![feature(cell_leak)]
1792 /// use std::cell::{RefCell, RefMut};
1793 /// let cell = RefCell::new(0);
1794 ///
1795 /// let value = RefMut::leak(cell.borrow_mut());
1796 /// assert_eq!(*value, 0);
1797 /// *value = 1;
1798 ///
1799 /// assert!(cell.try_borrow_mut().is_err());
1800 /// ```
1801 #[unstable(feature = "cell_leak", issue = "69099")]
1802 #[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1803 pub const fn leak(mut orig: RefMut<'b, T>) -> &'b mut T {
1804 // By forgetting this BorrowRefMut we ensure that the borrow counter in the RefCell can't
1805 // go back to UNUSED within the lifetime `'b`. Resetting the reference tracking state would
1806 // require a unique reference to the borrowed RefCell. No further references can be created
1807 // from the original cell within that lifetime, making the current borrow the only
1808 // reference for the remaining lifetime.
1809 mem::forget(orig.borrow);
1810 // SAFETY: after forgetting, we can form a reference for the rest of lifetime `'b`.
1811 unsafe { orig.value.as_mut() }
1812 }
1813}
1814
1815struct BorrowRefMut<'b> {
1816 borrow: &'b Cell<BorrowCounter>,
1817}
1818
1819#[rustc_const_unstable(feature = "const_ref_cell", issue = "137844")]
1820impl const Drop for BorrowRefMut<'_> {
1821 #[inline]
1822 fn drop(&mut self) {
1823 let borrow = self.borrow.get();
1824 debug_assert!(is_writing(borrow));
1825 self.borrow.replace(borrow + 1);
1826 }
1827}
1828
1829impl<'b> BorrowRefMut<'b> {
1830 #[inline]
1831 const fn new(borrow: &'b Cell<BorrowCounter>) -> Option<BorrowRefMut<'b>> {
1832 // NOTE: Unlike BorrowRefMut::clone, new is called to create the initial
1833 // mutable reference, and so there must currently be no existing
1834 // references. Thus, while clone increments the mutable refcount, here
1835 // we explicitly only allow going from UNUSED to UNUSED - 1.
1836 match borrow.get() {
1837 UNUSED => {
1838 borrow.replace(UNUSED - 1);
1839 Some(BorrowRefMut { borrow })
1840 }
1841 _ => None,
1842 }
1843 }
1844
1845 // Clones a `BorrowRefMut`.
1846 //
1847 // This is only valid if each `BorrowRefMut` is used to track a mutable
1848 // reference to a distinct, nonoverlapping range of the original object.
1849 // This isn't in a Clone impl so that code doesn't call this implicitly.
1850 #[inline]
1851 fn clone(&self) -> BorrowRefMut<'b> {
1852 let borrow = self.borrow.get();
1853 debug_assert!(is_writing(borrow));
1854 // Prevent the borrow counter from underflowing.
1855 assert!(borrow != BorrowCounter::MIN);
1856 self.borrow.set(borrow - 1);
1857 BorrowRefMut { borrow: self.borrow }
1858 }
1859}
1860
1861/// A wrapper type for a mutably borrowed value from a `RefCell<T>`.
1862///
1863/// See the [module-level documentation](self) for more.
1864#[stable(feature = "rust1", since = "1.0.0")]
1865#[must_not_suspend = "holding a RefMut across suspend points can cause BorrowErrors"]
1866#[rustc_diagnostic_item = "RefCellRefMut"]
1867pub struct RefMut<'b, T: ?Sized + 'b> {
1868 // NB: we use a pointer instead of `&'b mut T` to avoid `noalias` violations, because a
1869 // `RefMut` argument doesn't hold exclusivity for its whole scope, only until it drops.
1870 value: NonNull<T>,
1871 borrow: BorrowRefMut<'b>,
1872 // `NonNull` is covariant over `T`, so we need to reintroduce invariance.
1873 marker: PhantomData<&'b mut T>,
1874}
1875
1876#[stable(feature = "rust1", since = "1.0.0")]
1877#[rustc_const_unstable(feature = "const_deref", issue = "88955")]
1878impl<T: ?Sized> const Deref for RefMut<'_, T> {
1879 type Target = T;
1880
1881 #[inline]
1882 fn deref(&self) -> &T {
1883 // SAFETY: the value is accessible as long as we hold our borrow.
1884 unsafe { self.value.as_ref() }
1885 }
1886}
1887
1888#[stable(feature = "rust1", since = "1.0.0")]
1889#[rustc_const_unstable(feature = "const_deref", issue = "88955")]
1890impl<T: ?Sized> const DerefMut for RefMut<'_, T> {
1891 #[inline]
1892 fn deref_mut(&mut self) -> &mut T {
1893 // SAFETY: the value is accessible as long as we hold our borrow.
1894 unsafe { self.value.as_mut() }
1895 }
1896}
1897
1898#[unstable(feature = "deref_pure_trait", issue = "87121")]
1899unsafe impl<T: ?Sized> DerefPure for RefMut<'_, T> {}
1900
1901#[unstable(feature = "coerce_unsized", issue = "18598")]
1902impl<'b, T: ?Sized + Unsize<U>, U: ?Sized> CoerceUnsized<RefMut<'b, U>> for RefMut<'b, T> {}
1903
1904#[stable(feature = "std_guard_impls", since = "1.20.0")]
1905impl<T: ?Sized + fmt::Display> fmt::Display for RefMut<'_, T> {
1906 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1907 (**self).fmt(f)
1908 }
1909}
1910
1911/// The core primitive for interior mutability in Rust.
1912///
1913/// If you have a reference `&T`, then normally in Rust the compiler performs optimizations based on
1914/// the knowledge that `&T` points to immutable data. Mutating that data, for example through an
1915/// alias or by transmuting a `&T` into a `&mut T`, is considered undefined behavior.
1916/// `UnsafeCell<T>` opts-out of the immutability guarantee for `&T`: a shared reference
1917/// `&UnsafeCell<T>` may point to data that is being mutated. This is called "interior mutability".
1918///
1919/// All other types that allow internal mutability, such as [`Cell<T>`] and [`RefCell<T>`], internally
1920/// use `UnsafeCell` to wrap their data.
1921///
1922/// Note that only the immutability guarantee for shared references is affected by `UnsafeCell`. The
1923/// uniqueness guarantee for mutable references is unaffected. There is *no* legal way to obtain
1924/// aliasing `&mut`, not even with `UnsafeCell<T>`.
1925///
1926/// `UnsafeCell` does nothing to avoid data races; they are still undefined behavior. If multiple
1927/// threads have access to the same `UnsafeCell`, they must follow the usual rules of the
1928/// [concurrent memory model]: conflicting non-synchronized accesses must be done via the APIs in
1929/// [`core::sync::atomic`].
1930///
1931/// The `UnsafeCell` API itself is technically very simple: [`.get()`] gives you a raw pointer
1932/// `*mut T` to its contents. It is up to _you_ as the abstraction designer to use that raw pointer
1933/// correctly.
1934///
1935/// [`.get()`]: `UnsafeCell::get`
1936/// [concurrent memory model]: ../sync/atomic/index.html#memory-model-for-atomic-accesses
1937///
1938/// # Aliasing rules
1939///
1940/// The precise Rust aliasing rules are somewhat in flux, but the main points are not contentious:
1941///
1942/// - If you create a safe reference with lifetime `'a` (either a `&T` or `&mut T` reference), then
1943/// you must not access the data in any way that contradicts that reference for the remainder of
1944/// `'a`. For example, this means that if you take the `*mut T` from an `UnsafeCell<T>` and cast it
1945/// to an `&T`, then the data in `T` must remain immutable (modulo any `UnsafeCell` data found
1946/// within `T`, of course) until that reference's lifetime expires. Similarly, if you create a `&mut
1947/// T` reference that is released to safe code, then you must not access the data within the
1948/// `UnsafeCell` until that reference expires.
1949///
1950/// - For both `&T` without `UnsafeCell<_>` and `&mut T`, you must also not deallocate the data
1951/// until the reference expires. As a special exception, given an `&T`, any part of it that is
1952/// inside an `UnsafeCell<_>` may be deallocated during the lifetime of the reference, after the
1953/// last time the reference is used (dereferenced or reborrowed). Since you cannot deallocate a part
1954/// of what a reference points to, this means the memory an `&T` points to can be deallocated only if
1955/// *every part of it* (including padding) is inside an `UnsafeCell`.
1956///
1957/// However, whenever a `&UnsafeCell<T>` is constructed or dereferenced, it must still point to
1958/// live memory and the compiler is allowed to insert spurious reads if it can prove that this
1959/// memory has not yet been deallocated.
1960///
1961/// To assist with proper design, the following scenarios are explicitly declared legal
1962/// for single-threaded code:
1963///
1964/// 1. A `&T` reference can be released to safe code and there it can co-exist with other `&T`
1965/// references, but not with a `&mut T`
1966///
1967/// 2. A `&mut T` reference may be released to safe code provided neither other `&mut T` nor `&T`
1968/// co-exist with it. A `&mut T` must always be unique.
1969///
1970/// Note that whilst mutating the contents of an `&UnsafeCell<T>` (even while other
1971/// `&UnsafeCell<T>` references alias the cell) is
1972/// ok (provided you enforce the above invariants some other way), it is still undefined behavior
1973/// to have multiple `&mut UnsafeCell<T>` aliases. That is, `UnsafeCell` is a wrapper
1974/// designed to have a special interaction with _shared_ accesses (_i.e._, through an
1975/// `&UnsafeCell<_>` reference); there is no magic whatsoever when dealing with _exclusive_
1976/// accesses (_e.g._, through a `&mut UnsafeCell<_>`): neither the cell nor the wrapped value
1977/// may be aliased for the duration of that `&mut` borrow.
1978/// This is showcased by the [`.get_mut()`] accessor, which is a _safe_ getter that yields
1979/// a `&mut T`.
1980///
1981/// [`.get_mut()`]: `UnsafeCell::get_mut`
1982///
1983/// # Memory layout
1984///
1985/// `UnsafeCell<T>` has the same in-memory representation as its inner type `T`. A consequence
1986/// of this guarantee is that it is possible to convert between `T` and `UnsafeCell<T>`.
1987/// Special care has to be taken when converting a nested `T` inside of an `Outer<T>` type
1988/// to an `Outer<UnsafeCell<T>>` type: this is not sound when the `Outer<T>` type enables [niche]
1989/// optimizations. For example, the type `Option<NonNull<u8>>` is typically 8 bytes large on
1990/// 64-bit platforms, but the type `Option<UnsafeCell<NonNull<u8>>>` takes up 16 bytes of space.
1991/// Therefore this is not a valid conversion, despite `NonNull<u8>` and `UnsafeCell<NonNull<u8>>>`
1992/// having the same memory layout. This is because `UnsafeCell` disables niche optimizations in
1993/// order to avoid its interior mutability property from spreading from `T` into the `Outer` type,
1994/// thus this can cause distortions in the type size in these cases.
1995///
1996/// Note that the only valid way to obtain a `*mut T` pointer to the contents of a
1997/// _shared_ `UnsafeCell<T>` is through [`.get()`] or [`.raw_get()`]. A `&mut T` reference
1998/// can be obtained by either dereferencing this pointer or by calling [`.get_mut()`]
1999/// on an _exclusive_ `UnsafeCell<T>`. Even though `T` and `UnsafeCell<T>` have the
2000/// same memory layout, the following is not allowed and undefined behavior:
2001///
2002/// ```rust,compile_fail
2003/// # use std::cell::UnsafeCell;
2004/// unsafe fn not_allowed<T>(ptr: &UnsafeCell<T>) -> &mut T {
2005/// let t = ptr as *const UnsafeCell<T> as *mut T;
2006/// // This is undefined behavior, because the `*mut T` pointer
2007/// // was not obtained through `.get()` nor `.raw_get()`:
2008/// unsafe { &mut *t }
2009/// }
2010/// ```
2011///
2012/// Instead, do this:
2013///
2014/// ```rust
2015/// # use std::cell::UnsafeCell;
2016/// // Safety: the caller must ensure that there are no references that
2017/// // point to the *contents* of the `UnsafeCell`.
2018/// unsafe fn get_mut<T>(ptr: &UnsafeCell<T>) -> &mut T {
2019/// unsafe { &mut *ptr.get() }
2020/// }
2021/// ```
2022///
2023/// Converting in the other direction from a `&mut T`
2024/// to an `&UnsafeCell<T>` is allowed:
2025///
2026/// ```rust
2027/// # use std::cell::UnsafeCell;
2028/// fn get_shared<T>(ptr: &mut T) -> &UnsafeCell<T> {
2029/// let t = ptr as *mut T as *const UnsafeCell<T>;
2030/// // SAFETY: `T` and `UnsafeCell<T>` have the same memory layout
2031/// unsafe { &*t }
2032/// }
2033/// ```
2034///
2035/// [niche]: https://rust-lang.github.io/unsafe-code-guidelines/glossary.html#niche
2036/// [`.raw_get()`]: `UnsafeCell::raw_get`
2037///
2038/// # Examples
2039///
2040/// Here is an example showcasing how to soundly mutate the contents of an `UnsafeCell<_>` despite
2041/// there being multiple references aliasing the cell:
2042///
2043/// ```
2044/// use std::cell::UnsafeCell;
2045///
2046/// let x: UnsafeCell<i32> = 42.into();
2047/// // Get multiple / concurrent / shared references to the same `x`.
2048/// let (p1, p2): (&UnsafeCell<i32>, &UnsafeCell<i32>) = (&x, &x);
2049///
2050/// unsafe {
2051/// // SAFETY: within this scope there are no other references to `x`'s contents,
2052/// // so ours is effectively unique.
2053/// let p1_exclusive: &mut i32 = &mut *p1.get(); // -- borrow --+
2054/// *p1_exclusive += 27; // |
2055/// } // <---------- cannot go beyond this point -------------------+
2056///
2057/// unsafe {
2058/// // SAFETY: within this scope nobody expects to have exclusive access to `x`'s contents,
2059/// // so we can have multiple shared accesses concurrently.
2060/// let p2_shared: &i32 = &*p2.get();
2061/// assert_eq!(*p2_shared, 42 + 27);
2062/// let p1_shared: &i32 = &*p1.get();
2063/// assert_eq!(*p1_shared, *p2_shared);
2064/// }
2065/// ```
2066///
2067/// The following example showcases the fact that exclusive access to an `UnsafeCell<T>`
2068/// implies exclusive access to its `T`:
2069///
2070/// ```rust
2071/// #![forbid(unsafe_code)] // with exclusive accesses,
2072/// // `UnsafeCell` is a transparent no-op wrapper,
2073/// // so no need for `unsafe` here.
2074/// use std::cell::UnsafeCell;
2075///
2076/// let mut x: UnsafeCell<i32> = 42.into();
2077///
2078/// // Get a compile-time-checked unique reference to `x`.
2079/// let p_unique: &mut UnsafeCell<i32> = &mut x;
2080/// // With an exclusive reference, we can mutate the contents for free.
2081/// *p_unique.get_mut() = 0;
2082/// // Or, equivalently:
2083/// x = UnsafeCell::new(0);
2084///
2085/// // When we own the value, we can extract the contents for free.
2086/// let contents: i32 = x.into_inner();
2087/// assert_eq!(contents, 0);
2088/// ```
2089#[lang = "unsafe_cell"]
2090#[stable(feature = "rust1", since = "1.0.0")]
2091#[repr(transparent)]
2092#[rustc_pub_transparent]
2093pub struct UnsafeCell<T: ?Sized> {
2094 value: T,
2095}
2096
2097#[stable(feature = "rust1", since = "1.0.0")]
2098impl<T: ?Sized> !Sync for UnsafeCell<T> {}
2099
2100impl<T> UnsafeCell<T> {
2101 /// Constructs a new instance of `UnsafeCell` which will wrap the specified
2102 /// value.
2103 ///
2104 /// All access to the inner value through `&UnsafeCell<T>` requires `unsafe` code.
2105 ///
2106 /// # Examples
2107 ///
2108 /// ```
2109 /// use std::cell::UnsafeCell;
2110 ///
2111 /// let uc = UnsafeCell::new(5);
2112 /// ```
2113 #[stable(feature = "rust1", since = "1.0.0")]
2114 #[rustc_const_stable(feature = "const_unsafe_cell_new", since = "1.32.0")]
2115 #[inline(always)]
2116 pub const fn new(value: T) -> UnsafeCell<T> {
2117 UnsafeCell { value }
2118 }
2119
2120 /// Unwraps the value, consuming the cell.
2121 ///
2122 /// # Examples
2123 ///
2124 /// ```
2125 /// use std::cell::UnsafeCell;
2126 ///
2127 /// let uc = UnsafeCell::new(5);
2128 ///
2129 /// let five = uc.into_inner();
2130 /// ```
2131 #[inline(always)]
2132 #[stable(feature = "rust1", since = "1.0.0")]
2133 #[rustc_const_stable(feature = "const_cell_into_inner", since = "1.83.0")]
2134 #[rustc_allow_const_fn_unstable(const_precise_live_drops)]
2135 pub const fn into_inner(self) -> T {
2136 self.value
2137 }
2138
2139 /// Replace the value in this `UnsafeCell` and return the old value.
2140 ///
2141 /// # Safety
2142 ///
2143 /// The caller must take care to avoid aliasing and data races.
2144 ///
2145 /// - It is Undefined Behavior to allow calls to race with
2146 /// any other access to the wrapped value.
2147 /// - It is Undefined Behavior to call this while any other
2148 /// reference(s) to the wrapped value are alive.
2149 ///
2150 /// # Examples
2151 ///
2152 /// ```
2153 /// #![feature(unsafe_cell_access)]
2154 /// use std::cell::UnsafeCell;
2155 ///
2156 /// let uc = UnsafeCell::new(5);
2157 ///
2158 /// let old = unsafe { uc.replace(10) };
2159 /// assert_eq!(old, 5);
2160 /// ```
2161 #[inline]
2162 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2163 pub const unsafe fn replace(&self, value: T) -> T {
2164 // SAFETY: pointer comes from `&self` so naturally satisfies invariants.
2165 unsafe { ptr::replace(self.get(), value) }
2166 }
2167}
2168
2169impl<T: ?Sized> UnsafeCell<T> {
2170 /// Converts from `&mut T` to `&mut UnsafeCell<T>`.
2171 ///
2172 /// # Examples
2173 ///
2174 /// ```
2175 /// use std::cell::UnsafeCell;
2176 ///
2177 /// let mut val = 42;
2178 /// let uc = UnsafeCell::from_mut(&mut val);
2179 ///
2180 /// *uc.get_mut() -= 1;
2181 /// assert_eq!(*uc.get_mut(), 41);
2182 /// ```
2183 #[inline(always)]
2184 #[stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2185 #[rustc_const_stable(feature = "unsafe_cell_from_mut", since = "1.84.0")]
2186 pub const fn from_mut(value: &mut T) -> &mut UnsafeCell<T> {
2187 // SAFETY: `UnsafeCell<T>` has the same memory layout as `T` due to #[repr(transparent)].
2188 unsafe { &mut *(value as *mut T as *mut UnsafeCell<T>) }
2189 }
2190
2191 /// Gets a mutable pointer to the wrapped value.
2192 ///
2193 /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2194 /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2195 /// caveats.
2196 ///
2197 /// # Examples
2198 ///
2199 /// ```
2200 /// use std::cell::UnsafeCell;
2201 ///
2202 /// let uc = UnsafeCell::new(5);
2203 ///
2204 /// let five = uc.get();
2205 /// ```
2206 #[inline(always)]
2207 #[stable(feature = "rust1", since = "1.0.0")]
2208 #[rustc_const_stable(feature = "const_unsafecell_get", since = "1.32.0")]
2209 #[rustc_as_ptr]
2210 #[rustc_never_returns_null_ptr]
2211 pub const fn get(&self) -> *mut T {
2212 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2213 // #[repr(transparent)]. This exploits std's special status, there is
2214 // no guarantee for user code that this will work in future versions of the compiler!
2215 self as *const UnsafeCell<T> as *const T as *mut T
2216 }
2217
2218 /// Returns a mutable reference to the underlying data.
2219 ///
2220 /// This call borrows the `UnsafeCell` mutably (at compile-time) which
2221 /// guarantees that we possess the only reference.
2222 ///
2223 /// # Examples
2224 ///
2225 /// ```
2226 /// use std::cell::UnsafeCell;
2227 ///
2228 /// let mut c = UnsafeCell::new(5);
2229 /// *c.get_mut() += 1;
2230 ///
2231 /// assert_eq!(*c.get_mut(), 6);
2232 /// ```
2233 #[inline(always)]
2234 #[stable(feature = "unsafe_cell_get_mut", since = "1.50.0")]
2235 #[rustc_const_stable(feature = "const_unsafecell_get_mut", since = "1.83.0")]
2236 pub const fn get_mut(&mut self) -> &mut T {
2237 &mut self.value
2238 }
2239
2240 /// Gets a mutable pointer to the wrapped value.
2241 /// The difference from [`get`] is that this function accepts a raw pointer,
2242 /// which is useful to avoid the creation of temporary references.
2243 ///
2244 /// This can be cast to a pointer of any kind. When creating references, you must uphold the
2245 /// aliasing rules; see [the type-level docs][UnsafeCell#aliasing-rules] for more discussion and
2246 /// caveats.
2247 ///
2248 /// [`get`]: UnsafeCell::get()
2249 ///
2250 /// # Examples
2251 ///
2252 /// Gradual initialization of an `UnsafeCell` requires `raw_get`, as
2253 /// calling `get` would require creating a reference to uninitialized data:
2254 ///
2255 /// ```
2256 /// use std::cell::UnsafeCell;
2257 /// use std::mem::MaybeUninit;
2258 ///
2259 /// let m = MaybeUninit::<UnsafeCell<i32>>::uninit();
2260 /// unsafe { UnsafeCell::raw_get(m.as_ptr()).write(5); }
2261 /// // avoid below which references to uninitialized data
2262 /// // unsafe { UnsafeCell::get(&*m.as_ptr()).write(5); }
2263 /// let uc = unsafe { m.assume_init() };
2264 ///
2265 /// assert_eq!(uc.into_inner(), 5);
2266 /// ```
2267 #[inline(always)]
2268 #[stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2269 #[rustc_const_stable(feature = "unsafe_cell_raw_get", since = "1.56.0")]
2270 #[rustc_diagnostic_item = "unsafe_cell_raw_get"]
2271 pub const fn raw_get(this: *const Self) -> *mut T {
2272 // We can just cast the pointer from `UnsafeCell<T>` to `T` because of
2273 // #[repr(transparent)]. This exploits std's special status, there is
2274 // no guarantee for user code that this will work in future versions of the compiler!
2275 this as *const T as *mut T
2276 }
2277
2278 /// Get a shared reference to the value within the `UnsafeCell`.
2279 ///
2280 /// # Safety
2281 ///
2282 /// - It is Undefined Behavior to call this while any mutable
2283 /// reference to the wrapped value is alive.
2284 /// - Mutating the wrapped value while the returned
2285 /// reference is alive is Undefined Behavior.
2286 ///
2287 /// # Examples
2288 ///
2289 /// ```
2290 /// #![feature(unsafe_cell_access)]
2291 /// use std::cell::UnsafeCell;
2292 ///
2293 /// let uc = UnsafeCell::new(5);
2294 ///
2295 /// let val = unsafe { uc.as_ref_unchecked() };
2296 /// assert_eq!(val, &5);
2297 /// ```
2298 #[inline]
2299 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2300 pub const unsafe fn as_ref_unchecked(&self) -> &T {
2301 // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2302 unsafe { self.get().as_ref_unchecked() }
2303 }
2304
2305 /// Get an exclusive reference to the value within the `UnsafeCell`.
2306 ///
2307 /// # Safety
2308 ///
2309 /// - It is Undefined Behavior to call this while any other
2310 /// reference(s) to the wrapped value are alive.
2311 /// - Mutating the wrapped value through other means while the
2312 /// returned reference is alive is Undefined Behavior.
2313 ///
2314 /// # Examples
2315 ///
2316 /// ```
2317 /// #![feature(unsafe_cell_access)]
2318 /// use std::cell::UnsafeCell;
2319 ///
2320 /// let uc = UnsafeCell::new(5);
2321 ///
2322 /// unsafe { *uc.as_mut_unchecked() += 1; }
2323 /// assert_eq!(uc.into_inner(), 6);
2324 /// ```
2325 #[inline]
2326 #[unstable(feature = "unsafe_cell_access", issue = "136327")]
2327 #[allow(clippy::mut_from_ref)]
2328 pub const unsafe fn as_mut_unchecked(&self) -> &mut T {
2329 // SAFETY: pointer comes from `&self` so naturally satisfies ptr-to-ref invariants.
2330 unsafe { self.get().as_mut_unchecked() }
2331 }
2332}
2333
2334#[stable(feature = "unsafe_cell_default", since = "1.10.0")]
2335#[rustc_const_unstable(feature = "const_default", issue = "67792")]
2336impl<T: ~const Default> const Default for UnsafeCell<T> {
2337 /// Creates an `UnsafeCell`, with the `Default` value for T.
2338 fn default() -> UnsafeCell<T> {
2339 UnsafeCell::new(Default::default())
2340 }
2341}
2342
2343#[stable(feature = "cell_from", since = "1.12.0")]
2344impl<T> From<T> for UnsafeCell<T> {
2345 /// Creates a new `UnsafeCell<T>` containing the given value.
2346 fn from(t: T) -> UnsafeCell<T> {
2347 UnsafeCell::new(t)
2348 }
2349}
2350
2351#[unstable(feature = "coerce_unsized", issue = "18598")]
2352impl<T: CoerceUnsized<U>, U> CoerceUnsized<UnsafeCell<U>> for UnsafeCell<T> {}
2353
2354// Allow types that wrap `UnsafeCell` to also implement `DispatchFromDyn`
2355// and become dyn-compatible method receivers.
2356// Note that currently `UnsafeCell` itself cannot be a method receiver
2357// because it does not implement Deref.
2358// In other words:
2359// `self: UnsafeCell<&Self>` won't work
2360// `self: UnsafeCellWrapper<Self>` becomes possible
2361#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2362impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<UnsafeCell<U>> for UnsafeCell<T> {}
2363
2364/// [`UnsafeCell`], but [`Sync`].
2365///
2366/// This is just an `UnsafeCell`, except it implements `Sync`
2367/// if `T` implements `Sync`.
2368///
2369/// `UnsafeCell` doesn't implement `Sync`, to prevent accidental mis-use.
2370/// You can use `SyncUnsafeCell` instead of `UnsafeCell` to allow it to be
2371/// shared between threads, if that's intentional.
2372/// Providing proper synchronization is still the task of the user,
2373/// making this type just as unsafe to use.
2374///
2375/// See [`UnsafeCell`] for details.
2376#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2377#[repr(transparent)]
2378#[rustc_diagnostic_item = "SyncUnsafeCell"]
2379#[rustc_pub_transparent]
2380pub struct SyncUnsafeCell<T: ?Sized> {
2381 value: UnsafeCell<T>,
2382}
2383
2384#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2385unsafe impl<T: ?Sized + Sync> Sync for SyncUnsafeCell<T> {}
2386
2387#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2388impl<T> SyncUnsafeCell<T> {
2389 /// Constructs a new instance of `SyncUnsafeCell` which will wrap the specified value.
2390 #[inline]
2391 pub const fn new(value: T) -> Self {
2392 Self { value: UnsafeCell { value } }
2393 }
2394
2395 /// Unwraps the value, consuming the cell.
2396 #[inline]
2397 #[rustc_const_unstable(feature = "sync_unsafe_cell", issue = "95439")]
2398 pub const fn into_inner(self) -> T {
2399 self.value.into_inner()
2400 }
2401}
2402
2403#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2404impl<T: ?Sized> SyncUnsafeCell<T> {
2405 /// Gets a mutable pointer to the wrapped value.
2406 ///
2407 /// This can be cast to a pointer of any kind.
2408 /// Ensure that the access is unique (no active references, mutable or not)
2409 /// when casting to `&mut T`, and ensure that there are no mutations
2410 /// or mutable aliases going on when casting to `&T`
2411 #[inline]
2412 #[rustc_as_ptr]
2413 #[rustc_never_returns_null_ptr]
2414 pub const fn get(&self) -> *mut T {
2415 self.value.get()
2416 }
2417
2418 /// Returns a mutable reference to the underlying data.
2419 ///
2420 /// This call borrows the `SyncUnsafeCell` mutably (at compile-time) which
2421 /// guarantees that we possess the only reference.
2422 #[inline]
2423 pub const fn get_mut(&mut self) -> &mut T {
2424 self.value.get_mut()
2425 }
2426
2427 /// Gets a mutable pointer to the wrapped value.
2428 ///
2429 /// See [`UnsafeCell::get`] for details.
2430 #[inline]
2431 pub const fn raw_get(this: *const Self) -> *mut T {
2432 // We can just cast the pointer from `SyncUnsafeCell<T>` to `T` because
2433 // of #[repr(transparent)] on both SyncUnsafeCell and UnsafeCell.
2434 // See UnsafeCell::raw_get.
2435 this as *const T as *mut T
2436 }
2437}
2438
2439#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2440#[rustc_const_unstable(feature = "const_default", issue = "67792")]
2441impl<T: ~const Default> const Default for SyncUnsafeCell<T> {
2442 /// Creates an `SyncUnsafeCell`, with the `Default` value for T.
2443 fn default() -> SyncUnsafeCell<T> {
2444 SyncUnsafeCell::new(Default::default())
2445 }
2446}
2447
2448#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2449impl<T> From<T> for SyncUnsafeCell<T> {
2450 /// Creates a new `SyncUnsafeCell<T>` containing the given value.
2451 fn from(t: T) -> SyncUnsafeCell<T> {
2452 SyncUnsafeCell::new(t)
2453 }
2454}
2455
2456#[unstable(feature = "coerce_unsized", issue = "18598")]
2457//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2458impl<T: CoerceUnsized<U>, U> CoerceUnsized<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2459
2460// Allow types that wrap `SyncUnsafeCell` to also implement `DispatchFromDyn`
2461// and become dyn-compatible method receivers.
2462// Note that currently `SyncUnsafeCell` itself cannot be a method receiver
2463// because it does not implement Deref.
2464// In other words:
2465// `self: SyncUnsafeCell<&Self>` won't work
2466// `self: SyncUnsafeCellWrapper<Self>` becomes possible
2467#[unstable(feature = "dispatch_from_dyn", issue = "none")]
2468//#[unstable(feature = "sync_unsafe_cell", issue = "95439")]
2469impl<T: DispatchFromDyn<U>, U> DispatchFromDyn<SyncUnsafeCell<U>> for SyncUnsafeCell<T> {}
2470
2471#[allow(unused)]
2472fn assert_coerce_unsized(
2473 a: UnsafeCell<&i32>,
2474 b: SyncUnsafeCell<&i32>,
2475 c: Cell<&i32>,
2476 d: RefCell<&i32>,
2477) {
2478 let _: UnsafeCell<&dyn Send> = a;
2479 let _: SyncUnsafeCell<&dyn Send> = b;
2480 let _: Cell<&dyn Send> = c;
2481 let _: RefCell<&dyn Send> = d;
2482}
2483
2484#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2485unsafe impl<T: ?Sized> PinCoerceUnsized for UnsafeCell<T> {}
2486
2487#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2488unsafe impl<T: ?Sized> PinCoerceUnsized for SyncUnsafeCell<T> {}
2489
2490#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2491unsafe impl<T: ?Sized> PinCoerceUnsized for Cell<T> {}
2492
2493#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2494unsafe impl<T: ?Sized> PinCoerceUnsized for RefCell<T> {}
2495
2496#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2497unsafe impl<'b, T: ?Sized> PinCoerceUnsized for Ref<'b, T> {}
2498
2499#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
2500unsafe impl<'b, T: ?Sized> PinCoerceUnsized for RefMut<'b, T> {}