alloc/
rc.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
//! Single-threaded reference-counting pointers. 'Rc' stands for 'Reference
//! Counted'.
//!
//! The type [`Rc<T>`][`Rc`] provides shared ownership of a value of type `T`,
//! allocated in the heap. Invoking [`clone`][clone] on [`Rc`] produces a new
//! pointer to the same allocation in the heap. When the last [`Rc`] pointer to a
//! given allocation is destroyed, the value stored in that allocation (often
//! referred to as "inner value") is also dropped.
//!
//! Shared references in Rust disallow mutation by default, and [`Rc`]
//! is no exception: you cannot generally obtain a mutable reference to
//! something inside an [`Rc`]. If you need mutability, put a [`Cell`]
//! or [`RefCell`] inside the [`Rc`]; see [an example of mutability
//! inside an `Rc`][mutability].
//!
//! [`Rc`] uses non-atomic reference counting. This means that overhead is very
//! low, but an [`Rc`] cannot be sent between threads, and consequently [`Rc`]
//! does not implement [`Send`]. As a result, the Rust compiler
//! will check *at compile time* that you are not sending [`Rc`]s between
//! threads. If you need multi-threaded, atomic reference counting, use
//! [`sync::Arc`][arc].
//!
//! The [`downgrade`][downgrade] method can be used to create a non-owning
//! [`Weak`] pointer. A [`Weak`] pointer can be [`upgrade`][upgrade]d
//! to an [`Rc`], but this will return [`None`] if the value stored in the allocation has
//! already been dropped. In other words, `Weak` pointers do not keep the value
//! inside the allocation alive; however, they *do* keep the allocation
//! (the backing store for the inner value) alive.
//!
//! A cycle between [`Rc`] pointers will never be deallocated. For this reason,
//! [`Weak`] is used to break cycles. For example, a tree could have strong
//! [`Rc`] pointers from parent nodes to children, and [`Weak`] pointers from
//! children back to their parents.
//!
//! `Rc<T>` automatically dereferences to `T` (via the [`Deref`] trait),
//! so you can call `T`'s methods on a value of type [`Rc<T>`][`Rc`]. To avoid name
//! clashes with `T`'s methods, the methods of [`Rc<T>`][`Rc`] itself are associated
//! functions, called using [fully qualified syntax]:
//!
//! ```
//! use std::rc::Rc;
//!
//! let my_rc = Rc::new(());
//! let my_weak = Rc::downgrade(&my_rc);
//! ```
//!
//! `Rc<T>`'s implementations of traits like `Clone` may also be called using
//! fully qualified syntax. Some people prefer to use fully qualified syntax,
//! while others prefer using method-call syntax.
//!
//! ```
//! use std::rc::Rc;
//!
//! let rc = Rc::new(());
//! // Method-call syntax
//! let rc2 = rc.clone();
//! // Fully qualified syntax
//! let rc3 = Rc::clone(&rc);
//! ```
//!
//! [`Weak<T>`][`Weak`] does not auto-dereference to `T`, because the inner value may have
//! already been dropped.
//!
//! # Cloning references
//!
//! Creating a new reference to the same allocation as an existing reference counted pointer
//! is done using the `Clone` trait implemented for [`Rc<T>`][`Rc`] and [`Weak<T>`][`Weak`].
//!
//! ```
//! use std::rc::Rc;
//!
//! let foo = Rc::new(vec![1.0, 2.0, 3.0]);
//! // The two syntaxes below are equivalent.
//! let a = foo.clone();
//! let b = Rc::clone(&foo);
//! // a and b both point to the same memory location as foo.
//! ```
//!
//! The `Rc::clone(&from)` syntax is the most idiomatic because it conveys more explicitly
//! the meaning of the code. In the example above, this syntax makes it easier to see that
//! this code is creating a new reference rather than copying the whole content of foo.
//!
//! # Examples
//!
//! Consider a scenario where a set of `Gadget`s are owned by a given `Owner`.
//! We want to have our `Gadget`s point to their `Owner`. We can't do this with
//! unique ownership, because more than one gadget may belong to the same
//! `Owner`. [`Rc`] allows us to share an `Owner` between multiple `Gadget`s,
//! and have the `Owner` remain allocated as long as any `Gadget` points at it.
//!
//! ```
//! use std::rc::Rc;
//!
//! struct Owner {
//!     name: String,
//!     // ...other fields
//! }
//!
//! struct Gadget {
//!     id: i32,
//!     owner: Rc<Owner>,
//!     // ...other fields
//! }
//!
//! fn main() {
//!     // Create a reference-counted `Owner`.
//!     let gadget_owner: Rc<Owner> = Rc::new(
//!         Owner {
//!             name: "Gadget Man".to_string(),
//!         }
//!     );
//!
//!     // Create `Gadget`s belonging to `gadget_owner`. Cloning the `Rc<Owner>`
//!     // gives us a new pointer to the same `Owner` allocation, incrementing
//!     // the reference count in the process.
//!     let gadget1 = Gadget {
//!         id: 1,
//!         owner: Rc::clone(&gadget_owner),
//!     };
//!     let gadget2 = Gadget {
//!         id: 2,
//!         owner: Rc::clone(&gadget_owner),
//!     };
//!
//!     // Dispose of our local variable `gadget_owner`.
//!     drop(gadget_owner);
//!
//!     // Despite dropping `gadget_owner`, we're still able to print out the name
//!     // of the `Owner` of the `Gadget`s. This is because we've only dropped a
//!     // single `Rc<Owner>`, not the `Owner` it points to. As long as there are
//!     // other `Rc<Owner>` pointing at the same `Owner` allocation, it will remain
//!     // live. The field projection `gadget1.owner.name` works because
//!     // `Rc<Owner>` automatically dereferences to `Owner`.
//!     println!("Gadget {} owned by {}", gadget1.id, gadget1.owner.name);
//!     println!("Gadget {} owned by {}", gadget2.id, gadget2.owner.name);
//!
//!     // At the end of the function, `gadget1` and `gadget2` are destroyed, and
//!     // with them the last counted references to our `Owner`. Gadget Man now
//!     // gets destroyed as well.
//! }
//! ```
//!
//! If our requirements change, and we also need to be able to traverse from
//! `Owner` to `Gadget`, we will run into problems. An [`Rc`] pointer from `Owner`
//! to `Gadget` introduces a cycle. This means that their
//! reference counts can never reach 0, and the allocation will never be destroyed:
//! a memory leak. In order to get around this, we can use [`Weak`]
//! pointers.
//!
//! Rust actually makes it somewhat difficult to produce this loop in the first
//! place. In order to end up with two values that point at each other, one of
//! them needs to be mutable. This is difficult because [`Rc`] enforces
//! memory safety by only giving out shared references to the value it wraps,
//! and these don't allow direct mutation. We need to wrap the part of the
//! value we wish to mutate in a [`RefCell`], which provides *interior
//! mutability*: a method to achieve mutability through a shared reference.
//! [`RefCell`] enforces Rust's borrowing rules at runtime.
//!
//! ```
//! use std::rc::Rc;
//! use std::rc::Weak;
//! use std::cell::RefCell;
//!
//! struct Owner {
//!     name: String,
//!     gadgets: RefCell<Vec<Weak<Gadget>>>,
//!     // ...other fields
//! }
//!
//! struct Gadget {
//!     id: i32,
//!     owner: Rc<Owner>,
//!     // ...other fields
//! }
//!
//! fn main() {
//!     // Create a reference-counted `Owner`. Note that we've put the `Owner`'s
//!     // vector of `Gadget`s inside a `RefCell` so that we can mutate it through
//!     // a shared reference.
//!     let gadget_owner: Rc<Owner> = Rc::new(
//!         Owner {
//!             name: "Gadget Man".to_string(),
//!             gadgets: RefCell::new(vec![]),
//!         }
//!     );
//!
//!     // Create `Gadget`s belonging to `gadget_owner`, as before.
//!     let gadget1 = Rc::new(
//!         Gadget {
//!             id: 1,
//!             owner: Rc::clone(&gadget_owner),
//!         }
//!     );
//!     let gadget2 = Rc::new(
//!         Gadget {
//!             id: 2,
//!             owner: Rc::clone(&gadget_owner),
//!         }
//!     );
//!
//!     // Add the `Gadget`s to their `Owner`.
//!     {
//!         let mut gadgets = gadget_owner.gadgets.borrow_mut();
//!         gadgets.push(Rc::downgrade(&gadget1));
//!         gadgets.push(Rc::downgrade(&gadget2));
//!
//!         // `RefCell` dynamic borrow ends here.
//!     }
//!
//!     // Iterate over our `Gadget`s, printing their details out.
//!     for gadget_weak in gadget_owner.gadgets.borrow().iter() {
//!
//!         // `gadget_weak` is a `Weak<Gadget>`. Since `Weak` pointers can't
//!         // guarantee the allocation still exists, we need to call
//!         // `upgrade`, which returns an `Option<Rc<Gadget>>`.
//!         //
//!         // In this case we know the allocation still exists, so we simply
//!         // `unwrap` the `Option`. In a more complicated program, you might
//!         // need graceful error handling for a `None` result.
//!
//!         let gadget = gadget_weak.upgrade().unwrap();
//!         println!("Gadget {} owned by {}", gadget.id, gadget.owner.name);
//!     }
//!
//!     // At the end of the function, `gadget_owner`, `gadget1`, and `gadget2`
//!     // are destroyed. There are now no strong (`Rc`) pointers to the
//!     // gadgets, so they are destroyed. This zeroes the reference count on
//!     // Gadget Man, so he gets destroyed as well.
//! }
//! ```
//!
//! [clone]: Clone::clone
//! [`Cell`]: core::cell::Cell
//! [`RefCell`]: core::cell::RefCell
//! [arc]: crate::sync::Arc
//! [`Deref`]: core::ops::Deref
//! [downgrade]: Rc::downgrade
//! [upgrade]: Weak::upgrade
//! [mutability]: core::cell#introducing-mutability-inside-of-something-immutable
//! [fully qualified syntax]: https://doc.rust-lang.org/book/ch19-03-advanced-traits.html#fully-qualified-syntax-for-disambiguation-calling-methods-with-the-same-name

#![stable(feature = "rust1", since = "1.0.0")]

use core::any::Any;
use core::cell::Cell;
#[cfg(not(no_global_oom_handling))]
use core::clone::CloneToUninit;
use core::cmp::Ordering;
use core::hash::{Hash, Hasher};
use core::intrinsics::abort;
#[cfg(not(no_global_oom_handling))]
use core::iter;
use core::marker::{PhantomData, Unsize};
use core::mem::{self, ManuallyDrop, align_of_val_raw};
use core::ops::{CoerceUnsized, Deref, DerefMut, DerefPure, DispatchFromDyn, LegacyReceiver};
use core::panic::{RefUnwindSafe, UnwindSafe};
#[cfg(not(no_global_oom_handling))]
use core::pin::Pin;
use core::pin::PinCoerceUnsized;
use core::ptr::{self, NonNull, drop_in_place};
#[cfg(not(no_global_oom_handling))]
use core::slice::from_raw_parts_mut;
use core::{borrow, fmt, hint};
#[cfg(test)]
use std::boxed::Box;

#[cfg(not(no_global_oom_handling))]
use crate::alloc::handle_alloc_error;
use crate::alloc::{AllocError, Allocator, Global, Layout};
use crate::borrow::{Cow, ToOwned};
#[cfg(not(test))]
use crate::boxed::Box;
#[cfg(not(no_global_oom_handling))]
use crate::string::String;
#[cfg(not(no_global_oom_handling))]
use crate::vec::Vec;

#[cfg(test)]
mod tests;

// This is repr(C) to future-proof against possible field-reordering, which
// would interfere with otherwise safe [into|from]_raw() of transmutable
// inner types.
#[repr(C)]
struct RcInner<T: ?Sized> {
    strong: Cell<usize>,
    weak: Cell<usize>,
    value: T,
}

/// Calculate layout for `RcInner<T>` using the inner value's layout
fn rc_inner_layout_for_value_layout(layout: Layout) -> Layout {
    // Calculate layout using the given value layout.
    // Previously, layout was calculated on the expression
    // `&*(ptr as *const RcInner<T>)`, but this created a misaligned
    // reference (see #54908).
    Layout::new::<RcInner<()>>().extend(layout).unwrap().0.pad_to_align()
}

/// A single-threaded reference-counting pointer. 'Rc' stands for 'Reference
/// Counted'.
///
/// See the [module-level documentation](./index.html) for more details.
///
/// The inherent methods of `Rc` are all associated functions, which means
/// that you have to call them as e.g., [`Rc::get_mut(&mut value)`][get_mut] instead of
/// `value.get_mut()`. This avoids conflicts with methods of the inner type `T`.
///
/// [get_mut]: Rc::get_mut
#[cfg_attr(not(test), rustc_diagnostic_item = "Rc")]
#[stable(feature = "rust1", since = "1.0.0")]
#[rustc_insignificant_dtor]
pub struct Rc<
    T: ?Sized,
    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
> {
    ptr: NonNull<RcInner<T>>,
    phantom: PhantomData<RcInner<T>>,
    alloc: A,
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized, A: Allocator> !Send for Rc<T, A> {}

// Note that this negative impl isn't strictly necessary for correctness,
// as `Rc` transitively contains a `Cell`, which is itself `!Sync`.
// However, given how important `Rc`'s `!Sync`-ness is,
// having an explicit negative impl is nice for documentation purposes
// and results in nicer error messages.
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized, A: Allocator> !Sync for Rc<T, A> {}

#[stable(feature = "catch_unwind", since = "1.9.0")]
impl<T: RefUnwindSafe + ?Sized, A: Allocator + UnwindSafe> UnwindSafe for Rc<T, A> {}
#[stable(feature = "rc_ref_unwind_safe", since = "1.58.0")]
impl<T: RefUnwindSafe + ?Sized, A: Allocator + UnwindSafe> RefUnwindSafe for Rc<T, A> {}

#[unstable(feature = "coerce_unsized", issue = "18598")]
impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Rc<U, A>> for Rc<T, A> {}

#[unstable(feature = "dispatch_from_dyn", issue = "none")]
impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Rc<U>> for Rc<T> {}

impl<T: ?Sized> Rc<T> {
    #[inline]
    unsafe fn from_inner(ptr: NonNull<RcInner<T>>) -> Self {
        unsafe { Self::from_inner_in(ptr, Global) }
    }

    #[inline]
    unsafe fn from_ptr(ptr: *mut RcInner<T>) -> Self {
        unsafe { Self::from_inner(NonNull::new_unchecked(ptr)) }
    }
}

impl<T: ?Sized, A: Allocator> Rc<T, A> {
    #[inline(always)]
    fn inner(&self) -> &RcInner<T> {
        // This unsafety is ok because while this Rc is alive we're guaranteed
        // that the inner pointer is valid.
        unsafe { self.ptr.as_ref() }
    }

    #[inline]
    fn into_inner_with_allocator(this: Self) -> (NonNull<RcInner<T>>, A) {
        let this = mem::ManuallyDrop::new(this);
        (this.ptr, unsafe { ptr::read(&this.alloc) })
    }

    #[inline]
    unsafe fn from_inner_in(ptr: NonNull<RcInner<T>>, alloc: A) -> Self {
        Self { ptr, phantom: PhantomData, alloc }
    }

    #[inline]
    unsafe fn from_ptr_in(ptr: *mut RcInner<T>, alloc: A) -> Self {
        unsafe { Self::from_inner_in(NonNull::new_unchecked(ptr), alloc) }
    }

    // Non-inlined part of `drop`.
    #[inline(never)]
    unsafe fn drop_slow(&mut self) {
        // Reconstruct the "strong weak" pointer and drop it when this
        // variable goes out of scope. This ensures that the memory is
        // deallocated even if the destructor of `T` panics.
        let _weak = Weak { ptr: self.ptr, alloc: &self.alloc };

        // Destroy the contained object.
        // We cannot use `get_mut_unchecked` here, because `self.alloc` is borrowed.
        unsafe {
            ptr::drop_in_place(&mut (*self.ptr.as_ptr()).value);
        }
    }
}

impl<T> Rc<T> {
    /// Constructs a new `Rc<T>`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[stable(feature = "rust1", since = "1.0.0")]
    pub fn new(value: T) -> Rc<T> {
        // There is an implicit weak pointer owned by all the strong
        // pointers, which ensures that the weak destructor never frees
        // the allocation while the strong destructor is running, even
        // if the weak pointer is stored inside the strong one.
        unsafe {
            Self::from_inner(
                Box::leak(Box::new(RcInner { strong: Cell::new(1), weak: Cell::new(1), value }))
                    .into(),
            )
        }
    }

    /// Constructs a new `Rc<T>` while giving you a `Weak<T>` to the allocation,
    /// to allow you to construct a `T` which holds a weak pointer to itself.
    ///
    /// Generally, a structure circularly referencing itself, either directly or
    /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
    /// Using this function, you get access to the weak pointer during the
    /// initialization of `T`, before the `Rc<T>` is created, such that you can
    /// clone and store it inside the `T`.
    ///
    /// `new_cyclic` first allocates the managed allocation for the `Rc<T>`,
    /// then calls your closure, giving it a `Weak<T>` to this allocation,
    /// and only afterwards completes the construction of the `Rc<T>` by placing
    /// the `T` returned from your closure into the allocation.
    ///
    /// Since the new `Rc<T>` is not fully-constructed until `Rc<T>::new_cyclic`
    /// returns, calling [`upgrade`] on the weak reference inside your closure will
    /// fail and result in a `None` value.
    ///
    /// # Panics
    ///
    /// If `data_fn` panics, the panic is propagated to the caller, and the
    /// temporary [`Weak<T>`] is dropped normally.
    ///
    /// # Examples
    ///
    /// ```
    /// # #![allow(dead_code)]
    /// use std::rc::{Rc, Weak};
    ///
    /// struct Gadget {
    ///     me: Weak<Gadget>,
    /// }
    ///
    /// impl Gadget {
    ///     /// Constructs a reference counted Gadget.
    ///     fn new() -> Rc<Self> {
    ///         // `me` is a `Weak<Gadget>` pointing at the new allocation of the
    ///         // `Rc` we're constructing.
    ///         Rc::new_cyclic(|me| {
    ///             // Create the actual struct here.
    ///             Gadget { me: me.clone() }
    ///         })
    ///     }
    ///
    ///     /// Returns a reference counted pointer to Self.
    ///     fn me(&self) -> Rc<Self> {
    ///         self.me.upgrade().unwrap()
    ///     }
    /// }
    /// ```
    /// [`upgrade`]: Weak::upgrade
    #[cfg(not(no_global_oom_handling))]
    #[stable(feature = "arc_new_cyclic", since = "1.60.0")]
    pub fn new_cyclic<F>(data_fn: F) -> Rc<T>
    where
        F: FnOnce(&Weak<T>) -> T,
    {
        Self::new_cyclic_in(data_fn, Global)
    }

    /// Constructs a new `Rc` with uninitialized contents.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(get_mut_unchecked)]
    ///
    /// use std::rc::Rc;
    ///
    /// let mut five = Rc::<u32>::new_uninit();
    ///
    /// // Deferred initialization:
    /// Rc::get_mut(&mut five).unwrap().write(5);
    ///
    /// let five = unsafe { five.assume_init() };
    ///
    /// assert_eq!(*five, 5)
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[stable(feature = "new_uninit", since = "1.82.0")]
    #[must_use]
    pub fn new_uninit() -> Rc<mem::MaybeUninit<T>> {
        unsafe {
            Rc::from_ptr(Rc::allocate_for_layout(
                Layout::new::<T>(),
                |layout| Global.allocate(layout),
                <*mut u8>::cast,
            ))
        }
    }

    /// Constructs a new `Rc` with uninitialized contents, with the memory
    /// being filled with `0` bytes.
    ///
    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
    /// incorrect usage of this method.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(new_zeroed_alloc)]
    ///
    /// use std::rc::Rc;
    ///
    /// let zero = Rc::<u32>::new_zeroed();
    /// let zero = unsafe { zero.assume_init() };
    ///
    /// assert_eq!(*zero, 0)
    /// ```
    ///
    /// [zeroed]: mem::MaybeUninit::zeroed
    #[cfg(not(no_global_oom_handling))]
    #[unstable(feature = "new_zeroed_alloc", issue = "129396")]
    #[must_use]
    pub fn new_zeroed() -> Rc<mem::MaybeUninit<T>> {
        unsafe {
            Rc::from_ptr(Rc::allocate_for_layout(
                Layout::new::<T>(),
                |layout| Global.allocate_zeroed(layout),
                <*mut u8>::cast,
            ))
        }
    }

    /// Constructs a new `Rc<T>`, returning an error if the allocation fails
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    /// use std::rc::Rc;
    ///
    /// let five = Rc::try_new(5);
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    #[unstable(feature = "allocator_api", issue = "32838")]
    pub fn try_new(value: T) -> Result<Rc<T>, AllocError> {
        // There is an implicit weak pointer owned by all the strong
        // pointers, which ensures that the weak destructor never frees
        // the allocation while the strong destructor is running, even
        // if the weak pointer is stored inside the strong one.
        unsafe {
            Ok(Self::from_inner(
                Box::leak(Box::try_new(RcInner {
                    strong: Cell::new(1),
                    weak: Cell::new(1),
                    value,
                })?)
                .into(),
            ))
        }
    }

    /// Constructs a new `Rc` with uninitialized contents, returning an error if the allocation fails
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    /// #![feature(get_mut_unchecked)]
    ///
    /// use std::rc::Rc;
    ///
    /// let mut five = Rc::<u32>::try_new_uninit()?;
    ///
    /// // Deferred initialization:
    /// Rc::get_mut(&mut five).unwrap().write(5);
    ///
    /// let five = unsafe { five.assume_init() };
    ///
    /// assert_eq!(*five, 5);
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    #[unstable(feature = "allocator_api", issue = "32838")]
    // #[unstable(feature = "new_uninit", issue = "63291")]
    pub fn try_new_uninit() -> Result<Rc<mem::MaybeUninit<T>>, AllocError> {
        unsafe {
            Ok(Rc::from_ptr(Rc::try_allocate_for_layout(
                Layout::new::<T>(),
                |layout| Global.allocate(layout),
                <*mut u8>::cast,
            )?))
        }
    }

    /// Constructs a new `Rc` with uninitialized contents, with the memory
    /// being filled with `0` bytes, returning an error if the allocation fails
    ///
    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
    /// incorrect usage of this method.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::rc::Rc;
    ///
    /// let zero = Rc::<u32>::try_new_zeroed()?;
    /// let zero = unsafe { zero.assume_init() };
    ///
    /// assert_eq!(*zero, 0);
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    ///
    /// [zeroed]: mem::MaybeUninit::zeroed
    #[unstable(feature = "allocator_api", issue = "32838")]
    //#[unstable(feature = "new_uninit", issue = "63291")]
    pub fn try_new_zeroed() -> Result<Rc<mem::MaybeUninit<T>>, AllocError> {
        unsafe {
            Ok(Rc::from_ptr(Rc::try_allocate_for_layout(
                Layout::new::<T>(),
                |layout| Global.allocate_zeroed(layout),
                <*mut u8>::cast,
            )?))
        }
    }
    /// Constructs a new `Pin<Rc<T>>`. If `T` does not implement `Unpin`, then
    /// `value` will be pinned in memory and unable to be moved.
    #[cfg(not(no_global_oom_handling))]
    #[stable(feature = "pin", since = "1.33.0")]
    #[must_use]
    pub fn pin(value: T) -> Pin<Rc<T>> {
        unsafe { Pin::new_unchecked(Rc::new(value)) }
    }
}

impl<T, A: Allocator> Rc<T, A> {
    /// Constructs a new `Rc` in the provided allocator.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    /// use std::rc::Rc;
    /// use std::alloc::System;
    ///
    /// let five = Rc::new_in(5, System);
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[inline]
    pub fn new_in(value: T, alloc: A) -> Rc<T, A> {
        // NOTE: Prefer match over unwrap_or_else since closure sometimes not inlineable.
        // That would make code size bigger.
        match Self::try_new_in(value, alloc) {
            Ok(m) => m,
            Err(_) => handle_alloc_error(Layout::new::<RcInner<T>>()),
        }
    }

    /// Constructs a new `Rc` with uninitialized contents in the provided allocator.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(get_mut_unchecked)]
    /// #![feature(allocator_api)]
    ///
    /// use std::rc::Rc;
    /// use std::alloc::System;
    ///
    /// let mut five = Rc::<u32, _>::new_uninit_in(System);
    ///
    /// let five = unsafe {
    ///     // Deferred initialization:
    ///     Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
    ///
    ///     five.assume_init()
    /// };
    ///
    /// assert_eq!(*five, 5)
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[unstable(feature = "allocator_api", issue = "32838")]
    // #[unstable(feature = "new_uninit", issue = "63291")]
    #[inline]
    pub fn new_uninit_in(alloc: A) -> Rc<mem::MaybeUninit<T>, A> {
        unsafe {
            Rc::from_ptr_in(
                Rc::allocate_for_layout(
                    Layout::new::<T>(),
                    |layout| alloc.allocate(layout),
                    <*mut u8>::cast,
                ),
                alloc,
            )
        }
    }

    /// Constructs a new `Rc` with uninitialized contents, with the memory
    /// being filled with `0` bytes, in the provided allocator.
    ///
    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
    /// incorrect usage of this method.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::rc::Rc;
    /// use std::alloc::System;
    ///
    /// let zero = Rc::<u32, _>::new_zeroed_in(System);
    /// let zero = unsafe { zero.assume_init() };
    ///
    /// assert_eq!(*zero, 0)
    /// ```
    ///
    /// [zeroed]: mem::MaybeUninit::zeroed
    #[cfg(not(no_global_oom_handling))]
    #[unstable(feature = "allocator_api", issue = "32838")]
    // #[unstable(feature = "new_uninit", issue = "63291")]
    #[inline]
    pub fn new_zeroed_in(alloc: A) -> Rc<mem::MaybeUninit<T>, A> {
        unsafe {
            Rc::from_ptr_in(
                Rc::allocate_for_layout(
                    Layout::new::<T>(),
                    |layout| alloc.allocate_zeroed(layout),
                    <*mut u8>::cast,
                ),
                alloc,
            )
        }
    }

    /// Constructs a new `Rc<T, A>` in the given allocator while giving you a `Weak<T, A>` to the allocation,
    /// to allow you to construct a `T` which holds a weak pointer to itself.
    ///
    /// Generally, a structure circularly referencing itself, either directly or
    /// indirectly, should not hold a strong reference to itself to prevent a memory leak.
    /// Using this function, you get access to the weak pointer during the
    /// initialization of `T`, before the `Rc<T, A>` is created, such that you can
    /// clone and store it inside the `T`.
    ///
    /// `new_cyclic_in` first allocates the managed allocation for the `Rc<T, A>`,
    /// then calls your closure, giving it a `Weak<T, A>` to this allocation,
    /// and only afterwards completes the construction of the `Rc<T, A>` by placing
    /// the `T` returned from your closure into the allocation.
    ///
    /// Since the new `Rc<T, A>` is not fully-constructed until `Rc<T, A>::new_cyclic_in`
    /// returns, calling [`upgrade`] on the weak reference inside your closure will
    /// fail and result in a `None` value.
    ///
    /// # Panics
    ///
    /// If `data_fn` panics, the panic is propagated to the caller, and the
    /// temporary [`Weak<T, A>`] is dropped normally.
    ///
    /// # Examples
    ///
    /// See [`new_cyclic`].
    ///
    /// [`new_cyclic`]: Rc::new_cyclic
    /// [`upgrade`]: Weak::upgrade
    #[cfg(not(no_global_oom_handling))]
    #[unstable(feature = "allocator_api", issue = "32838")]
    pub fn new_cyclic_in<F>(data_fn: F, alloc: A) -> Rc<T, A>
    where
        F: FnOnce(&Weak<T, A>) -> T,
    {
        // Construct the inner in the "uninitialized" state with a single
        // weak reference.
        let (uninit_raw_ptr, alloc) = Box::into_raw_with_allocator(Box::new_in(
            RcInner {
                strong: Cell::new(0),
                weak: Cell::new(1),
                value: mem::MaybeUninit::<T>::uninit(),
            },
            alloc,
        ));
        let uninit_ptr: NonNull<_> = (unsafe { &mut *uninit_raw_ptr }).into();
        let init_ptr: NonNull<RcInner<T>> = uninit_ptr.cast();

        let weak = Weak { ptr: init_ptr, alloc: alloc };

        // It's important we don't give up ownership of the weak pointer, or
        // else the memory might be freed by the time `data_fn` returns. If
        // we really wanted to pass ownership, we could create an additional
        // weak pointer for ourselves, but this would result in additional
        // updates to the weak reference count which might not be necessary
        // otherwise.
        let data = data_fn(&weak);

        let strong = unsafe {
            let inner = init_ptr.as_ptr();
            ptr::write(&raw mut (*inner).value, data);

            let prev_value = (*inner).strong.get();
            debug_assert_eq!(prev_value, 0, "No prior strong references should exist");
            (*inner).strong.set(1);

            // Strong references should collectively own a shared weak reference,
            // so don't run the destructor for our old weak reference.
            // Calling into_raw_with_allocator has the double effect of giving us back the allocator,
            // and forgetting the weak reference.
            let alloc = weak.into_raw_with_allocator().1;

            Rc::from_inner_in(init_ptr, alloc)
        };

        strong
    }

    /// Constructs a new `Rc<T>` in the provided allocator, returning an error if the allocation
    /// fails
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    /// use std::rc::Rc;
    /// use std::alloc::System;
    ///
    /// let five = Rc::try_new_in(5, System);
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[inline]
    pub fn try_new_in(value: T, alloc: A) -> Result<Self, AllocError> {
        // There is an implicit weak pointer owned by all the strong
        // pointers, which ensures that the weak destructor never frees
        // the allocation while the strong destructor is running, even
        // if the weak pointer is stored inside the strong one.
        let (ptr, alloc) = Box::into_unique(Box::try_new_in(
            RcInner { strong: Cell::new(1), weak: Cell::new(1), value },
            alloc,
        )?);
        Ok(unsafe { Self::from_inner_in(ptr.into(), alloc) })
    }

    /// Constructs a new `Rc` with uninitialized contents, in the provided allocator, returning an
    /// error if the allocation fails
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    /// #![feature(get_mut_unchecked)]
    ///
    /// use std::rc::Rc;
    /// use std::alloc::System;
    ///
    /// let mut five = Rc::<u32, _>::try_new_uninit_in(System)?;
    ///
    /// let five = unsafe {
    ///     // Deferred initialization:
    ///     Rc::get_mut_unchecked(&mut five).as_mut_ptr().write(5);
    ///
    ///     five.assume_init()
    /// };
    ///
    /// assert_eq!(*five, 5);
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    #[unstable(feature = "allocator_api", issue = "32838")]
    // #[unstable(feature = "new_uninit", issue = "63291")]
    #[inline]
    pub fn try_new_uninit_in(alloc: A) -> Result<Rc<mem::MaybeUninit<T>, A>, AllocError> {
        unsafe {
            Ok(Rc::from_ptr_in(
                Rc::try_allocate_for_layout(
                    Layout::new::<T>(),
                    |layout| alloc.allocate(layout),
                    <*mut u8>::cast,
                )?,
                alloc,
            ))
        }
    }

    /// Constructs a new `Rc` with uninitialized contents, with the memory
    /// being filled with `0` bytes, in the provided allocator, returning an error if the allocation
    /// fails
    ///
    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
    /// incorrect usage of this method.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::rc::Rc;
    /// use std::alloc::System;
    ///
    /// let zero = Rc::<u32, _>::try_new_zeroed_in(System)?;
    /// let zero = unsafe { zero.assume_init() };
    ///
    /// assert_eq!(*zero, 0);
    /// # Ok::<(), std::alloc::AllocError>(())
    /// ```
    ///
    /// [zeroed]: mem::MaybeUninit::zeroed
    #[unstable(feature = "allocator_api", issue = "32838")]
    //#[unstable(feature = "new_uninit", issue = "63291")]
    #[inline]
    pub fn try_new_zeroed_in(alloc: A) -> Result<Rc<mem::MaybeUninit<T>, A>, AllocError> {
        unsafe {
            Ok(Rc::from_ptr_in(
                Rc::try_allocate_for_layout(
                    Layout::new::<T>(),
                    |layout| alloc.allocate_zeroed(layout),
                    <*mut u8>::cast,
                )?,
                alloc,
            ))
        }
    }

    /// Constructs a new `Pin<Rc<T>>` in the provided allocator. If `T` does not implement `Unpin`, then
    /// `value` will be pinned in memory and unable to be moved.
    #[cfg(not(no_global_oom_handling))]
    #[unstable(feature = "allocator_api", issue = "32838")]
    #[inline]
    pub fn pin_in(value: T, alloc: A) -> Pin<Self>
    where
        A: 'static,
    {
        unsafe { Pin::new_unchecked(Rc::new_in(value, alloc)) }
    }

    /// Returns the inner value, if the `Rc` has exactly one strong reference.
    ///
    /// Otherwise, an [`Err`] is returned with the same `Rc` that was
    /// passed in.
    ///
    /// This will succeed even if there are outstanding weak references.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let x = Rc::new(3);
    /// assert_eq!(Rc::try_unwrap(x), Ok(3));
    ///
    /// let x = Rc::new(4);
    /// let _y = Rc::clone(&x);
    /// assert_eq!(*Rc::try_unwrap(x).unwrap_err(), 4);
    /// ```
    #[inline]
    #[stable(feature = "rc_unique", since = "1.4.0")]
    pub fn try_unwrap(this: Self) -> Result<T, Self> {
        if Rc::strong_count(&this) == 1 {
            let this = ManuallyDrop::new(this);

            let val: T = unsafe { ptr::read(&**this) }; // copy the contained object
            let alloc: A = unsafe { ptr::read(&this.alloc) }; // copy the allocator

            // Indicate to Weaks that they can't be promoted by decrementing
            // the strong count, and then remove the implicit "strong weak"
            // pointer while also handling drop logic by just crafting a
            // fake Weak.
            this.inner().dec_strong();
            let _weak = Weak { ptr: this.ptr, alloc };
            Ok(val)
        } else {
            Err(this)
        }
    }

    /// Returns the inner value, if the `Rc` has exactly one strong reference.
    ///
    /// Otherwise, [`None`] is returned and the `Rc` is dropped.
    ///
    /// This will succeed even if there are outstanding weak references.
    ///
    /// If `Rc::into_inner` is called on every clone of this `Rc`,
    /// it is guaranteed that exactly one of the calls returns the inner value.
    /// This means in particular that the inner value is not dropped.
    ///
    /// [`Rc::try_unwrap`] is conceptually similar to `Rc::into_inner`.
    /// And while they are meant for different use-cases, `Rc::into_inner(this)`
    /// is in fact equivalent to <code>[Rc::try_unwrap]\(this).[ok][Result::ok]()</code>.
    /// (Note that the same kind of equivalence does **not** hold true for
    /// [`Arc`](crate::sync::Arc), due to race conditions that do not apply to `Rc`!)
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let x = Rc::new(3);
    /// assert_eq!(Rc::into_inner(x), Some(3));
    ///
    /// let x = Rc::new(4);
    /// let y = Rc::clone(&x);
    ///
    /// assert_eq!(Rc::into_inner(y), None);
    /// assert_eq!(Rc::into_inner(x), Some(4));
    /// ```
    #[inline]
    #[stable(feature = "rc_into_inner", since = "1.70.0")]
    pub fn into_inner(this: Self) -> Option<T> {
        Rc::try_unwrap(this).ok()
    }
}

impl<T> Rc<[T]> {
    /// Constructs a new reference-counted slice with uninitialized contents.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(get_mut_unchecked)]
    ///
    /// use std::rc::Rc;
    ///
    /// let mut values = Rc::<[u32]>::new_uninit_slice(3);
    ///
    /// // Deferred initialization:
    /// let data = Rc::get_mut(&mut values).unwrap();
    /// data[0].write(1);
    /// data[1].write(2);
    /// data[2].write(3);
    ///
    /// let values = unsafe { values.assume_init() };
    ///
    /// assert_eq!(*values, [1, 2, 3])
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[stable(feature = "new_uninit", since = "1.82.0")]
    #[must_use]
    pub fn new_uninit_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]> {
        unsafe { Rc::from_ptr(Rc::allocate_for_slice(len)) }
    }

    /// Constructs a new reference-counted slice with uninitialized contents, with the memory being
    /// filled with `0` bytes.
    ///
    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
    /// incorrect usage of this method.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(new_zeroed_alloc)]
    ///
    /// use std::rc::Rc;
    ///
    /// let values = Rc::<[u32]>::new_zeroed_slice(3);
    /// let values = unsafe { values.assume_init() };
    ///
    /// assert_eq!(*values, [0, 0, 0])
    /// ```
    ///
    /// [zeroed]: mem::MaybeUninit::zeroed
    #[cfg(not(no_global_oom_handling))]
    #[unstable(feature = "new_zeroed_alloc", issue = "129396")]
    #[must_use]
    pub fn new_zeroed_slice(len: usize) -> Rc<[mem::MaybeUninit<T>]> {
        unsafe {
            Rc::from_ptr(Rc::allocate_for_layout(
                Layout::array::<T>(len).unwrap(),
                |layout| Global.allocate_zeroed(layout),
                |mem| {
                    ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len)
                        as *mut RcInner<[mem::MaybeUninit<T>]>
                },
            ))
        }
    }
}

impl<T, A: Allocator> Rc<[T], A> {
    /// Constructs a new reference-counted slice with uninitialized contents.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(get_mut_unchecked)]
    /// #![feature(allocator_api)]
    ///
    /// use std::rc::Rc;
    /// use std::alloc::System;
    ///
    /// let mut values = Rc::<[u32], _>::new_uninit_slice_in(3, System);
    ///
    /// let values = unsafe {
    ///     // Deferred initialization:
    ///     Rc::get_mut_unchecked(&mut values)[0].as_mut_ptr().write(1);
    ///     Rc::get_mut_unchecked(&mut values)[1].as_mut_ptr().write(2);
    ///     Rc::get_mut_unchecked(&mut values)[2].as_mut_ptr().write(3);
    ///
    ///     values.assume_init()
    /// };
    ///
    /// assert_eq!(*values, [1, 2, 3])
    /// ```
    #[cfg(not(no_global_oom_handling))]
    #[unstable(feature = "allocator_api", issue = "32838")]
    // #[unstable(feature = "new_uninit", issue = "63291")]
    #[inline]
    pub fn new_uninit_slice_in(len: usize, alloc: A) -> Rc<[mem::MaybeUninit<T>], A> {
        unsafe { Rc::from_ptr_in(Rc::allocate_for_slice_in(len, &alloc), alloc) }
    }

    /// Constructs a new reference-counted slice with uninitialized contents, with the memory being
    /// filled with `0` bytes.
    ///
    /// See [`MaybeUninit::zeroed`][zeroed] for examples of correct and
    /// incorrect usage of this method.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::rc::Rc;
    /// use std::alloc::System;
    ///
    /// let values = Rc::<[u32], _>::new_zeroed_slice_in(3, System);
    /// let values = unsafe { values.assume_init() };
    ///
    /// assert_eq!(*values, [0, 0, 0])
    /// ```
    ///
    /// [zeroed]: mem::MaybeUninit::zeroed
    #[cfg(not(no_global_oom_handling))]
    #[unstable(feature = "allocator_api", issue = "32838")]
    // #[unstable(feature = "new_uninit", issue = "63291")]
    #[inline]
    pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Rc<[mem::MaybeUninit<T>], A> {
        unsafe {
            Rc::from_ptr_in(
                Rc::allocate_for_layout(
                    Layout::array::<T>(len).unwrap(),
                    |layout| alloc.allocate_zeroed(layout),
                    |mem| {
                        ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len)
                            as *mut RcInner<[mem::MaybeUninit<T>]>
                    },
                ),
                alloc,
            )
        }
    }
}

impl<T, A: Allocator> Rc<mem::MaybeUninit<T>, A> {
    /// Converts to `Rc<T>`.
    ///
    /// # Safety
    ///
    /// As with [`MaybeUninit::assume_init`],
    /// it is up to the caller to guarantee that the inner value
    /// really is in an initialized state.
    /// Calling this when the content is not yet fully initialized
    /// causes immediate undefined behavior.
    ///
    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(get_mut_unchecked)]
    ///
    /// use std::rc::Rc;
    ///
    /// let mut five = Rc::<u32>::new_uninit();
    ///
    /// // Deferred initialization:
    /// Rc::get_mut(&mut five).unwrap().write(5);
    ///
    /// let five = unsafe { five.assume_init() };
    ///
    /// assert_eq!(*five, 5)
    /// ```
    #[stable(feature = "new_uninit", since = "1.82.0")]
    #[inline]
    pub unsafe fn assume_init(self) -> Rc<T, A> {
        let (ptr, alloc) = Rc::into_inner_with_allocator(self);
        unsafe { Rc::from_inner_in(ptr.cast(), alloc) }
    }
}

impl<T, A: Allocator> Rc<[mem::MaybeUninit<T>], A> {
    /// Converts to `Rc<[T]>`.
    ///
    /// # Safety
    ///
    /// As with [`MaybeUninit::assume_init`],
    /// it is up to the caller to guarantee that the inner value
    /// really is in an initialized state.
    /// Calling this when the content is not yet fully initialized
    /// causes immediate undefined behavior.
    ///
    /// [`MaybeUninit::assume_init`]: mem::MaybeUninit::assume_init
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(get_mut_unchecked)]
    ///
    /// use std::rc::Rc;
    ///
    /// let mut values = Rc::<[u32]>::new_uninit_slice(3);
    ///
    /// // Deferred initialization:
    /// let data = Rc::get_mut(&mut values).unwrap();
    /// data[0].write(1);
    /// data[1].write(2);
    /// data[2].write(3);
    ///
    /// let values = unsafe { values.assume_init() };
    ///
    /// assert_eq!(*values, [1, 2, 3])
    /// ```
    #[stable(feature = "new_uninit", since = "1.82.0")]
    #[inline]
    pub unsafe fn assume_init(self) -> Rc<[T], A> {
        let (ptr, alloc) = Rc::into_inner_with_allocator(self);
        unsafe { Rc::from_ptr_in(ptr.as_ptr() as _, alloc) }
    }
}

impl<T: ?Sized> Rc<T> {
    /// Constructs an `Rc<T>` from a raw pointer.
    ///
    /// The raw pointer must have been previously returned by a call to
    /// [`Rc<U>::into_raw`][into_raw] with the following requirements:
    ///
    /// * If `U` is sized, it must have the same size and alignment as `T`. This
    ///   is trivially true if `U` is `T`.
    /// * If `U` is unsized, its data pointer must have the same size and
    ///   alignment as `T`. This is trivially true if `Rc<U>` was constructed
    ///   through `Rc<T>` and then converted to `Rc<U>` through an [unsized
    ///   coercion].
    ///
    /// Note that if `U` or `U`'s data pointer is not `T` but has the same size
    /// and alignment, this is basically like transmuting references of
    /// different types. See [`mem::transmute`][transmute] for more information
    /// on what restrictions apply in this case.
    ///
    /// The raw pointer must point to a block of memory allocated by the global allocator
    ///
    /// The user of `from_raw` has to make sure a specific value of `T` is only
    /// dropped once.
    ///
    /// This function is unsafe because improper use may lead to memory unsafety,
    /// even if the returned `Rc<T>` is never accessed.
    ///
    /// [into_raw]: Rc::into_raw
    /// [transmute]: core::mem::transmute
    /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let x = Rc::new("hello".to_owned());
    /// let x_ptr = Rc::into_raw(x);
    ///
    /// unsafe {
    ///     // Convert back to an `Rc` to prevent leak.
    ///     let x = Rc::from_raw(x_ptr);
    ///     assert_eq!(&*x, "hello");
    ///
    ///     // Further calls to `Rc::from_raw(x_ptr)` would be memory-unsafe.
    /// }
    ///
    /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
    /// ```
    ///
    /// Convert a slice back into its original array:
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let x: Rc<[u32]> = Rc::new([1, 2, 3]);
    /// let x_ptr: *const [u32] = Rc::into_raw(x);
    ///
    /// unsafe {
    ///     let x: Rc<[u32; 3]> = Rc::from_raw(x_ptr.cast::<[u32; 3]>());
    ///     assert_eq!(&*x, &[1, 2, 3]);
    /// }
    /// ```
    #[inline]
    #[stable(feature = "rc_raw", since = "1.17.0")]
    pub unsafe fn from_raw(ptr: *const T) -> Self {
        unsafe { Self::from_raw_in(ptr, Global) }
    }

    /// Increments the strong reference count on the `Rc<T>` associated with the
    /// provided pointer by one.
    ///
    /// # Safety
    ///
    /// The pointer must have been obtained through `Rc::into_raw`, the
    /// associated `Rc` instance must be valid (i.e. the strong count must be at
    /// least 1) for the duration of this method, and `ptr` must point to a block of memory
    /// allocated by the global allocator.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// unsafe {
    ///     let ptr = Rc::into_raw(five);
    ///     Rc::increment_strong_count(ptr);
    ///
    ///     let five = Rc::from_raw(ptr);
    ///     assert_eq!(2, Rc::strong_count(&five));
    /// #   // Prevent leaks for Miri.
    /// #   Rc::decrement_strong_count(ptr);
    /// }
    /// ```
    #[inline]
    #[stable(feature = "rc_mutate_strong_count", since = "1.53.0")]
    pub unsafe fn increment_strong_count(ptr: *const T) {
        unsafe { Self::increment_strong_count_in(ptr, Global) }
    }

    /// Decrements the strong reference count on the `Rc<T>` associated with the
    /// provided pointer by one.
    ///
    /// # Safety
    ///
    /// The pointer must have been obtained through `Rc::into_raw`, the
    /// associated `Rc` instance must be valid (i.e. the strong count must be at
    /// least 1) when invoking this method, and `ptr` must point to a block of memory
    /// allocated by the global allocator. This method can be used to release the final `Rc` and
    /// backing storage, but **should not** be called after the final `Rc` has been released.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// unsafe {
    ///     let ptr = Rc::into_raw(five);
    ///     Rc::increment_strong_count(ptr);
    ///
    ///     let five = Rc::from_raw(ptr);
    ///     assert_eq!(2, Rc::strong_count(&five));
    ///     Rc::decrement_strong_count(ptr);
    ///     assert_eq!(1, Rc::strong_count(&five));
    /// }
    /// ```
    #[inline]
    #[stable(feature = "rc_mutate_strong_count", since = "1.53.0")]
    pub unsafe fn decrement_strong_count(ptr: *const T) {
        unsafe { Self::decrement_strong_count_in(ptr, Global) }
    }
}

impl<T: ?Sized, A: Allocator> Rc<T, A> {
    /// Returns a reference to the underlying allocator.
    ///
    /// Note: this is an associated function, which means that you have
    /// to call it as `Rc::allocator(&r)` instead of `r.allocator()`. This
    /// is so that there is no conflict with a method on the inner type.
    #[inline]
    #[unstable(feature = "allocator_api", issue = "32838")]
    pub fn allocator(this: &Self) -> &A {
        &this.alloc
    }

    /// Consumes the `Rc`, returning the wrapped pointer.
    ///
    /// To avoid a memory leak the pointer must be converted back to an `Rc` using
    /// [`Rc::from_raw`].
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let x = Rc::new("hello".to_owned());
    /// let x_ptr = Rc::into_raw(x);
    /// assert_eq!(unsafe { &*x_ptr }, "hello");
    /// # // Prevent leaks for Miri.
    /// # drop(unsafe { Rc::from_raw(x_ptr) });
    /// ```
    #[must_use = "losing the pointer will leak memory"]
    #[stable(feature = "rc_raw", since = "1.17.0")]
    #[rustc_never_returns_null_ptr]
    pub fn into_raw(this: Self) -> *const T {
        let this = ManuallyDrop::new(this);
        Self::as_ptr(&*this)
    }

    /// Consumes the `Rc`, returning the wrapped pointer and allocator.
    ///
    /// To avoid a memory leak the pointer must be converted back to an `Rc` using
    /// [`Rc::from_raw_in`].
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    /// use std::rc::Rc;
    /// use std::alloc::System;
    ///
    /// let x = Rc::new_in("hello".to_owned(), System);
    /// let (ptr, alloc) = Rc::into_raw_with_allocator(x);
    /// assert_eq!(unsafe { &*ptr }, "hello");
    /// let x = unsafe { Rc::from_raw_in(ptr, alloc) };
    /// assert_eq!(&*x, "hello");
    /// ```
    #[must_use = "losing the pointer will leak memory"]
    #[unstable(feature = "allocator_api", issue = "32838")]
    pub fn into_raw_with_allocator(this: Self) -> (*const T, A) {
        let this = mem::ManuallyDrop::new(this);
        let ptr = Self::as_ptr(&this);
        // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped
        let alloc = unsafe { ptr::read(&this.alloc) };
        (ptr, alloc)
    }

    /// Provides a raw pointer to the data.
    ///
    /// The counts are not affected in any way and the `Rc` is not consumed. The pointer is valid
    /// for as long there are strong counts in the `Rc`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let x = Rc::new("hello".to_owned());
    /// let y = Rc::clone(&x);
    /// let x_ptr = Rc::as_ptr(&x);
    /// assert_eq!(x_ptr, Rc::as_ptr(&y));
    /// assert_eq!(unsafe { &*x_ptr }, "hello");
    /// ```
    #[stable(feature = "weak_into_raw", since = "1.45.0")]
    #[rustc_never_returns_null_ptr]
    pub fn as_ptr(this: &Self) -> *const T {
        let ptr: *mut RcInner<T> = NonNull::as_ptr(this.ptr);

        // SAFETY: This cannot go through Deref::deref or Rc::inner because
        // this is required to retain raw/mut provenance such that e.g. `get_mut` can
        // write through the pointer after the Rc is recovered through `from_raw`.
        unsafe { &raw mut (*ptr).value }
    }

    /// Constructs an `Rc<T, A>` from a raw pointer in the provided allocator.
    ///
    /// The raw pointer must have been previously returned by a call to [`Rc<U,
    /// A>::into_raw`][into_raw] with the following requirements:
    ///
    /// * If `U` is sized, it must have the same size and alignment as `T`. This
    ///   is trivially true if `U` is `T`.
    /// * If `U` is unsized, its data pointer must have the same size and
    ///   alignment as `T`. This is trivially true if `Rc<U>` was constructed
    ///   through `Rc<T>` and then converted to `Rc<U>` through an [unsized
    ///   coercion].
    ///
    /// Note that if `U` or `U`'s data pointer is not `T` but has the same size
    /// and alignment, this is basically like transmuting references of
    /// different types. See [`mem::transmute`][transmute] for more information
    /// on what restrictions apply in this case.
    ///
    /// The raw pointer must point to a block of memory allocated by `alloc`
    ///
    /// The user of `from_raw` has to make sure a specific value of `T` is only
    /// dropped once.
    ///
    /// This function is unsafe because improper use may lead to memory unsafety,
    /// even if the returned `Rc<T>` is never accessed.
    ///
    /// [into_raw]: Rc::into_raw
    /// [transmute]: core::mem::transmute
    /// [unsized coercion]: https://doc.rust-lang.org/reference/type-coercions.html#unsized-coercions
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::rc::Rc;
    /// use std::alloc::System;
    ///
    /// let x = Rc::new_in("hello".to_owned(), System);
    /// let x_ptr = Rc::into_raw(x);
    ///
    /// unsafe {
    ///     // Convert back to an `Rc` to prevent leak.
    ///     let x = Rc::from_raw_in(x_ptr, System);
    ///     assert_eq!(&*x, "hello");
    ///
    ///     // Further calls to `Rc::from_raw(x_ptr)` would be memory-unsafe.
    /// }
    ///
    /// // The memory was freed when `x` went out of scope above, so `x_ptr` is now dangling!
    /// ```
    ///
    /// Convert a slice back into its original array:
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::rc::Rc;
    /// use std::alloc::System;
    ///
    /// let x: Rc<[u32], _> = Rc::new_in([1, 2, 3], System);
    /// let x_ptr: *const [u32] = Rc::into_raw(x);
    ///
    /// unsafe {
    ///     let x: Rc<[u32; 3], _> = Rc::from_raw_in(x_ptr.cast::<[u32; 3]>(), System);
    ///     assert_eq!(&*x, &[1, 2, 3]);
    /// }
    /// ```
    #[unstable(feature = "allocator_api", issue = "32838")]
    pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self {
        let offset = unsafe { data_offset(ptr) };

        // Reverse the offset to find the original RcInner.
        let rc_ptr = unsafe { ptr.byte_sub(offset) as *mut RcInner<T> };

        unsafe { Self::from_ptr_in(rc_ptr, alloc) }
    }

    /// Creates a new [`Weak`] pointer to this allocation.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// let weak_five = Rc::downgrade(&five);
    /// ```
    #[must_use = "this returns a new `Weak` pointer, \
                  without modifying the original `Rc`"]
    #[stable(feature = "rc_weak", since = "1.4.0")]
    pub fn downgrade(this: &Self) -> Weak<T, A>
    where
        A: Clone,
    {
        this.inner().inc_weak();
        // Make sure we do not create a dangling Weak
        debug_assert!(!is_dangling(this.ptr.as_ptr()));
        Weak { ptr: this.ptr, alloc: this.alloc.clone() }
    }

    /// Gets the number of [`Weak`] pointers to this allocation.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    /// let _weak_five = Rc::downgrade(&five);
    ///
    /// assert_eq!(1, Rc::weak_count(&five));
    /// ```
    #[inline]
    #[stable(feature = "rc_counts", since = "1.15.0")]
    pub fn weak_count(this: &Self) -> usize {
        this.inner().weak() - 1
    }

    /// Gets the number of strong (`Rc`) pointers to this allocation.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    /// let _also_five = Rc::clone(&five);
    ///
    /// assert_eq!(2, Rc::strong_count(&five));
    /// ```
    #[inline]
    #[stable(feature = "rc_counts", since = "1.15.0")]
    pub fn strong_count(this: &Self) -> usize {
        this.inner().strong()
    }

    /// Increments the strong reference count on the `Rc<T>` associated with the
    /// provided pointer by one.
    ///
    /// # Safety
    ///
    /// The pointer must have been obtained through `Rc::into_raw`, the
    /// associated `Rc` instance must be valid (i.e. the strong count must be at
    /// least 1) for the duration of this method, and `ptr` must point to a block of memory
    /// allocated by `alloc`
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::rc::Rc;
    /// use std::alloc::System;
    ///
    /// let five = Rc::new_in(5, System);
    ///
    /// unsafe {
    ///     let ptr = Rc::into_raw(five);
    ///     Rc::increment_strong_count_in(ptr, System);
    ///
    ///     let five = Rc::from_raw_in(ptr, System);
    ///     assert_eq!(2, Rc::strong_count(&five));
    /// #   // Prevent leaks for Miri.
    /// #   Rc::decrement_strong_count_in(ptr, System);
    /// }
    /// ```
    #[inline]
    #[unstable(feature = "allocator_api", issue = "32838")]
    pub unsafe fn increment_strong_count_in(ptr: *const T, alloc: A)
    where
        A: Clone,
    {
        // Retain Rc, but don't touch refcount by wrapping in ManuallyDrop
        let rc = unsafe { mem::ManuallyDrop::new(Rc::<T, A>::from_raw_in(ptr, alloc)) };
        // Now increase refcount, but don't drop new refcount either
        let _rc_clone: mem::ManuallyDrop<_> = rc.clone();
    }

    /// Decrements the strong reference count on the `Rc<T>` associated with the
    /// provided pointer by one.
    ///
    /// # Safety
    ///
    /// The pointer must have been obtained through `Rc::into_raw`, the
    /// associated `Rc` instance must be valid (i.e. the strong count must be at
    /// least 1) when invoking this method, and `ptr` must point to a block of memory
    /// allocated by `alloc`. This method can be used to release the final `Rc` and backing storage,
    /// but **should not** be called after the final `Rc` has been released.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    ///
    /// use std::rc::Rc;
    /// use std::alloc::System;
    ///
    /// let five = Rc::new_in(5, System);
    ///
    /// unsafe {
    ///     let ptr = Rc::into_raw(five);
    ///     Rc::increment_strong_count_in(ptr, System);
    ///
    ///     let five = Rc::from_raw_in(ptr, System);
    ///     assert_eq!(2, Rc::strong_count(&five));
    ///     Rc::decrement_strong_count_in(ptr, System);
    ///     assert_eq!(1, Rc::strong_count(&five));
    /// }
    /// ```
    #[inline]
    #[unstable(feature = "allocator_api", issue = "32838")]
    pub unsafe fn decrement_strong_count_in(ptr: *const T, alloc: A) {
        unsafe { drop(Rc::from_raw_in(ptr, alloc)) };
    }

    /// Returns `true` if there are no other `Rc` or [`Weak`] pointers to
    /// this allocation.
    #[inline]
    fn is_unique(this: &Self) -> bool {
        Rc::weak_count(this) == 0 && Rc::strong_count(this) == 1
    }

    /// Returns a mutable reference into the given `Rc`, if there are
    /// no other `Rc` or [`Weak`] pointers to the same allocation.
    ///
    /// Returns [`None`] otherwise, because it is not safe to
    /// mutate a shared value.
    ///
    /// See also [`make_mut`][make_mut], which will [`clone`][clone]
    /// the inner value when there are other `Rc` pointers.
    ///
    /// [make_mut]: Rc::make_mut
    /// [clone]: Clone::clone
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let mut x = Rc::new(3);
    /// *Rc::get_mut(&mut x).unwrap() = 4;
    /// assert_eq!(*x, 4);
    ///
    /// let _y = Rc::clone(&x);
    /// assert!(Rc::get_mut(&mut x).is_none());
    /// ```
    #[inline]
    #[stable(feature = "rc_unique", since = "1.4.0")]
    pub fn get_mut(this: &mut Self) -> Option<&mut T> {
        if Rc::is_unique(this) { unsafe { Some(Rc::get_mut_unchecked(this)) } } else { None }
    }

    /// Returns a mutable reference into the given `Rc`,
    /// without any check.
    ///
    /// See also [`get_mut`], which is safe and does appropriate checks.
    ///
    /// [`get_mut`]: Rc::get_mut
    ///
    /// # Safety
    ///
    /// If any other `Rc` or [`Weak`] pointers to the same allocation exist, then
    /// they must not be dereferenced or have active borrows for the duration
    /// of the returned borrow, and their inner type must be exactly the same as the
    /// inner type of this Rc (including lifetimes). This is trivially the case if no
    /// such pointers exist, for example immediately after `Rc::new`.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(get_mut_unchecked)]
    ///
    /// use std::rc::Rc;
    ///
    /// let mut x = Rc::new(String::new());
    /// unsafe {
    ///     Rc::get_mut_unchecked(&mut x).push_str("foo")
    /// }
    /// assert_eq!(*x, "foo");
    /// ```
    /// Other `Rc` pointers to the same allocation must be to the same type.
    /// ```no_run
    /// #![feature(get_mut_unchecked)]
    ///
    /// use std::rc::Rc;
    ///
    /// let x: Rc<str> = Rc::from("Hello, world!");
    /// let mut y: Rc<[u8]> = x.clone().into();
    /// unsafe {
    ///     // this is Undefined Behavior, because x's inner type is str, not [u8]
    ///     Rc::get_mut_unchecked(&mut y).fill(0xff); // 0xff is invalid in UTF-8
    /// }
    /// println!("{}", &*x); // Invalid UTF-8 in a str
    /// ```
    /// Other `Rc` pointers to the same allocation must be to the exact same type, including lifetimes.
    /// ```no_run
    /// #![feature(get_mut_unchecked)]
    ///
    /// use std::rc::Rc;
    ///
    /// let x: Rc<&str> = Rc::new("Hello, world!");
    /// {
    ///     let s = String::from("Oh, no!");
    ///     let mut y: Rc<&str> = x.clone().into();
    ///     unsafe {
    ///         // this is Undefined Behavior, because x's inner type
    ///         // is &'long str, not &'short str
    ///         *Rc::get_mut_unchecked(&mut y) = &s;
    ///     }
    /// }
    /// println!("{}", &*x); // Use-after-free
    /// ```
    #[inline]
    #[unstable(feature = "get_mut_unchecked", issue = "63292")]
    pub unsafe fn get_mut_unchecked(this: &mut Self) -> &mut T {
        // We are careful to *not* create a reference covering the "count" fields, as
        // this would conflict with accesses to the reference counts (e.g. by `Weak`).
        unsafe { &mut (*this.ptr.as_ptr()).value }
    }

    #[inline]
    #[stable(feature = "ptr_eq", since = "1.17.0")]
    /// Returns `true` if the two `Rc`s point to the same allocation in a vein similar to
    /// [`ptr::eq`]. This function ignores the metadata of  `dyn Trait` pointers.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    /// let same_five = Rc::clone(&five);
    /// let other_five = Rc::new(5);
    ///
    /// assert!(Rc::ptr_eq(&five, &same_five));
    /// assert!(!Rc::ptr_eq(&five, &other_five));
    /// ```
    pub fn ptr_eq(this: &Self, other: &Self) -> bool {
        ptr::addr_eq(this.ptr.as_ptr(), other.ptr.as_ptr())
    }
}

#[cfg(not(no_global_oom_handling))]
impl<T: ?Sized + CloneToUninit, A: Allocator + Clone> Rc<T, A> {
    /// Makes a mutable reference into the given `Rc`.
    ///
    /// If there are other `Rc` pointers to the same allocation, then `make_mut` will
    /// [`clone`] the inner value to a new allocation to ensure unique ownership.  This is also
    /// referred to as clone-on-write.
    ///
    /// However, if there are no other `Rc` pointers to this allocation, but some [`Weak`]
    /// pointers, then the [`Weak`] pointers will be disassociated and the inner value will not
    /// be cloned.
    ///
    /// See also [`get_mut`], which will fail rather than cloning the inner value
    /// or disassociating [`Weak`] pointers.
    ///
    /// [`clone`]: Clone::clone
    /// [`get_mut`]: Rc::get_mut
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let mut data = Rc::new(5);
    ///
    /// *Rc::make_mut(&mut data) += 1;         // Won't clone anything
    /// let mut other_data = Rc::clone(&data); // Won't clone inner data
    /// *Rc::make_mut(&mut data) += 1;         // Clones inner data
    /// *Rc::make_mut(&mut data) += 1;         // Won't clone anything
    /// *Rc::make_mut(&mut other_data) *= 2;   // Won't clone anything
    ///
    /// // Now `data` and `other_data` point to different allocations.
    /// assert_eq!(*data, 8);
    /// assert_eq!(*other_data, 12);
    /// ```
    ///
    /// [`Weak`] pointers will be disassociated:
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let mut data = Rc::new(75);
    /// let weak = Rc::downgrade(&data);
    ///
    /// assert!(75 == *data);
    /// assert!(75 == *weak.upgrade().unwrap());
    ///
    /// *Rc::make_mut(&mut data) += 1;
    ///
    /// assert!(76 == *data);
    /// assert!(weak.upgrade().is_none());
    /// ```
    #[inline]
    #[stable(feature = "rc_unique", since = "1.4.0")]
    pub fn make_mut(this: &mut Self) -> &mut T {
        let size_of_val = size_of_val::<T>(&**this);

        if Rc::strong_count(this) != 1 {
            // Gotta clone the data, there are other Rcs.

            let this_data_ref: &T = &**this;
            // `in_progress` drops the allocation if we panic before finishing initializing it.
            let mut in_progress: UniqueRcUninit<T, A> =
                UniqueRcUninit::new(this_data_ref, this.alloc.clone());

            // Initialize with clone of this.
            let initialized_clone = unsafe {
                // Clone. If the clone panics, `in_progress` will be dropped and clean up.
                this_data_ref.clone_to_uninit(in_progress.data_ptr());
                // Cast type of pointer, now that it is initialized.
                in_progress.into_rc()
            };

            // Replace `this` with newly constructed Rc.
            *this = initialized_clone;
        } else if Rc::weak_count(this) != 0 {
            // Can just steal the data, all that's left is Weaks

            // We don't need panic-protection like the above branch does, but we might as well
            // use the same mechanism.
            let mut in_progress: UniqueRcUninit<T, A> =
                UniqueRcUninit::new(&**this, this.alloc.clone());
            unsafe {
                // Initialize `in_progress` with move of **this.
                // We have to express this in terms of bytes because `T: ?Sized`; there is no
                // operation that just copies a value based on its `size_of_val()`.
                ptr::copy_nonoverlapping(
                    ptr::from_ref(&**this).cast::<u8>(),
                    in_progress.data_ptr().cast::<u8>(),
                    size_of_val,
                );

                this.inner().dec_strong();
                // Remove implicit strong-weak ref (no need to craft a fake
                // Weak here -- we know other Weaks can clean up for us)
                this.inner().dec_weak();
                // Replace `this` with newly constructed Rc that has the moved data.
                ptr::write(this, in_progress.into_rc());
            }
        }
        // This unsafety is ok because we're guaranteed that the pointer
        // returned is the *only* pointer that will ever be returned to T. Our
        // reference count is guaranteed to be 1 at this point, and we required
        // the `Rc<T>` itself to be `mut`, so we're returning the only possible
        // reference to the allocation.
        unsafe { &mut this.ptr.as_mut().value }
    }
}

impl<T: Clone, A: Allocator> Rc<T, A> {
    /// If we have the only reference to `T` then unwrap it. Otherwise, clone `T` and return the
    /// clone.
    ///
    /// Assuming `rc_t` is of type `Rc<T>`, this function is functionally equivalent to
    /// `(*rc_t).clone()`, but will avoid cloning the inner value where possible.
    ///
    /// # Examples
    ///
    /// ```
    /// # use std::{ptr, rc::Rc};
    /// let inner = String::from("test");
    /// let ptr = inner.as_ptr();
    ///
    /// let rc = Rc::new(inner);
    /// let inner = Rc::unwrap_or_clone(rc);
    /// // The inner value was not cloned
    /// assert!(ptr::eq(ptr, inner.as_ptr()));
    ///
    /// let rc = Rc::new(inner);
    /// let rc2 = rc.clone();
    /// let inner = Rc::unwrap_or_clone(rc);
    /// // Because there were 2 references, we had to clone the inner value.
    /// assert!(!ptr::eq(ptr, inner.as_ptr()));
    /// // `rc2` is the last reference, so when we unwrap it we get back
    /// // the original `String`.
    /// let inner = Rc::unwrap_or_clone(rc2);
    /// assert!(ptr::eq(ptr, inner.as_ptr()));
    /// ```
    #[inline]
    #[stable(feature = "arc_unwrap_or_clone", since = "1.76.0")]
    pub fn unwrap_or_clone(this: Self) -> T {
        Rc::try_unwrap(this).unwrap_or_else(|rc| (*rc).clone())
    }
}

impl<A: Allocator> Rc<dyn Any, A> {
    /// Attempts to downcast the `Rc<dyn Any>` to a concrete type.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::any::Any;
    /// use std::rc::Rc;
    ///
    /// fn print_if_string(value: Rc<dyn Any>) {
    ///     if let Ok(string) = value.downcast::<String>() {
    ///         println!("String ({}): {}", string.len(), string);
    ///     }
    /// }
    ///
    /// let my_string = "Hello World".to_string();
    /// print_if_string(Rc::new(my_string));
    /// print_if_string(Rc::new(0i8));
    /// ```
    #[inline]
    #[stable(feature = "rc_downcast", since = "1.29.0")]
    pub fn downcast<T: Any>(self) -> Result<Rc<T, A>, Self> {
        if (*self).is::<T>() {
            unsafe {
                let (ptr, alloc) = Rc::into_inner_with_allocator(self);
                Ok(Rc::from_inner_in(ptr.cast(), alloc))
            }
        } else {
            Err(self)
        }
    }

    /// Downcasts the `Rc<dyn Any>` to a concrete type.
    ///
    /// For a safe alternative see [`downcast`].
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(downcast_unchecked)]
    ///
    /// use std::any::Any;
    /// use std::rc::Rc;
    ///
    /// let x: Rc<dyn Any> = Rc::new(1_usize);
    ///
    /// unsafe {
    ///     assert_eq!(*x.downcast_unchecked::<usize>(), 1);
    /// }
    /// ```
    ///
    /// # Safety
    ///
    /// The contained value must be of type `T`. Calling this method
    /// with the incorrect type is *undefined behavior*.
    ///
    ///
    /// [`downcast`]: Self::downcast
    #[inline]
    #[unstable(feature = "downcast_unchecked", issue = "90850")]
    pub unsafe fn downcast_unchecked<T: Any>(self) -> Rc<T, A> {
        unsafe {
            let (ptr, alloc) = Rc::into_inner_with_allocator(self);
            Rc::from_inner_in(ptr.cast(), alloc)
        }
    }
}

impl<T: ?Sized> Rc<T> {
    /// Allocates an `RcInner<T>` with sufficient space for
    /// a possibly-unsized inner value where the value has the layout provided.
    ///
    /// The function `mem_to_rc_inner` is called with the data pointer
    /// and must return back a (potentially fat)-pointer for the `RcInner<T>`.
    #[cfg(not(no_global_oom_handling))]
    unsafe fn allocate_for_layout(
        value_layout: Layout,
        allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
        mem_to_rc_inner: impl FnOnce(*mut u8) -> *mut RcInner<T>,
    ) -> *mut RcInner<T> {
        let layout = rc_inner_layout_for_value_layout(value_layout);
        unsafe {
            Rc::try_allocate_for_layout(value_layout, allocate, mem_to_rc_inner)
                .unwrap_or_else(|_| handle_alloc_error(layout))
        }
    }

    /// Allocates an `RcInner<T>` with sufficient space for
    /// a possibly-unsized inner value where the value has the layout provided,
    /// returning an error if allocation fails.
    ///
    /// The function `mem_to_rc_inner` is called with the data pointer
    /// and must return back a (potentially fat)-pointer for the `RcInner<T>`.
    #[inline]
    unsafe fn try_allocate_for_layout(
        value_layout: Layout,
        allocate: impl FnOnce(Layout) -> Result<NonNull<[u8]>, AllocError>,
        mem_to_rc_inner: impl FnOnce(*mut u8) -> *mut RcInner<T>,
    ) -> Result<*mut RcInner<T>, AllocError> {
        let layout = rc_inner_layout_for_value_layout(value_layout);

        // Allocate for the layout.
        let ptr = allocate(layout)?;

        // Initialize the RcInner
        let inner = mem_to_rc_inner(ptr.as_non_null_ptr().as_ptr());
        unsafe {
            debug_assert_eq!(Layout::for_value_raw(inner), layout);

            (&raw mut (*inner).strong).write(Cell::new(1));
            (&raw mut (*inner).weak).write(Cell::new(1));
        }

        Ok(inner)
    }
}

impl<T: ?Sized, A: Allocator> Rc<T, A> {
    /// Allocates an `RcInner<T>` with sufficient space for an unsized inner value
    #[cfg(not(no_global_oom_handling))]
    unsafe fn allocate_for_ptr_in(ptr: *const T, alloc: &A) -> *mut RcInner<T> {
        // Allocate for the `RcInner<T>` using the given value.
        unsafe {
            Rc::<T>::allocate_for_layout(
                Layout::for_value_raw(ptr),
                |layout| alloc.allocate(layout),
                |mem| mem.with_metadata_of(ptr as *const RcInner<T>),
            )
        }
    }

    #[cfg(not(no_global_oom_handling))]
    fn from_box_in(src: Box<T, A>) -> Rc<T, A> {
        unsafe {
            let value_size = size_of_val(&*src);
            let ptr = Self::allocate_for_ptr_in(&*src, Box::allocator(&src));

            // Copy value as bytes
            ptr::copy_nonoverlapping(
                (&raw const *src) as *const u8,
                (&raw mut (*ptr).value) as *mut u8,
                value_size,
            );

            // Free the allocation without dropping its contents
            let (bptr, alloc) = Box::into_raw_with_allocator(src);
            let src = Box::from_raw_in(bptr as *mut mem::ManuallyDrop<T>, alloc.by_ref());
            drop(src);

            Self::from_ptr_in(ptr, alloc)
        }
    }
}

impl<T> Rc<[T]> {
    /// Allocates an `RcInner<[T]>` with the given length.
    #[cfg(not(no_global_oom_handling))]
    unsafe fn allocate_for_slice(len: usize) -> *mut RcInner<[T]> {
        unsafe {
            Self::allocate_for_layout(
                Layout::array::<T>(len).unwrap(),
                |layout| Global.allocate(layout),
                |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut RcInner<[T]>,
            )
        }
    }

    /// Copy elements from slice into newly allocated `Rc<[T]>`
    ///
    /// Unsafe because the caller must either take ownership or bind `T: Copy`
    #[cfg(not(no_global_oom_handling))]
    unsafe fn copy_from_slice(v: &[T]) -> Rc<[T]> {
        unsafe {
            let ptr = Self::allocate_for_slice(v.len());
            ptr::copy_nonoverlapping(v.as_ptr(), (&raw mut (*ptr).value) as *mut T, v.len());
            Self::from_ptr(ptr)
        }
    }

    /// Constructs an `Rc<[T]>` from an iterator known to be of a certain size.
    ///
    /// Behavior is undefined should the size be wrong.
    #[cfg(not(no_global_oom_handling))]
    unsafe fn from_iter_exact(iter: impl Iterator<Item = T>, len: usize) -> Rc<[T]> {
        // Panic guard while cloning T elements.
        // In the event of a panic, elements that have been written
        // into the new RcInner will be dropped, then the memory freed.
        struct Guard<T> {
            mem: NonNull<u8>,
            elems: *mut T,
            layout: Layout,
            n_elems: usize,
        }

        impl<T> Drop for Guard<T> {
            fn drop(&mut self) {
                unsafe {
                    let slice = from_raw_parts_mut(self.elems, self.n_elems);
                    ptr::drop_in_place(slice);

                    Global.deallocate(self.mem, self.layout);
                }
            }
        }

        unsafe {
            let ptr = Self::allocate_for_slice(len);

            let mem = ptr as *mut _ as *mut u8;
            let layout = Layout::for_value_raw(ptr);

            // Pointer to first element
            let elems = (&raw mut (*ptr).value) as *mut T;

            let mut guard = Guard { mem: NonNull::new_unchecked(mem), elems, layout, n_elems: 0 };

            for (i, item) in iter.enumerate() {
                ptr::write(elems.add(i), item);
                guard.n_elems += 1;
            }

            // All clear. Forget the guard so it doesn't free the new RcInner.
            mem::forget(guard);

            Self::from_ptr(ptr)
        }
    }
}

impl<T, A: Allocator> Rc<[T], A> {
    /// Allocates an `RcInner<[T]>` with the given length.
    #[inline]
    #[cfg(not(no_global_oom_handling))]
    unsafe fn allocate_for_slice_in(len: usize, alloc: &A) -> *mut RcInner<[T]> {
        unsafe {
            Rc::<[T]>::allocate_for_layout(
                Layout::array::<T>(len).unwrap(),
                |layout| alloc.allocate(layout),
                |mem| ptr::slice_from_raw_parts_mut(mem.cast::<T>(), len) as *mut RcInner<[T]>,
            )
        }
    }
}

#[cfg(not(no_global_oom_handling))]
/// Specialization trait used for `From<&[T]>`.
trait RcFromSlice<T> {
    fn from_slice(slice: &[T]) -> Self;
}

#[cfg(not(no_global_oom_handling))]
impl<T: Clone> RcFromSlice<T> for Rc<[T]> {
    #[inline]
    default fn from_slice(v: &[T]) -> Self {
        unsafe { Self::from_iter_exact(v.iter().cloned(), v.len()) }
    }
}

#[cfg(not(no_global_oom_handling))]
impl<T: Copy> RcFromSlice<T> for Rc<[T]> {
    #[inline]
    fn from_slice(v: &[T]) -> Self {
        unsafe { Rc::copy_from_slice(v) }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized, A: Allocator> Deref for Rc<T, A> {
    type Target = T;

    #[inline(always)]
    fn deref(&self) -> &T {
        &self.inner().value
    }
}

#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Rc<T, A> {}

#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
unsafe impl<T: ?Sized, A: Allocator> PinCoerceUnsized for Weak<T, A> {}

#[unstable(feature = "deref_pure_trait", issue = "87121")]
unsafe impl<T: ?Sized, A: Allocator> DerefPure for Rc<T, A> {}

#[unstable(feature = "legacy_receiver_trait", issue = "none")]
impl<T: ?Sized> LegacyReceiver for Rc<T> {}

#[stable(feature = "rust1", since = "1.0.0")]
unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Rc<T, A> {
    /// Drops the `Rc`.
    ///
    /// This will decrement the strong reference count. If the strong reference
    /// count reaches zero then the only other references (if any) are
    /// [`Weak`], so we `drop` the inner value.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// struct Foo;
    ///
    /// impl Drop for Foo {
    ///     fn drop(&mut self) {
    ///         println!("dropped!");
    ///     }
    /// }
    ///
    /// let foo  = Rc::new(Foo);
    /// let foo2 = Rc::clone(&foo);
    ///
    /// drop(foo);    // Doesn't print anything
    /// drop(foo2);   // Prints "dropped!"
    /// ```
    #[inline]
    fn drop(&mut self) {
        unsafe {
            self.inner().dec_strong();
            if self.inner().strong() == 0 {
                self.drop_slow();
            }
        }
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized, A: Allocator + Clone> Clone for Rc<T, A> {
    /// Makes a clone of the `Rc` pointer.
    ///
    /// This creates another pointer to the same allocation, increasing the
    /// strong reference count.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// let _ = Rc::clone(&five);
    /// ```
    #[inline]
    fn clone(&self) -> Self {
        unsafe {
            self.inner().inc_strong();
            Self::from_inner_in(self.ptr, self.alloc.clone())
        }
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: Default> Default for Rc<T> {
    /// Creates a new `Rc<T>`, with the `Default` value for `T`.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let x: Rc<i32> = Default::default();
    /// assert_eq!(*x, 0);
    /// ```
    #[inline]
    fn default() -> Rc<T> {
        unsafe {
            Self::from_inner(
                Box::leak(Box::write(Box::new_uninit(), RcInner {
                    strong: Cell::new(1),
                    weak: Cell::new(1),
                    value: T::default(),
                }))
                .into(),
            )
        }
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
impl Default for Rc<str> {
    /// Creates an empty str inside an Rc
    ///
    /// This may or may not share an allocation with other Rcs on the same thread.
    #[inline]
    fn default() -> Self {
        Rc::from("")
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "more_rc_default_impls", since = "1.80.0")]
impl<T> Default for Rc<[T]> {
    /// Creates an empty `[T]` inside an Rc
    ///
    /// This may or may not share an allocation with other Rcs on the same thread.
    #[inline]
    fn default() -> Self {
        let arr: [T; 0] = [];
        Rc::from(arr)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
trait RcEqIdent<T: ?Sized + PartialEq, A: Allocator> {
    fn eq(&self, other: &Rc<T, A>) -> bool;
    fn ne(&self, other: &Rc<T, A>) -> bool;
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialEq, A: Allocator> RcEqIdent<T, A> for Rc<T, A> {
    #[inline]
    default fn eq(&self, other: &Rc<T, A>) -> bool {
        **self == **other
    }

    #[inline]
    default fn ne(&self, other: &Rc<T, A>) -> bool {
        **self != **other
    }
}

// Hack to allow specializing on `Eq` even though `Eq` has a method.
#[rustc_unsafe_specialization_marker]
pub(crate) trait MarkerEq: PartialEq<Self> {}

impl<T: Eq> MarkerEq for T {}

/// We're doing this specialization here, and not as a more general optimization on `&T`, because it
/// would otherwise add a cost to all equality checks on refs. We assume that `Rc`s are used to
/// store large values, that are slow to clone, but also heavy to check for equality, causing this
/// cost to pay off more easily. It's also more likely to have two `Rc` clones, that point to
/// the same value, than two `&T`s.
///
/// We can only do this when `T: Eq` as a `PartialEq` might be deliberately irreflexive.
#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + MarkerEq, A: Allocator> RcEqIdent<T, A> for Rc<T, A> {
    #[inline]
    fn eq(&self, other: &Rc<T, A>) -> bool {
        Rc::ptr_eq(self, other) || **self == **other
    }

    #[inline]
    fn ne(&self, other: &Rc<T, A>) -> bool {
        !Rc::ptr_eq(self, other) && **self != **other
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialEq, A: Allocator> PartialEq for Rc<T, A> {
    /// Equality for two `Rc`s.
    ///
    /// Two `Rc`s are equal if their inner values are equal, even if they are
    /// stored in different allocation.
    ///
    /// If `T` also implements `Eq` (implying reflexivity of equality),
    /// two `Rc`s that point to the same allocation are
    /// always equal.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(five == Rc::new(5));
    /// ```
    #[inline]
    fn eq(&self, other: &Rc<T, A>) -> bool {
        RcEqIdent::eq(self, other)
    }

    /// Inequality for two `Rc`s.
    ///
    /// Two `Rc`s are not equal if their inner values are not equal.
    ///
    /// If `T` also implements `Eq` (implying reflexivity of equality),
    /// two `Rc`s that point to the same allocation are
    /// always equal.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(five != Rc::new(6));
    /// ```
    #[inline]
    fn ne(&self, other: &Rc<T, A>) -> bool {
        RcEqIdent::ne(self, other)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Eq, A: Allocator> Eq for Rc<T, A> {}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + PartialOrd, A: Allocator> PartialOrd for Rc<T, A> {
    /// Partial comparison for two `Rc`s.
    ///
    /// The two are compared by calling `partial_cmp()` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    /// use std::cmp::Ordering;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert_eq!(Some(Ordering::Less), five.partial_cmp(&Rc::new(6)));
    /// ```
    #[inline(always)]
    fn partial_cmp(&self, other: &Rc<T, A>) -> Option<Ordering> {
        (**self).partial_cmp(&**other)
    }

    /// Less-than comparison for two `Rc`s.
    ///
    /// The two are compared by calling `<` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(five < Rc::new(6));
    /// ```
    #[inline(always)]
    fn lt(&self, other: &Rc<T, A>) -> bool {
        **self < **other
    }

    /// 'Less than or equal to' comparison for two `Rc`s.
    ///
    /// The two are compared by calling `<=` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(five <= Rc::new(5));
    /// ```
    #[inline(always)]
    fn le(&self, other: &Rc<T, A>) -> bool {
        **self <= **other
    }

    /// Greater-than comparison for two `Rc`s.
    ///
    /// The two are compared by calling `>` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(five > Rc::new(4));
    /// ```
    #[inline(always)]
    fn gt(&self, other: &Rc<T, A>) -> bool {
        **self > **other
    }

    /// 'Greater than or equal to' comparison for two `Rc`s.
    ///
    /// The two are compared by calling `>=` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert!(five >= Rc::new(5));
    /// ```
    #[inline(always)]
    fn ge(&self, other: &Rc<T, A>) -> bool {
        **self >= **other
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Ord, A: Allocator> Ord for Rc<T, A> {
    /// Comparison for two `Rc`s.
    ///
    /// The two are compared by calling `cmp()` on their inner values.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    /// use std::cmp::Ordering;
    ///
    /// let five = Rc::new(5);
    ///
    /// assert_eq!(Ordering::Less, five.cmp(&Rc::new(6)));
    /// ```
    #[inline]
    fn cmp(&self, other: &Rc<T, A>) -> Ordering {
        (**self).cmp(&**other)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + Hash, A: Allocator> Hash for Rc<T, A> {
    fn hash<H: Hasher>(&self, state: &mut H) {
        (**self).hash(state);
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + fmt::Display, A: Allocator> fmt::Display for Rc<T, A> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized + fmt::Debug, A: Allocator> fmt::Debug for Rc<T, A> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized, A: Allocator> fmt::Pointer for Rc<T, A> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Pointer::fmt(&(&raw const **self), f)
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "from_for_ptrs", since = "1.6.0")]
impl<T> From<T> for Rc<T> {
    /// Converts a generic type `T` into an `Rc<T>`
    ///
    /// The conversion allocates on the heap and moves `t`
    /// from the stack into it.
    ///
    /// # Example
    /// ```rust
    /// # use std::rc::Rc;
    /// let x = 5;
    /// let rc = Rc::new(5);
    ///
    /// assert_eq!(Rc::from(x), rc);
    /// ```
    fn from(t: T) -> Self {
        Rc::new(t)
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "shared_from_array", since = "1.74.0")]
impl<T, const N: usize> From<[T; N]> for Rc<[T]> {
    /// Converts a [`[T; N]`](prim@array) into an `Rc<[T]>`.
    ///
    /// The conversion moves the array into a newly allocated `Rc`.
    ///
    /// # Example
    ///
    /// ```
    /// # use std::rc::Rc;
    /// let original: [i32; 3] = [1, 2, 3];
    /// let shared: Rc<[i32]> = Rc::from(original);
    /// assert_eq!(&[1, 2, 3], &shared[..]);
    /// ```
    #[inline]
    fn from(v: [T; N]) -> Rc<[T]> {
        Rc::<[T; N]>::from(v)
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "shared_from_slice", since = "1.21.0")]
impl<T: Clone> From<&[T]> for Rc<[T]> {
    /// Allocates a reference-counted slice and fills it by cloning `v`'s items.
    ///
    /// # Example
    ///
    /// ```
    /// # use std::rc::Rc;
    /// let original: &[i32] = &[1, 2, 3];
    /// let shared: Rc<[i32]> = Rc::from(original);
    /// assert_eq!(&[1, 2, 3], &shared[..]);
    /// ```
    #[inline]
    fn from(v: &[T]) -> Rc<[T]> {
        <Self as RcFromSlice<T>>::from_slice(v)
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "shared_from_mut_slice", since = "CURRENT_RUSTC_VERSION")]
impl<T: Clone> From<&mut [T]> for Rc<[T]> {
    /// Allocates a reference-counted slice and fills it by cloning `v`'s items.
    ///
    /// # Example
    ///
    /// ```
    /// # use std::rc::Rc;
    /// let mut original = [1, 2, 3];
    /// let original: &mut [i32] = &mut original;
    /// let shared: Rc<[i32]> = Rc::from(original);
    /// assert_eq!(&[1, 2, 3], &shared[..]);
    /// ```
    #[inline]
    fn from(v: &mut [T]) -> Rc<[T]> {
        Rc::from(&*v)
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "shared_from_slice", since = "1.21.0")]
impl From<&str> for Rc<str> {
    /// Allocates a reference-counted string slice and copies `v` into it.
    ///
    /// # Example
    ///
    /// ```
    /// # use std::rc::Rc;
    /// let shared: Rc<str> = Rc::from("statue");
    /// assert_eq!("statue", &shared[..]);
    /// ```
    #[inline]
    fn from(v: &str) -> Rc<str> {
        let rc = Rc::<[u8]>::from(v.as_bytes());
        unsafe { Rc::from_raw(Rc::into_raw(rc) as *const str) }
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "shared_from_mut_slice", since = "CURRENT_RUSTC_VERSION")]
impl From<&mut str> for Rc<str> {
    /// Allocates a reference-counted string slice and copies `v` into it.
    ///
    /// # Example
    ///
    /// ```
    /// # use std::rc::Rc;
    /// let mut original = String::from("statue");
    /// let original: &mut str = &mut original;
    /// let shared: Rc<str> = Rc::from(original);
    /// assert_eq!("statue", &shared[..]);
    /// ```
    #[inline]
    fn from(v: &mut str) -> Rc<str> {
        Rc::from(&*v)
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "shared_from_slice", since = "1.21.0")]
impl From<String> for Rc<str> {
    /// Allocates a reference-counted string slice and copies `v` into it.
    ///
    /// # Example
    ///
    /// ```
    /// # use std::rc::Rc;
    /// let original: String = "statue".to_owned();
    /// let shared: Rc<str> = Rc::from(original);
    /// assert_eq!("statue", &shared[..]);
    /// ```
    #[inline]
    fn from(v: String) -> Rc<str> {
        Rc::from(&v[..])
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "shared_from_slice", since = "1.21.0")]
impl<T: ?Sized, A: Allocator> From<Box<T, A>> for Rc<T, A> {
    /// Move a boxed object to a new, reference counted, allocation.
    ///
    /// # Example
    ///
    /// ```
    /// # use std::rc::Rc;
    /// let original: Box<i32> = Box::new(1);
    /// let shared: Rc<i32> = Rc::from(original);
    /// assert_eq!(1, *shared);
    /// ```
    #[inline]
    fn from(v: Box<T, A>) -> Rc<T, A> {
        Rc::from_box_in(v)
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "shared_from_slice", since = "1.21.0")]
impl<T, A: Allocator> From<Vec<T, A>> for Rc<[T], A> {
    /// Allocates a reference-counted slice and moves `v`'s items into it.
    ///
    /// # Example
    ///
    /// ```
    /// # use std::rc::Rc;
    /// let unique: Vec<i32> = vec![1, 2, 3];
    /// let shared: Rc<[i32]> = Rc::from(unique);
    /// assert_eq!(&[1, 2, 3], &shared[..]);
    /// ```
    #[inline]
    fn from(v: Vec<T, A>) -> Rc<[T], A> {
        unsafe {
            let (vec_ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();

            let rc_ptr = Self::allocate_for_slice_in(len, &alloc);
            ptr::copy_nonoverlapping(vec_ptr, (&raw mut (*rc_ptr).value) as *mut T, len);

            // Create a `Vec<T, &A>` with length 0, to deallocate the buffer
            // without dropping its contents or the allocator
            let _ = Vec::from_raw_parts_in(vec_ptr, 0, cap, &alloc);

            Self::from_ptr_in(rc_ptr, alloc)
        }
    }
}

#[stable(feature = "shared_from_cow", since = "1.45.0")]
impl<'a, B> From<Cow<'a, B>> for Rc<B>
where
    B: ToOwned + ?Sized,
    Rc<B>: From<&'a B> + From<B::Owned>,
{
    /// Creates a reference-counted pointer from a clone-on-write pointer by
    /// copying its content.
    ///
    /// # Example
    ///
    /// ```rust
    /// # use std::rc::Rc;
    /// # use std::borrow::Cow;
    /// let cow: Cow<'_, str> = Cow::Borrowed("eggplant");
    /// let shared: Rc<str> = Rc::from(cow);
    /// assert_eq!("eggplant", &shared[..]);
    /// ```
    #[inline]
    fn from(cow: Cow<'a, B>) -> Rc<B> {
        match cow {
            Cow::Borrowed(s) => Rc::from(s),
            Cow::Owned(s) => Rc::from(s),
        }
    }
}

#[stable(feature = "shared_from_str", since = "1.62.0")]
impl From<Rc<str>> for Rc<[u8]> {
    /// Converts a reference-counted string slice into a byte slice.
    ///
    /// # Example
    ///
    /// ```
    /// # use std::rc::Rc;
    /// let string: Rc<str> = Rc::from("eggplant");
    /// let bytes: Rc<[u8]> = Rc::from(string);
    /// assert_eq!("eggplant".as_bytes(), bytes.as_ref());
    /// ```
    #[inline]
    fn from(rc: Rc<str>) -> Self {
        // SAFETY: `str` has the same layout as `[u8]`.
        unsafe { Rc::from_raw(Rc::into_raw(rc) as *const [u8]) }
    }
}

#[stable(feature = "boxed_slice_try_from", since = "1.43.0")]
impl<T, A: Allocator, const N: usize> TryFrom<Rc<[T], A>> for Rc<[T; N], A> {
    type Error = Rc<[T], A>;

    fn try_from(boxed_slice: Rc<[T], A>) -> Result<Self, Self::Error> {
        if boxed_slice.len() == N {
            let (ptr, alloc) = Rc::into_inner_with_allocator(boxed_slice);
            Ok(unsafe { Rc::from_inner_in(ptr.cast(), alloc) })
        } else {
            Err(boxed_slice)
        }
    }
}

#[cfg(not(no_global_oom_handling))]
#[stable(feature = "shared_from_iter", since = "1.37.0")]
impl<T> FromIterator<T> for Rc<[T]> {
    /// Takes each element in the `Iterator` and collects it into an `Rc<[T]>`.
    ///
    /// # Performance characteristics
    ///
    /// ## The general case
    ///
    /// In the general case, collecting into `Rc<[T]>` is done by first
    /// collecting into a `Vec<T>`. That is, when writing the following:
    ///
    /// ```rust
    /// # use std::rc::Rc;
    /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0).collect();
    /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
    /// ```
    ///
    /// this behaves as if we wrote:
    ///
    /// ```rust
    /// # use std::rc::Rc;
    /// let evens: Rc<[u8]> = (0..10).filter(|&x| x % 2 == 0)
    ///     .collect::<Vec<_>>() // The first set of allocations happens here.
    ///     .into(); // A second allocation for `Rc<[T]>` happens here.
    /// # assert_eq!(&*evens, &[0, 2, 4, 6, 8]);
    /// ```
    ///
    /// This will allocate as many times as needed for constructing the `Vec<T>`
    /// and then it will allocate once for turning the `Vec<T>` into the `Rc<[T]>`.
    ///
    /// ## Iterators of known length
    ///
    /// When your `Iterator` implements `TrustedLen` and is of an exact size,
    /// a single allocation will be made for the `Rc<[T]>`. For example:
    ///
    /// ```rust
    /// # use std::rc::Rc;
    /// let evens: Rc<[u8]> = (0..10).collect(); // Just a single allocation happens here.
    /// # assert_eq!(&*evens, &*(0..10).collect::<Vec<_>>());
    /// ```
    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
        ToRcSlice::to_rc_slice(iter.into_iter())
    }
}

/// Specialization trait used for collecting into `Rc<[T]>`.
#[cfg(not(no_global_oom_handling))]
trait ToRcSlice<T>: Iterator<Item = T> + Sized {
    fn to_rc_slice(self) -> Rc<[T]>;
}

#[cfg(not(no_global_oom_handling))]
impl<T, I: Iterator<Item = T>> ToRcSlice<T> for I {
    default fn to_rc_slice(self) -> Rc<[T]> {
        self.collect::<Vec<T>>().into()
    }
}

#[cfg(not(no_global_oom_handling))]
impl<T, I: iter::TrustedLen<Item = T>> ToRcSlice<T> for I {
    fn to_rc_slice(self) -> Rc<[T]> {
        // This is the case for a `TrustedLen` iterator.
        let (low, high) = self.size_hint();
        if let Some(high) = high {
            debug_assert_eq!(
                low,
                high,
                "TrustedLen iterator's size hint is not exact: {:?}",
                (low, high)
            );

            unsafe {
                // SAFETY: We need to ensure that the iterator has an exact length and we have.
                Rc::from_iter_exact(self, low)
            }
        } else {
            // TrustedLen contract guarantees that `upper_bound == None` implies an iterator
            // length exceeding `usize::MAX`.
            // The default implementation would collect into a vec which would panic.
            // Thus we panic here immediately without invoking `Vec` code.
            panic!("capacity overflow");
        }
    }
}

/// `Weak` is a version of [`Rc`] that holds a non-owning reference to the
/// managed allocation. The allocation is accessed by calling [`upgrade`] on the `Weak`
/// pointer, which returns an <code>[Option]<[Rc]\<T>></code>.
///
/// Since a `Weak` reference does not count towards ownership, it will not
/// prevent the value stored in the allocation from being dropped, and `Weak` itself makes no
/// guarantees about the value still being present. Thus it may return [`None`]
/// when [`upgrade`]d. Note however that a `Weak` reference *does* prevent the allocation
/// itself (the backing store) from being deallocated.
///
/// A `Weak` pointer is useful for keeping a temporary reference to the allocation
/// managed by [`Rc`] without preventing its inner value from being dropped. It is also used to
/// prevent circular references between [`Rc`] pointers, since mutual owning references
/// would never allow either [`Rc`] to be dropped. For example, a tree could
/// have strong [`Rc`] pointers from parent nodes to children, and `Weak`
/// pointers from children back to their parents.
///
/// The typical way to obtain a `Weak` pointer is to call [`Rc::downgrade`].
///
/// [`upgrade`]: Weak::upgrade
#[stable(feature = "rc_weak", since = "1.4.0")]
#[cfg_attr(not(test), rustc_diagnostic_item = "RcWeak")]
pub struct Weak<
    T: ?Sized,
    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
> {
    // This is a `NonNull` to allow optimizing the size of this type in enums,
    // but it is not necessarily a valid pointer.
    // `Weak::new` sets this to `usize::MAX` so that it doesn’t need
    // to allocate space on the heap. That's not a value a real pointer
    // will ever have because RcInner has alignment at least 2.
    // This is only possible when `T: Sized`; unsized `T` never dangle.
    ptr: NonNull<RcInner<T>>,
    alloc: A,
}

#[stable(feature = "rc_weak", since = "1.4.0")]
impl<T: ?Sized, A: Allocator> !Send for Weak<T, A> {}
#[stable(feature = "rc_weak", since = "1.4.0")]
impl<T: ?Sized, A: Allocator> !Sync for Weak<T, A> {}

#[unstable(feature = "coerce_unsized", issue = "18598")]
impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<Weak<U, A>> for Weak<T, A> {}

#[unstable(feature = "dispatch_from_dyn", issue = "none")]
impl<T: ?Sized + Unsize<U>, U: ?Sized> DispatchFromDyn<Weak<U>> for Weak<T> {}

impl<T> Weak<T> {
    /// Constructs a new `Weak<T>`, without allocating any memory.
    /// Calling [`upgrade`] on the return value always gives [`None`].
    ///
    /// [`upgrade`]: Weak::upgrade
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Weak;
    ///
    /// let empty: Weak<i64> = Weak::new();
    /// assert!(empty.upgrade().is_none());
    /// ```
    #[inline]
    #[stable(feature = "downgraded_weak", since = "1.10.0")]
    #[rustc_const_stable(feature = "const_weak_new", since = "1.73.0")]
    #[must_use]
    pub const fn new() -> Weak<T> {
        Weak {
            ptr: unsafe {
                NonNull::new_unchecked(ptr::without_provenance_mut::<RcInner<T>>(usize::MAX))
            },
            alloc: Global,
        }
    }
}

impl<T, A: Allocator> Weak<T, A> {
    /// Constructs a new `Weak<T>`, without allocating any memory, technically in the provided
    /// allocator.
    /// Calling [`upgrade`] on the return value always gives [`None`].
    ///
    /// [`upgrade`]: Weak::upgrade
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Weak;
    ///
    /// let empty: Weak<i64> = Weak::new();
    /// assert!(empty.upgrade().is_none());
    /// ```
    #[inline]
    #[unstable(feature = "allocator_api", issue = "32838")]
    pub fn new_in(alloc: A) -> Weak<T, A> {
        Weak {
            ptr: unsafe {
                NonNull::new_unchecked(ptr::without_provenance_mut::<RcInner<T>>(usize::MAX))
            },
            alloc,
        }
    }
}

pub(crate) fn is_dangling<T: ?Sized>(ptr: *const T) -> bool {
    (ptr.cast::<()>()).addr() == usize::MAX
}

/// Helper type to allow accessing the reference counts without
/// making any assertions about the data field.
struct WeakInner<'a> {
    weak: &'a Cell<usize>,
    strong: &'a Cell<usize>,
}

impl<T: ?Sized> Weak<T> {
    /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
    ///
    /// This can be used to safely get a strong reference (by calling [`upgrade`]
    /// later) or to deallocate the weak count by dropping the `Weak<T>`.
    ///
    /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
    /// as these don't own anything; the method still works on them).
    ///
    /// # Safety
    ///
    /// The pointer must have originated from the [`into_raw`] and must still own its potential
    /// weak reference, and `ptr` must point to a block of memory allocated by the global allocator.
    ///
    /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
    /// takes ownership of one weak reference currently represented as a raw pointer (the weak
    /// count is not modified by this operation) and therefore it must be paired with a previous
    /// call to [`into_raw`].
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::{Rc, Weak};
    ///
    /// let strong = Rc::new("hello".to_owned());
    ///
    /// let raw_1 = Rc::downgrade(&strong).into_raw();
    /// let raw_2 = Rc::downgrade(&strong).into_raw();
    ///
    /// assert_eq!(2, Rc::weak_count(&strong));
    ///
    /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
    /// assert_eq!(1, Rc::weak_count(&strong));
    ///
    /// drop(strong);
    ///
    /// // Decrement the last weak count.
    /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
    /// ```
    ///
    /// [`into_raw`]: Weak::into_raw
    /// [`upgrade`]: Weak::upgrade
    /// [`new`]: Weak::new
    #[inline]
    #[stable(feature = "weak_into_raw", since = "1.45.0")]
    pub unsafe fn from_raw(ptr: *const T) -> Self {
        unsafe { Self::from_raw_in(ptr, Global) }
    }
}

impl<T: ?Sized, A: Allocator> Weak<T, A> {
    /// Returns a reference to the underlying allocator.
    #[inline]
    #[unstable(feature = "allocator_api", issue = "32838")]
    pub fn allocator(&self) -> &A {
        &self.alloc
    }

    /// Returns a raw pointer to the object `T` pointed to by this `Weak<T>`.
    ///
    /// The pointer is valid only if there are some strong references. The pointer may be dangling,
    /// unaligned or even [`null`] otherwise.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    /// use std::ptr;
    ///
    /// let strong = Rc::new("hello".to_owned());
    /// let weak = Rc::downgrade(&strong);
    /// // Both point to the same object
    /// assert!(ptr::eq(&*strong, weak.as_ptr()));
    /// // The strong here keeps it alive, so we can still access the object.
    /// assert_eq!("hello", unsafe { &*weak.as_ptr() });
    ///
    /// drop(strong);
    /// // But not any more. We can do weak.as_ptr(), but accessing the pointer would lead to
    /// // undefined behavior.
    /// // assert_eq!("hello", unsafe { &*weak.as_ptr() });
    /// ```
    ///
    /// [`null`]: ptr::null
    #[must_use]
    #[stable(feature = "rc_as_ptr", since = "1.45.0")]
    pub fn as_ptr(&self) -> *const T {
        let ptr: *mut RcInner<T> = NonNull::as_ptr(self.ptr);

        if is_dangling(ptr) {
            // If the pointer is dangling, we return the sentinel directly. This cannot be
            // a valid payload address, as the payload is at least as aligned as RcInner (usize).
            ptr as *const T
        } else {
            // SAFETY: if is_dangling returns false, then the pointer is dereferenceable.
            // The payload may be dropped at this point, and we have to maintain provenance,
            // so use raw pointer manipulation.
            unsafe { &raw mut (*ptr).value }
        }
    }

    /// Consumes the `Weak<T>` and turns it into a raw pointer.
    ///
    /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
    /// one weak reference (the weak count is not modified by this operation). It can be turned
    /// back into the `Weak<T>` with [`from_raw`].
    ///
    /// The same restrictions of accessing the target of the pointer as with
    /// [`as_ptr`] apply.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::{Rc, Weak};
    ///
    /// let strong = Rc::new("hello".to_owned());
    /// let weak = Rc::downgrade(&strong);
    /// let raw = weak.into_raw();
    ///
    /// assert_eq!(1, Rc::weak_count(&strong));
    /// assert_eq!("hello", unsafe { &*raw });
    ///
    /// drop(unsafe { Weak::from_raw(raw) });
    /// assert_eq!(0, Rc::weak_count(&strong));
    /// ```
    ///
    /// [`from_raw`]: Weak::from_raw
    /// [`as_ptr`]: Weak::as_ptr
    #[must_use = "losing the pointer will leak memory"]
    #[stable(feature = "weak_into_raw", since = "1.45.0")]
    pub fn into_raw(self) -> *const T {
        mem::ManuallyDrop::new(self).as_ptr()
    }

    /// Consumes the `Weak<T>`, returning the wrapped pointer and allocator.
    ///
    /// This converts the weak pointer into a raw pointer, while still preserving the ownership of
    /// one weak reference (the weak count is not modified by this operation). It can be turned
    /// back into the `Weak<T>` with [`from_raw_in`].
    ///
    /// The same restrictions of accessing the target of the pointer as with
    /// [`as_ptr`] apply.
    ///
    /// # Examples
    ///
    /// ```
    /// #![feature(allocator_api)]
    /// use std::rc::{Rc, Weak};
    /// use std::alloc::System;
    ///
    /// let strong = Rc::new_in("hello".to_owned(), System);
    /// let weak = Rc::downgrade(&strong);
    /// let (raw, alloc) = weak.into_raw_with_allocator();
    ///
    /// assert_eq!(1, Rc::weak_count(&strong));
    /// assert_eq!("hello", unsafe { &*raw });
    ///
    /// drop(unsafe { Weak::from_raw_in(raw, alloc) });
    /// assert_eq!(0, Rc::weak_count(&strong));
    /// ```
    ///
    /// [`from_raw_in`]: Weak::from_raw_in
    /// [`as_ptr`]: Weak::as_ptr
    #[must_use = "losing the pointer will leak memory"]
    #[inline]
    #[unstable(feature = "allocator_api", issue = "32838")]
    pub fn into_raw_with_allocator(self) -> (*const T, A) {
        let this = mem::ManuallyDrop::new(self);
        let result = this.as_ptr();
        // Safety: `this` is ManuallyDrop so the allocator will not be double-dropped
        let alloc = unsafe { ptr::read(&this.alloc) };
        (result, alloc)
    }

    /// Converts a raw pointer previously created by [`into_raw`] back into `Weak<T>`.
    ///
    /// This can be used to safely get a strong reference (by calling [`upgrade`]
    /// later) or to deallocate the weak count by dropping the `Weak<T>`.
    ///
    /// It takes ownership of one weak reference (with the exception of pointers created by [`new`],
    /// as these don't own anything; the method still works on them).
    ///
    /// # Safety
    ///
    /// The pointer must have originated from the [`into_raw`] and must still own its potential
    /// weak reference, and `ptr` must point to a block of memory allocated by `alloc`.
    ///
    /// It is allowed for the strong count to be 0 at the time of calling this. Nevertheless, this
    /// takes ownership of one weak reference currently represented as a raw pointer (the weak
    /// count is not modified by this operation) and therefore it must be paired with a previous
    /// call to [`into_raw`].
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::{Rc, Weak};
    ///
    /// let strong = Rc::new("hello".to_owned());
    ///
    /// let raw_1 = Rc::downgrade(&strong).into_raw();
    /// let raw_2 = Rc::downgrade(&strong).into_raw();
    ///
    /// assert_eq!(2, Rc::weak_count(&strong));
    ///
    /// assert_eq!("hello", &*unsafe { Weak::from_raw(raw_1) }.upgrade().unwrap());
    /// assert_eq!(1, Rc::weak_count(&strong));
    ///
    /// drop(strong);
    ///
    /// // Decrement the last weak count.
    /// assert!(unsafe { Weak::from_raw(raw_2) }.upgrade().is_none());
    /// ```
    ///
    /// [`into_raw`]: Weak::into_raw
    /// [`upgrade`]: Weak::upgrade
    /// [`new`]: Weak::new
    #[inline]
    #[unstable(feature = "allocator_api", issue = "32838")]
    pub unsafe fn from_raw_in(ptr: *const T, alloc: A) -> Self {
        // See Weak::as_ptr for context on how the input pointer is derived.

        let ptr = if is_dangling(ptr) {
            // This is a dangling Weak.
            ptr as *mut RcInner<T>
        } else {
            // Otherwise, we're guaranteed the pointer came from a nondangling Weak.
            // SAFETY: data_offset is safe to call, as ptr references a real (potentially dropped) T.
            let offset = unsafe { data_offset(ptr) };
            // Thus, we reverse the offset to get the whole RcInner.
            // SAFETY: the pointer originated from a Weak, so this offset is safe.
            unsafe { ptr.byte_sub(offset) as *mut RcInner<T> }
        };

        // SAFETY: we now have recovered the original Weak pointer, so can create the Weak.
        Weak { ptr: unsafe { NonNull::new_unchecked(ptr) }, alloc }
    }

    /// Attempts to upgrade the `Weak` pointer to an [`Rc`], delaying
    /// dropping of the inner value if successful.
    ///
    /// Returns [`None`] if the inner value has since been dropped.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let five = Rc::new(5);
    ///
    /// let weak_five = Rc::downgrade(&five);
    ///
    /// let strong_five: Option<Rc<_>> = weak_five.upgrade();
    /// assert!(strong_five.is_some());
    ///
    /// // Destroy all strong pointers.
    /// drop(strong_five);
    /// drop(five);
    ///
    /// assert!(weak_five.upgrade().is_none());
    /// ```
    #[must_use = "this returns a new `Rc`, \
                  without modifying the original weak pointer"]
    #[stable(feature = "rc_weak", since = "1.4.0")]
    pub fn upgrade(&self) -> Option<Rc<T, A>>
    where
        A: Clone,
    {
        let inner = self.inner()?;

        if inner.strong() == 0 {
            None
        } else {
            unsafe {
                inner.inc_strong();
                Some(Rc::from_inner_in(self.ptr, self.alloc.clone()))
            }
        }
    }

    /// Gets the number of strong (`Rc`) pointers pointing to this allocation.
    ///
    /// If `self` was created using [`Weak::new`], this will return 0.
    #[must_use]
    #[stable(feature = "weak_counts", since = "1.41.0")]
    pub fn strong_count(&self) -> usize {
        if let Some(inner) = self.inner() { inner.strong() } else { 0 }
    }

    /// Gets the number of `Weak` pointers pointing to this allocation.
    ///
    /// If no strong pointers remain, this will return zero.
    #[must_use]
    #[stable(feature = "weak_counts", since = "1.41.0")]
    pub fn weak_count(&self) -> usize {
        if let Some(inner) = self.inner() {
            if inner.strong() > 0 {
                inner.weak() - 1 // subtract the implicit weak ptr
            } else {
                0
            }
        } else {
            0
        }
    }

    /// Returns `None` when the pointer is dangling and there is no allocated `RcInner`,
    /// (i.e., when this `Weak` was created by `Weak::new`).
    #[inline]
    fn inner(&self) -> Option<WeakInner<'_>> {
        if is_dangling(self.ptr.as_ptr()) {
            None
        } else {
            // We are careful to *not* create a reference covering the "data" field, as
            // the field may be mutated concurrently (for example, if the last `Rc`
            // is dropped, the data field will be dropped in-place).
            Some(unsafe {
                let ptr = self.ptr.as_ptr();
                WeakInner { strong: &(*ptr).strong, weak: &(*ptr).weak }
            })
        }
    }

    /// Returns `true` if the two `Weak`s point to the same allocation similar to [`ptr::eq`], or if
    /// both don't point to any allocation (because they were created with `Weak::new()`). However,
    /// this function ignores the metadata of  `dyn Trait` pointers.
    ///
    /// # Notes
    ///
    /// Since this compares pointers it means that `Weak::new()` will equal each
    /// other, even though they don't point to any allocation.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Rc;
    ///
    /// let first_rc = Rc::new(5);
    /// let first = Rc::downgrade(&first_rc);
    /// let second = Rc::downgrade(&first_rc);
    ///
    /// assert!(first.ptr_eq(&second));
    ///
    /// let third_rc = Rc::new(5);
    /// let third = Rc::downgrade(&third_rc);
    ///
    /// assert!(!first.ptr_eq(&third));
    /// ```
    ///
    /// Comparing `Weak::new`.
    ///
    /// ```
    /// use std::rc::{Rc, Weak};
    ///
    /// let first = Weak::new();
    /// let second = Weak::new();
    /// assert!(first.ptr_eq(&second));
    ///
    /// let third_rc = Rc::new(());
    /// let third = Rc::downgrade(&third_rc);
    /// assert!(!first.ptr_eq(&third));
    /// ```
    #[inline]
    #[must_use]
    #[stable(feature = "weak_ptr_eq", since = "1.39.0")]
    pub fn ptr_eq(&self, other: &Self) -> bool {
        ptr::addr_eq(self.ptr.as_ptr(), other.ptr.as_ptr())
    }
}

#[stable(feature = "rc_weak", since = "1.4.0")]
unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for Weak<T, A> {
    /// Drops the `Weak` pointer.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::{Rc, Weak};
    ///
    /// struct Foo;
    ///
    /// impl Drop for Foo {
    ///     fn drop(&mut self) {
    ///         println!("dropped!");
    ///     }
    /// }
    ///
    /// let foo = Rc::new(Foo);
    /// let weak_foo = Rc::downgrade(&foo);
    /// let other_weak_foo = Weak::clone(&weak_foo);
    ///
    /// drop(weak_foo);   // Doesn't print anything
    /// drop(foo);        // Prints "dropped!"
    ///
    /// assert!(other_weak_foo.upgrade().is_none());
    /// ```
    fn drop(&mut self) {
        let inner = if let Some(inner) = self.inner() { inner } else { return };

        inner.dec_weak();
        // the weak count starts at 1, and will only go to zero if all
        // the strong pointers have disappeared.
        if inner.weak() == 0 {
            unsafe {
                self.alloc.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr()));
            }
        }
    }
}

#[stable(feature = "rc_weak", since = "1.4.0")]
impl<T: ?Sized, A: Allocator + Clone> Clone for Weak<T, A> {
    /// Makes a clone of the `Weak` pointer that points to the same allocation.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::{Rc, Weak};
    ///
    /// let weak_five = Rc::downgrade(&Rc::new(5));
    ///
    /// let _ = Weak::clone(&weak_five);
    /// ```
    #[inline]
    fn clone(&self) -> Weak<T, A> {
        if let Some(inner) = self.inner() {
            inner.inc_weak()
        }
        Weak { ptr: self.ptr, alloc: self.alloc.clone() }
    }
}

#[stable(feature = "rc_weak", since = "1.4.0")]
impl<T: ?Sized, A: Allocator> fmt::Debug for Weak<T, A> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "(Weak)")
    }
}

#[stable(feature = "downgraded_weak", since = "1.10.0")]
impl<T> Default for Weak<T> {
    /// Constructs a new `Weak<T>`, without allocating any memory.
    /// Calling [`upgrade`] on the return value always gives [`None`].
    ///
    /// [`upgrade`]: Weak::upgrade
    ///
    /// # Examples
    ///
    /// ```
    /// use std::rc::Weak;
    ///
    /// let empty: Weak<i64> = Default::default();
    /// assert!(empty.upgrade().is_none());
    /// ```
    fn default() -> Weak<T> {
        Weak::new()
    }
}

// NOTE: We checked_add here to deal with mem::forget safely. In particular
// if you mem::forget Rcs (or Weaks), the ref-count can overflow, and then
// you can free the allocation while outstanding Rcs (or Weaks) exist.
// We abort because this is such a degenerate scenario that we don't care about
// what happens -- no real program should ever experience this.
//
// This should have negligible overhead since you don't actually need to
// clone these much in Rust thanks to ownership and move-semantics.

#[doc(hidden)]
trait RcInnerPtr {
    fn weak_ref(&self) -> &Cell<usize>;
    fn strong_ref(&self) -> &Cell<usize>;

    #[inline]
    fn strong(&self) -> usize {
        self.strong_ref().get()
    }

    #[inline]
    fn inc_strong(&self) {
        let strong = self.strong();

        // We insert an `assume` here to hint LLVM at an otherwise
        // missed optimization.
        // SAFETY: The reference count will never be zero when this is
        // called.
        unsafe {
            hint::assert_unchecked(strong != 0);
        }

        let strong = strong.wrapping_add(1);
        self.strong_ref().set(strong);

        // We want to abort on overflow instead of dropping the value.
        // Checking for overflow after the store instead of before
        // allows for slightly better code generation.
        if core::intrinsics::unlikely(strong == 0) {
            abort();
        }
    }

    #[inline]
    fn dec_strong(&self) {
        self.strong_ref().set(self.strong() - 1);
    }

    #[inline]
    fn weak(&self) -> usize {
        self.weak_ref().get()
    }

    #[inline]
    fn inc_weak(&self) {
        let weak = self.weak();

        // We insert an `assume` here to hint LLVM at an otherwise
        // missed optimization.
        // SAFETY: The reference count will never be zero when this is
        // called.
        unsafe {
            hint::assert_unchecked(weak != 0);
        }

        let weak = weak.wrapping_add(1);
        self.weak_ref().set(weak);

        // We want to abort on overflow instead of dropping the value.
        // Checking for overflow after the store instead of before
        // allows for slightly better code generation.
        if core::intrinsics::unlikely(weak == 0) {
            abort();
        }
    }

    #[inline]
    fn dec_weak(&self) {
        self.weak_ref().set(self.weak() - 1);
    }
}

impl<T: ?Sized> RcInnerPtr for RcInner<T> {
    #[inline(always)]
    fn weak_ref(&self) -> &Cell<usize> {
        &self.weak
    }

    #[inline(always)]
    fn strong_ref(&self) -> &Cell<usize> {
        &self.strong
    }
}

impl<'a> RcInnerPtr for WeakInner<'a> {
    #[inline(always)]
    fn weak_ref(&self) -> &Cell<usize> {
        self.weak
    }

    #[inline(always)]
    fn strong_ref(&self) -> &Cell<usize> {
        self.strong
    }
}

#[stable(feature = "rust1", since = "1.0.0")]
impl<T: ?Sized, A: Allocator> borrow::Borrow<T> for Rc<T, A> {
    fn borrow(&self) -> &T {
        &**self
    }
}

#[stable(since = "1.5.0", feature = "smart_ptr_as_ref")]
impl<T: ?Sized, A: Allocator> AsRef<T> for Rc<T, A> {
    fn as_ref(&self) -> &T {
        &**self
    }
}

#[stable(feature = "pin", since = "1.33.0")]
impl<T: ?Sized, A: Allocator> Unpin for Rc<T, A> {}

/// Gets the offset within an `RcInner` for the payload behind a pointer.
///
/// # Safety
///
/// The pointer must point to (and have valid metadata for) a previously
/// valid instance of T, but the T is allowed to be dropped.
unsafe fn data_offset<T: ?Sized>(ptr: *const T) -> usize {
    // Align the unsized value to the end of the RcInner.
    // Because RcInner is repr(C), it will always be the last field in memory.
    // SAFETY: since the only unsized types possible are slices, trait objects,
    // and extern types, the input safety requirement is currently enough to
    // satisfy the requirements of align_of_val_raw; this is an implementation
    // detail of the language that must not be relied upon outside of std.
    unsafe { data_offset_align(align_of_val_raw(ptr)) }
}

#[inline]
fn data_offset_align(align: usize) -> usize {
    let layout = Layout::new::<RcInner<()>>();
    layout.size() + layout.padding_needed_for(align)
}

/// A uniquely owned [`Rc`].
///
/// This represents an `Rc` that is known to be uniquely owned -- that is, have exactly one strong
/// reference. Multiple weak pointers can be created, but attempts to upgrade those to strong
/// references will fail unless the `UniqueRc` they point to has been converted into a regular `Rc`.
///
/// Because they are uniquely owned, the contents of a `UniqueRc` can be freely mutated. A common
/// use case is to have an object be mutable during its initialization phase but then have it become
/// immutable and converted to a normal `Rc`.
///
/// This can be used as a flexible way to create cyclic data structures, as in the example below.
///
/// ```
/// #![feature(unique_rc_arc)]
/// use std::rc::{Rc, Weak, UniqueRc};
///
/// struct Gadget {
///     #[allow(dead_code)]
///     me: Weak<Gadget>,
/// }
///
/// fn create_gadget() -> Option<Rc<Gadget>> {
///     let mut rc = UniqueRc::new(Gadget {
///         me: Weak::new(),
///     });
///     rc.me = UniqueRc::downgrade(&rc);
///     Some(UniqueRc::into_rc(rc))
/// }
///
/// create_gadget().unwrap();
/// ```
///
/// An advantage of using `UniqueRc` over [`Rc::new_cyclic`] to build cyclic data structures is that
/// [`Rc::new_cyclic`]'s `data_fn` parameter cannot be async or return a [`Result`]. As shown in the
/// previous example, `UniqueRc` allows for more flexibility in the construction of cyclic data,
/// including fallible or async constructors.
#[unstable(feature = "unique_rc_arc", issue = "112566")]
#[derive(Debug)]
pub struct UniqueRc<
    T: ?Sized,
    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
> {
    ptr: NonNull<RcInner<T>>,
    phantom: PhantomData<RcInner<T>>,
    alloc: A,
}

#[unstable(feature = "unique_rc_arc", issue = "112566")]
impl<T: ?Sized + Unsize<U>, U: ?Sized, A: Allocator> CoerceUnsized<UniqueRc<U, A>>
    for UniqueRc<T, A>
{
}

// Depends on A = Global
impl<T> UniqueRc<T> {
    /// Creates a new `UniqueRc`.
    ///
    /// Weak references to this `UniqueRc` can be created with [`UniqueRc::downgrade`]. Upgrading
    /// these weak references will fail before the `UniqueRc` has been converted into an [`Rc`].
    /// After converting the `UniqueRc` into an [`Rc`], any weak references created beforehand will
    /// point to the new [`Rc`].
    #[cfg(not(no_global_oom_handling))]
    #[unstable(feature = "unique_rc_arc", issue = "112566")]
    pub fn new(value: T) -> Self {
        Self::new_in(value, Global)
    }
}

impl<T, A: Allocator> UniqueRc<T, A> {
    /// Creates a new `UniqueRc` in the provided allocator.
    ///
    /// Weak references to this `UniqueRc` can be created with [`UniqueRc::downgrade`]. Upgrading
    /// these weak references will fail before the `UniqueRc` has been converted into an [`Rc`].
    /// After converting the `UniqueRc` into an [`Rc`], any weak references created beforehand will
    /// point to the new [`Rc`].
    #[cfg(not(no_global_oom_handling))]
    #[unstable(feature = "unique_rc_arc", issue = "112566")]
    pub fn new_in(value: T, alloc: A) -> Self {
        let (ptr, alloc) = Box::into_unique(Box::new_in(
            RcInner {
                strong: Cell::new(0),
                // keep one weak reference so if all the weak pointers that are created are dropped
                // the UniqueRc still stays valid.
                weak: Cell::new(1),
                value,
            },
            alloc,
        ));
        Self { ptr: ptr.into(), phantom: PhantomData, alloc }
    }
}

impl<T: ?Sized, A: Allocator> UniqueRc<T, A> {
    /// Converts the `UniqueRc` into a regular [`Rc`].
    ///
    /// This consumes the `UniqueRc` and returns a regular [`Rc`] that contains the `value` that
    /// is passed to `into_rc`.
    ///
    /// Any weak references created before this method is called can now be upgraded to strong
    /// references.
    #[unstable(feature = "unique_rc_arc", issue = "112566")]
    pub fn into_rc(this: Self) -> Rc<T, A> {
        let mut this = ManuallyDrop::new(this);

        // Move the allocator out.
        // SAFETY: `this.alloc` will not be accessed again, nor dropped because it is in
        // a `ManuallyDrop`.
        let alloc: A = unsafe { ptr::read(&this.alloc) };

        // SAFETY: This pointer was allocated at creation time so we know it is valid.
        unsafe {
            // Convert our weak reference into a strong reference
            this.ptr.as_mut().strong.set(1);
            Rc::from_inner_in(this.ptr, alloc)
        }
    }
}

impl<T: ?Sized, A: Allocator + Clone> UniqueRc<T, A> {
    /// Creates a new weak reference to the `UniqueRc`.
    ///
    /// Attempting to upgrade this weak reference will fail before the `UniqueRc` has been converted
    /// to a [`Rc`] using [`UniqueRc::into_rc`].
    #[unstable(feature = "unique_rc_arc", issue = "112566")]
    pub fn downgrade(this: &Self) -> Weak<T, A> {
        // SAFETY: This pointer was allocated at creation time and we guarantee that we only have
        // one strong reference before converting to a regular Rc.
        unsafe {
            this.ptr.as_ref().inc_weak();
        }
        Weak { ptr: this.ptr, alloc: this.alloc.clone() }
    }
}

#[unstable(feature = "unique_rc_arc", issue = "112566")]
impl<T: ?Sized, A: Allocator> Deref for UniqueRc<T, A> {
    type Target = T;

    fn deref(&self) -> &T {
        // SAFETY: This pointer was allocated at creation time so we know it is valid.
        unsafe { &self.ptr.as_ref().value }
    }
}

#[unstable(feature = "pin_coerce_unsized_trait", issue = "123430")]
unsafe impl<T: ?Sized> PinCoerceUnsized for UniqueRc<T> {}

#[unstable(feature = "unique_rc_arc", issue = "112566")]
impl<T: ?Sized, A: Allocator> DerefMut for UniqueRc<T, A> {
    fn deref_mut(&mut self) -> &mut T {
        // SAFETY: This pointer was allocated at creation time so we know it is valid. We know we
        // have unique ownership and therefore it's safe to make a mutable reference because
        // `UniqueRc` owns the only strong reference to itself.
        unsafe { &mut (*self.ptr.as_ptr()).value }
    }
}

#[unstable(feature = "unique_rc_arc", issue = "112566")]
unsafe impl<#[may_dangle] T: ?Sized, A: Allocator> Drop for UniqueRc<T, A> {
    fn drop(&mut self) {
        unsafe {
            // destroy the contained object
            drop_in_place(DerefMut::deref_mut(self));

            // remove the implicit "strong weak" pointer now that we've destroyed the contents.
            self.ptr.as_ref().dec_weak();

            if self.ptr.as_ref().weak() == 0 {
                self.alloc.deallocate(self.ptr.cast(), Layout::for_value_raw(self.ptr.as_ptr()));
            }
        }
    }
}

/// A unique owning pointer to a [`RcInner`] **that does not imply the contents are initialized,**
/// but will deallocate it (without dropping the value) when dropped.
///
/// This is a helper for [`Rc::make_mut()`] to ensure correct cleanup on panic.
/// It is nearly a duplicate of `UniqueRc<MaybeUninit<T>, A>` except that it allows `T: !Sized`,
/// which `MaybeUninit` does not.
#[cfg(not(no_global_oom_handling))]
struct UniqueRcUninit<T: ?Sized, A: Allocator> {
    ptr: NonNull<RcInner<T>>,
    layout_for_value: Layout,
    alloc: Option<A>,
}

#[cfg(not(no_global_oom_handling))]
impl<T: ?Sized, A: Allocator> UniqueRcUninit<T, A> {
    /// Allocates a RcInner with layout suitable to contain `for_value` or a clone of it.
    fn new(for_value: &T, alloc: A) -> UniqueRcUninit<T, A> {
        let layout = Layout::for_value(for_value);
        let ptr = unsafe {
            Rc::allocate_for_layout(
                layout,
                |layout_for_rc_inner| alloc.allocate(layout_for_rc_inner),
                |mem| mem.with_metadata_of(ptr::from_ref(for_value) as *const RcInner<T>),
            )
        };
        Self { ptr: NonNull::new(ptr).unwrap(), layout_for_value: layout, alloc: Some(alloc) }
    }

    /// Returns the pointer to be written into to initialize the [`Rc`].
    fn data_ptr(&mut self) -> *mut T {
        let offset = data_offset_align(self.layout_for_value.align());
        unsafe { self.ptr.as_ptr().byte_add(offset) as *mut T }
    }

    /// Upgrade this into a normal [`Rc`].
    ///
    /// # Safety
    ///
    /// The data must have been initialized (by writing to [`Self::data_ptr()`]).
    unsafe fn into_rc(self) -> Rc<T, A> {
        let mut this = ManuallyDrop::new(self);
        let ptr = this.ptr;
        let alloc = this.alloc.take().unwrap();

        // SAFETY: The pointer is valid as per `UniqueRcUninit::new`, and the caller is responsible
        // for having initialized the data.
        unsafe { Rc::from_ptr_in(ptr.as_ptr(), alloc) }
    }
}

#[cfg(not(no_global_oom_handling))]
impl<T: ?Sized, A: Allocator> Drop for UniqueRcUninit<T, A> {
    fn drop(&mut self) {
        // SAFETY:
        // * new() produced a pointer safe to deallocate.
        // * We own the pointer unless into_rc() was called, which forgets us.
        unsafe {
            self.alloc.take().unwrap().deallocate(
                self.ptr.cast(),
                rc_inner_layout_for_value_layout(self.layout_for_value),
            );
        }
    }
}