alloc/collections/
linked_list.rs

1//! A doubly-linked list with owned nodes.
2//!
3//! The `LinkedList` allows pushing and popping elements at either end
4//! in constant time.
5//!
6//! NOTE: It is almost always better to use [`Vec`] or [`VecDeque`] because
7//! array-based containers are generally faster,
8//! more memory efficient, and make better use of CPU cache.
9//!
10//! [`Vec`]: crate::vec::Vec
11//! [`VecDeque`]: super::vec_deque::VecDeque
12
13#![stable(feature = "rust1", since = "1.0.0")]
14
15use core::cmp::Ordering;
16use core::hash::{Hash, Hasher};
17use core::iter::FusedIterator;
18use core::marker::PhantomData;
19use core::ptr::NonNull;
20use core::{fmt, mem};
21
22use super::SpecExtend;
23use crate::alloc::{Allocator, Global};
24use crate::boxed::Box;
25
26#[cfg(test)]
27mod tests;
28
29/// A doubly-linked list with owned nodes.
30///
31/// The `LinkedList` allows pushing and popping elements at either end
32/// in constant time.
33///
34/// A `LinkedList` with a known list of items can be initialized from an array:
35/// ```
36/// use std::collections::LinkedList;
37///
38/// let list = LinkedList::from([1, 2, 3]);
39/// ```
40///
41/// NOTE: It is almost always better to use [`Vec`] or [`VecDeque`] because
42/// array-based containers are generally faster,
43/// more memory efficient, and make better use of CPU cache.
44///
45/// [`Vec`]: crate::vec::Vec
46/// [`VecDeque`]: super::vec_deque::VecDeque
47#[stable(feature = "rust1", since = "1.0.0")]
48#[cfg_attr(not(test), rustc_diagnostic_item = "LinkedList")]
49#[rustc_insignificant_dtor]
50pub struct LinkedList<
51    T,
52    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
53> {
54    head: Option<NonNull<Node<T>>>,
55    tail: Option<NonNull<Node<T>>>,
56    len: usize,
57    alloc: A,
58    marker: PhantomData<Box<Node<T>, A>>,
59}
60
61struct Node<T> {
62    next: Option<NonNull<Node<T>>>,
63    prev: Option<NonNull<Node<T>>>,
64    element: T,
65}
66
67/// An iterator over the elements of a `LinkedList`.
68///
69/// This `struct` is created by [`LinkedList::iter()`]. See its
70/// documentation for more.
71#[must_use = "iterators are lazy and do nothing unless consumed"]
72#[stable(feature = "rust1", since = "1.0.0")]
73pub struct Iter<'a, T: 'a> {
74    head: Option<NonNull<Node<T>>>,
75    tail: Option<NonNull<Node<T>>>,
76    len: usize,
77    marker: PhantomData<&'a Node<T>>,
78}
79
80#[stable(feature = "collection_debug", since = "1.17.0")]
81impl<T: fmt::Debug> fmt::Debug for Iter<'_, T> {
82    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
83        f.debug_tuple("Iter")
84            .field(&*mem::ManuallyDrop::new(LinkedList {
85                head: self.head,
86                tail: self.tail,
87                len: self.len,
88                alloc: Global,
89                marker: PhantomData,
90            }))
91            .field(&self.len)
92            .finish()
93    }
94}
95
96// FIXME(#26925) Remove in favor of `#[derive(Clone)]`
97#[stable(feature = "rust1", since = "1.0.0")]
98impl<T> Clone for Iter<'_, T> {
99    fn clone(&self) -> Self {
100        Iter { ..*self }
101    }
102}
103
104/// A mutable iterator over the elements of a `LinkedList`.
105///
106/// This `struct` is created by [`LinkedList::iter_mut()`]. See its
107/// documentation for more.
108#[must_use = "iterators are lazy and do nothing unless consumed"]
109#[stable(feature = "rust1", since = "1.0.0")]
110pub struct IterMut<'a, T: 'a> {
111    head: Option<NonNull<Node<T>>>,
112    tail: Option<NonNull<Node<T>>>,
113    len: usize,
114    marker: PhantomData<&'a mut Node<T>>,
115}
116
117#[stable(feature = "collection_debug", since = "1.17.0")]
118impl<T: fmt::Debug> fmt::Debug for IterMut<'_, T> {
119    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
120        f.debug_tuple("IterMut")
121            .field(&*mem::ManuallyDrop::new(LinkedList {
122                head: self.head,
123                tail: self.tail,
124                len: self.len,
125                alloc: Global,
126                marker: PhantomData,
127            }))
128            .field(&self.len)
129            .finish()
130    }
131}
132
133/// An owning iterator over the elements of a `LinkedList`.
134///
135/// This `struct` is created by the [`into_iter`] method on [`LinkedList`]
136/// (provided by the [`IntoIterator`] trait). See its documentation for more.
137///
138/// [`into_iter`]: LinkedList::into_iter
139#[derive(Clone)]
140#[stable(feature = "rust1", since = "1.0.0")]
141pub struct IntoIter<
142    T,
143    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
144> {
145    list: LinkedList<T, A>,
146}
147
148#[stable(feature = "collection_debug", since = "1.17.0")]
149impl<T: fmt::Debug, A: Allocator> fmt::Debug for IntoIter<T, A> {
150    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
151        f.debug_tuple("IntoIter").field(&self.list).finish()
152    }
153}
154
155impl<T> Node<T> {
156    fn new(element: T) -> Self {
157        Node { next: None, prev: None, element }
158    }
159
160    fn into_element<A: Allocator>(self: Box<Self, A>) -> T {
161        self.element
162    }
163}
164
165// private methods
166impl<T, A: Allocator> LinkedList<T, A> {
167    /// Adds the given node to the front of the list.
168    ///
169    /// # Safety
170    /// `node` must point to a valid node that was boxed and leaked using the list's allocator.
171    /// This method takes ownership of the node, so the pointer should not be used again.
172    #[inline]
173    unsafe fn push_front_node(&mut self, node: NonNull<Node<T>>) {
174        // This method takes care not to create mutable references to whole nodes,
175        // to maintain validity of aliasing pointers into `element`.
176        unsafe {
177            (*node.as_ptr()).next = self.head;
178            (*node.as_ptr()).prev = None;
179            let node = Some(node);
180
181            match self.head {
182                None => self.tail = node,
183                // Not creating new mutable (unique!) references overlapping `element`.
184                Some(head) => (*head.as_ptr()).prev = node,
185            }
186
187            self.head = node;
188            self.len += 1;
189        }
190    }
191
192    /// Removes and returns the node at the front of the list.
193    #[inline]
194    fn pop_front_node(&mut self) -> Option<Box<Node<T>, &A>> {
195        // This method takes care not to create mutable references to whole nodes,
196        // to maintain validity of aliasing pointers into `element`.
197        self.head.map(|node| unsafe {
198            let node = Box::from_raw_in(node.as_ptr(), &self.alloc);
199            self.head = node.next;
200
201            match self.head {
202                None => self.tail = None,
203                // Not creating new mutable (unique!) references overlapping `element`.
204                Some(head) => (*head.as_ptr()).prev = None,
205            }
206
207            self.len -= 1;
208            node
209        })
210    }
211
212    /// Adds the given node to the back of the list.
213    ///
214    /// # Safety
215    /// `node` must point to a valid node that was boxed and leaked using the list's allocator.
216    /// This method takes ownership of the node, so the pointer should not be used again.
217    #[inline]
218    unsafe fn push_back_node(&mut self, node: NonNull<Node<T>>) {
219        // This method takes care not to create mutable references to whole nodes,
220        // to maintain validity of aliasing pointers into `element`.
221        unsafe {
222            (*node.as_ptr()).next = None;
223            (*node.as_ptr()).prev = self.tail;
224            let node = Some(node);
225
226            match self.tail {
227                None => self.head = node,
228                // Not creating new mutable (unique!) references overlapping `element`.
229                Some(tail) => (*tail.as_ptr()).next = node,
230            }
231
232            self.tail = node;
233            self.len += 1;
234        }
235    }
236
237    /// Removes and returns the node at the back of the list.
238    #[inline]
239    fn pop_back_node(&mut self) -> Option<Box<Node<T>, &A>> {
240        // This method takes care not to create mutable references to whole nodes,
241        // to maintain validity of aliasing pointers into `element`.
242        self.tail.map(|node| unsafe {
243            let node = Box::from_raw_in(node.as_ptr(), &self.alloc);
244            self.tail = node.prev;
245
246            match self.tail {
247                None => self.head = None,
248                // Not creating new mutable (unique!) references overlapping `element`.
249                Some(tail) => (*tail.as_ptr()).next = None,
250            }
251
252            self.len -= 1;
253            node
254        })
255    }
256
257    /// Unlinks the specified node from the current list.
258    ///
259    /// Warning: this will not check that the provided node belongs to the current list.
260    ///
261    /// This method takes care not to create mutable references to `element`, to
262    /// maintain validity of aliasing pointers.
263    #[inline]
264    unsafe fn unlink_node(&mut self, mut node: NonNull<Node<T>>) {
265        let node = unsafe { node.as_mut() }; // this one is ours now, we can create an &mut.
266
267        // Not creating new mutable (unique!) references overlapping `element`.
268        match node.prev {
269            Some(prev) => unsafe { (*prev.as_ptr()).next = node.next },
270            // this node is the head node
271            None => self.head = node.next,
272        };
273
274        match node.next {
275            Some(next) => unsafe { (*next.as_ptr()).prev = node.prev },
276            // this node is the tail node
277            None => self.tail = node.prev,
278        };
279
280        self.len -= 1;
281    }
282
283    /// Splices a series of nodes between two existing nodes.
284    ///
285    /// Warning: this will not check that the provided node belongs to the two existing lists.
286    #[inline]
287    unsafe fn splice_nodes(
288        &mut self,
289        existing_prev: Option<NonNull<Node<T>>>,
290        existing_next: Option<NonNull<Node<T>>>,
291        mut splice_start: NonNull<Node<T>>,
292        mut splice_end: NonNull<Node<T>>,
293        splice_length: usize,
294    ) {
295        // This method takes care not to create multiple mutable references to whole nodes at the same time,
296        // to maintain validity of aliasing pointers into `element`.
297        if let Some(mut existing_prev) = existing_prev {
298            unsafe {
299                existing_prev.as_mut().next = Some(splice_start);
300            }
301        } else {
302            self.head = Some(splice_start);
303        }
304        if let Some(mut existing_next) = existing_next {
305            unsafe {
306                existing_next.as_mut().prev = Some(splice_end);
307            }
308        } else {
309            self.tail = Some(splice_end);
310        }
311        unsafe {
312            splice_start.as_mut().prev = existing_prev;
313            splice_end.as_mut().next = existing_next;
314        }
315
316        self.len += splice_length;
317    }
318
319    /// Detaches all nodes from a linked list as a series of nodes.
320    #[inline]
321    fn detach_all_nodes(mut self) -> Option<(NonNull<Node<T>>, NonNull<Node<T>>, usize)> {
322        let head = self.head.take();
323        let tail = self.tail.take();
324        let len = mem::replace(&mut self.len, 0);
325        if let Some(head) = head {
326            // SAFETY: In a LinkedList, either both the head and tail are None because
327            // the list is empty, or both head and tail are Some because the list is populated.
328            // Since we have verified the head is Some, we are sure the tail is Some too.
329            let tail = unsafe { tail.unwrap_unchecked() };
330            Some((head, tail, len))
331        } else {
332            None
333        }
334    }
335
336    #[inline]
337    unsafe fn split_off_before_node(
338        &mut self,
339        split_node: Option<NonNull<Node<T>>>,
340        at: usize,
341    ) -> Self
342    where
343        A: Clone,
344    {
345        // The split node is the new head node of the second part
346        if let Some(mut split_node) = split_node {
347            let first_part_head;
348            let first_part_tail;
349            unsafe {
350                first_part_tail = split_node.as_mut().prev.take();
351            }
352            if let Some(mut tail) = first_part_tail {
353                unsafe {
354                    tail.as_mut().next = None;
355                }
356                first_part_head = self.head;
357            } else {
358                first_part_head = None;
359            }
360
361            let first_part = LinkedList {
362                head: first_part_head,
363                tail: first_part_tail,
364                len: at,
365                alloc: self.alloc.clone(),
366                marker: PhantomData,
367            };
368
369            // Fix the head ptr of the second part
370            self.head = Some(split_node);
371            self.len = self.len - at;
372
373            first_part
374        } else {
375            mem::replace(self, LinkedList::new_in(self.alloc.clone()))
376        }
377    }
378
379    #[inline]
380    unsafe fn split_off_after_node(
381        &mut self,
382        split_node: Option<NonNull<Node<T>>>,
383        at: usize,
384    ) -> Self
385    where
386        A: Clone,
387    {
388        // The split node is the new tail node of the first part and owns
389        // the head of the second part.
390        if let Some(mut split_node) = split_node {
391            let second_part_head;
392            let second_part_tail;
393            unsafe {
394                second_part_head = split_node.as_mut().next.take();
395            }
396            if let Some(mut head) = second_part_head {
397                unsafe {
398                    head.as_mut().prev = None;
399                }
400                second_part_tail = self.tail;
401            } else {
402                second_part_tail = None;
403            }
404
405            let second_part = LinkedList {
406                head: second_part_head,
407                tail: second_part_tail,
408                len: self.len - at,
409                alloc: self.alloc.clone(),
410                marker: PhantomData,
411            };
412
413            // Fix the tail ptr of the first part
414            self.tail = Some(split_node);
415            self.len = at;
416
417            second_part
418        } else {
419            mem::replace(self, LinkedList::new_in(self.alloc.clone()))
420        }
421    }
422}
423
424#[stable(feature = "rust1", since = "1.0.0")]
425impl<T> Default for LinkedList<T> {
426    /// Creates an empty `LinkedList<T>`.
427    #[inline]
428    fn default() -> Self {
429        Self::new()
430    }
431}
432
433impl<T> LinkedList<T> {
434    /// Creates an empty `LinkedList`.
435    ///
436    /// # Examples
437    ///
438    /// ```
439    /// use std::collections::LinkedList;
440    ///
441    /// let list: LinkedList<u32> = LinkedList::new();
442    /// ```
443    #[inline]
444    #[rustc_const_stable(feature = "const_linked_list_new", since = "1.39.0")]
445    #[stable(feature = "rust1", since = "1.0.0")]
446    #[must_use]
447    pub const fn new() -> Self {
448        LinkedList { head: None, tail: None, len: 0, alloc: Global, marker: PhantomData }
449    }
450
451    /// Moves all elements from `other` to the end of the list.
452    ///
453    /// This reuses all the nodes from `other` and moves them into `self`. After
454    /// this operation, `other` becomes empty.
455    ///
456    /// This operation should compute in *O*(1) time and *O*(1) memory.
457    ///
458    /// # Examples
459    ///
460    /// ```
461    /// use std::collections::LinkedList;
462    ///
463    /// let mut list1 = LinkedList::new();
464    /// list1.push_back('a');
465    ///
466    /// let mut list2 = LinkedList::new();
467    /// list2.push_back('b');
468    /// list2.push_back('c');
469    ///
470    /// list1.append(&mut list2);
471    ///
472    /// let mut iter = list1.iter();
473    /// assert_eq!(iter.next(), Some(&'a'));
474    /// assert_eq!(iter.next(), Some(&'b'));
475    /// assert_eq!(iter.next(), Some(&'c'));
476    /// assert!(iter.next().is_none());
477    ///
478    /// assert!(list2.is_empty());
479    /// ```
480    #[stable(feature = "rust1", since = "1.0.0")]
481    pub fn append(&mut self, other: &mut Self) {
482        match self.tail {
483            None => mem::swap(self, other),
484            Some(mut tail) => {
485                // `as_mut` is okay here because we have exclusive access to the entirety
486                // of both lists.
487                if let Some(mut other_head) = other.head.take() {
488                    unsafe {
489                        tail.as_mut().next = Some(other_head);
490                        other_head.as_mut().prev = Some(tail);
491                    }
492
493                    self.tail = other.tail.take();
494                    self.len += mem::replace(&mut other.len, 0);
495                }
496            }
497        }
498    }
499}
500
501impl<T, A: Allocator> LinkedList<T, A> {
502    /// Constructs an empty `LinkedList<T, A>`.
503    ///
504    /// # Examples
505    ///
506    /// ```
507    /// #![feature(allocator_api)]
508    ///
509    /// use std::alloc::System;
510    /// use std::collections::LinkedList;
511    ///
512    /// let list: LinkedList<u32, _> = LinkedList::new_in(System);
513    /// ```
514    #[inline]
515    #[unstable(feature = "allocator_api", issue = "32838")]
516    pub const fn new_in(alloc: A) -> Self {
517        LinkedList { head: None, tail: None, len: 0, alloc, marker: PhantomData }
518    }
519    /// Provides a forward iterator.
520    ///
521    /// # Examples
522    ///
523    /// ```
524    /// use std::collections::LinkedList;
525    ///
526    /// let mut list: LinkedList<u32> = LinkedList::new();
527    ///
528    /// list.push_back(0);
529    /// list.push_back(1);
530    /// list.push_back(2);
531    ///
532    /// let mut iter = list.iter();
533    /// assert_eq!(iter.next(), Some(&0));
534    /// assert_eq!(iter.next(), Some(&1));
535    /// assert_eq!(iter.next(), Some(&2));
536    /// assert_eq!(iter.next(), None);
537    /// ```
538    #[inline]
539    #[stable(feature = "rust1", since = "1.0.0")]
540    pub fn iter(&self) -> Iter<'_, T> {
541        Iter { head: self.head, tail: self.tail, len: self.len, marker: PhantomData }
542    }
543
544    /// Provides a forward iterator with mutable references.
545    ///
546    /// # Examples
547    ///
548    /// ```
549    /// use std::collections::LinkedList;
550    ///
551    /// let mut list: LinkedList<u32> = LinkedList::new();
552    ///
553    /// list.push_back(0);
554    /// list.push_back(1);
555    /// list.push_back(2);
556    ///
557    /// for element in list.iter_mut() {
558    ///     *element += 10;
559    /// }
560    ///
561    /// let mut iter = list.iter();
562    /// assert_eq!(iter.next(), Some(&10));
563    /// assert_eq!(iter.next(), Some(&11));
564    /// assert_eq!(iter.next(), Some(&12));
565    /// assert_eq!(iter.next(), None);
566    /// ```
567    #[inline]
568    #[stable(feature = "rust1", since = "1.0.0")]
569    pub fn iter_mut(&mut self) -> IterMut<'_, T> {
570        IterMut { head: self.head, tail: self.tail, len: self.len, marker: PhantomData }
571    }
572
573    /// Provides a cursor at the front element.
574    ///
575    /// The cursor is pointing to the "ghost" non-element if the list is empty.
576    #[inline]
577    #[must_use]
578    #[unstable(feature = "linked_list_cursors", issue = "58533")]
579    pub fn cursor_front(&self) -> Cursor<'_, T, A> {
580        Cursor { index: 0, current: self.head, list: self }
581    }
582
583    /// Provides a cursor with editing operations at the front element.
584    ///
585    /// The cursor is pointing to the "ghost" non-element if the list is empty.
586    #[inline]
587    #[must_use]
588    #[unstable(feature = "linked_list_cursors", issue = "58533")]
589    pub fn cursor_front_mut(&mut self) -> CursorMut<'_, T, A> {
590        CursorMut { index: 0, current: self.head, list: self }
591    }
592
593    /// Provides a cursor at the back element.
594    ///
595    /// The cursor is pointing to the "ghost" non-element if the list is empty.
596    #[inline]
597    #[must_use]
598    #[unstable(feature = "linked_list_cursors", issue = "58533")]
599    pub fn cursor_back(&self) -> Cursor<'_, T, A> {
600        Cursor { index: self.len.checked_sub(1).unwrap_or(0), current: self.tail, list: self }
601    }
602
603    /// Provides a cursor with editing operations at the back element.
604    ///
605    /// The cursor is pointing to the "ghost" non-element if the list is empty.
606    #[inline]
607    #[must_use]
608    #[unstable(feature = "linked_list_cursors", issue = "58533")]
609    pub fn cursor_back_mut(&mut self) -> CursorMut<'_, T, A> {
610        CursorMut { index: self.len.checked_sub(1).unwrap_or(0), current: self.tail, list: self }
611    }
612
613    /// Returns `true` if the `LinkedList` is empty.
614    ///
615    /// This operation should compute in *O*(1) time.
616    ///
617    /// # Examples
618    ///
619    /// ```
620    /// use std::collections::LinkedList;
621    ///
622    /// let mut dl = LinkedList::new();
623    /// assert!(dl.is_empty());
624    ///
625    /// dl.push_front("foo");
626    /// assert!(!dl.is_empty());
627    /// ```
628    #[inline]
629    #[must_use]
630    #[stable(feature = "rust1", since = "1.0.0")]
631    pub fn is_empty(&self) -> bool {
632        self.head.is_none()
633    }
634
635    /// Returns the length of the `LinkedList`.
636    ///
637    /// This operation should compute in *O*(1) time.
638    ///
639    /// # Examples
640    ///
641    /// ```
642    /// use std::collections::LinkedList;
643    ///
644    /// let mut dl = LinkedList::new();
645    ///
646    /// dl.push_front(2);
647    /// assert_eq!(dl.len(), 1);
648    ///
649    /// dl.push_front(1);
650    /// assert_eq!(dl.len(), 2);
651    ///
652    /// dl.push_back(3);
653    /// assert_eq!(dl.len(), 3);
654    /// ```
655    #[inline]
656    #[must_use]
657    #[stable(feature = "rust1", since = "1.0.0")]
658    #[rustc_confusables("length", "size")]
659    pub fn len(&self) -> usize {
660        self.len
661    }
662
663    /// Removes all elements from the `LinkedList`.
664    ///
665    /// This operation should compute in *O*(*n*) time.
666    ///
667    /// # Examples
668    ///
669    /// ```
670    /// use std::collections::LinkedList;
671    ///
672    /// let mut dl = LinkedList::new();
673    ///
674    /// dl.push_front(2);
675    /// dl.push_front(1);
676    /// assert_eq!(dl.len(), 2);
677    /// assert_eq!(dl.front(), Some(&1));
678    ///
679    /// dl.clear();
680    /// assert_eq!(dl.len(), 0);
681    /// assert_eq!(dl.front(), None);
682    /// ```
683    #[inline]
684    #[stable(feature = "rust1", since = "1.0.0")]
685    pub fn clear(&mut self) {
686        // We need to drop the nodes while keeping self.alloc
687        // We can do this by moving (head, tail, len) into a new list that borrows self.alloc
688        drop(LinkedList {
689            head: self.head.take(),
690            tail: self.tail.take(),
691            len: mem::take(&mut self.len),
692            alloc: &self.alloc,
693            marker: PhantomData,
694        });
695    }
696
697    /// Returns `true` if the `LinkedList` contains an element equal to the
698    /// given value.
699    ///
700    /// This operation should compute linearly in *O*(*n*) time.
701    ///
702    /// # Examples
703    ///
704    /// ```
705    /// use std::collections::LinkedList;
706    ///
707    /// let mut list: LinkedList<u32> = LinkedList::new();
708    ///
709    /// list.push_back(0);
710    /// list.push_back(1);
711    /// list.push_back(2);
712    ///
713    /// assert_eq!(list.contains(&0), true);
714    /// assert_eq!(list.contains(&10), false);
715    /// ```
716    #[stable(feature = "linked_list_contains", since = "1.12.0")]
717    pub fn contains(&self, x: &T) -> bool
718    where
719        T: PartialEq<T>,
720    {
721        self.iter().any(|e| e == x)
722    }
723
724    /// Provides a reference to the front element, or `None` if the list is
725    /// empty.
726    ///
727    /// This operation should compute in *O*(1) time.
728    ///
729    /// # Examples
730    ///
731    /// ```
732    /// use std::collections::LinkedList;
733    ///
734    /// let mut dl = LinkedList::new();
735    /// assert_eq!(dl.front(), None);
736    ///
737    /// dl.push_front(1);
738    /// assert_eq!(dl.front(), Some(&1));
739    /// ```
740    #[inline]
741    #[must_use]
742    #[stable(feature = "rust1", since = "1.0.0")]
743    #[rustc_confusables("first")]
744    pub fn front(&self) -> Option<&T> {
745        unsafe { self.head.as_ref().map(|node| &node.as_ref().element) }
746    }
747
748    /// Provides a mutable reference to the front element, or `None` if the list
749    /// is empty.
750    ///
751    /// This operation should compute in *O*(1) time.
752    ///
753    /// # Examples
754    ///
755    /// ```
756    /// use std::collections::LinkedList;
757    ///
758    /// let mut dl = LinkedList::new();
759    /// assert_eq!(dl.front(), None);
760    ///
761    /// dl.push_front(1);
762    /// assert_eq!(dl.front(), Some(&1));
763    ///
764    /// match dl.front_mut() {
765    ///     None => {},
766    ///     Some(x) => *x = 5,
767    /// }
768    /// assert_eq!(dl.front(), Some(&5));
769    /// ```
770    #[inline]
771    #[must_use]
772    #[stable(feature = "rust1", since = "1.0.0")]
773    pub fn front_mut(&mut self) -> Option<&mut T> {
774        unsafe { self.head.as_mut().map(|node| &mut node.as_mut().element) }
775    }
776
777    /// Provides a reference to the back element, or `None` if the list is
778    /// empty.
779    ///
780    /// This operation should compute in *O*(1) time.
781    ///
782    /// # Examples
783    ///
784    /// ```
785    /// use std::collections::LinkedList;
786    ///
787    /// let mut dl = LinkedList::new();
788    /// assert_eq!(dl.back(), None);
789    ///
790    /// dl.push_back(1);
791    /// assert_eq!(dl.back(), Some(&1));
792    /// ```
793    #[inline]
794    #[must_use]
795    #[stable(feature = "rust1", since = "1.0.0")]
796    pub fn back(&self) -> Option<&T> {
797        unsafe { self.tail.as_ref().map(|node| &node.as_ref().element) }
798    }
799
800    /// Provides a mutable reference to the back element, or `None` if the list
801    /// is empty.
802    ///
803    /// This operation should compute in *O*(1) time.
804    ///
805    /// # Examples
806    ///
807    /// ```
808    /// use std::collections::LinkedList;
809    ///
810    /// let mut dl = LinkedList::new();
811    /// assert_eq!(dl.back(), None);
812    ///
813    /// dl.push_back(1);
814    /// assert_eq!(dl.back(), Some(&1));
815    ///
816    /// match dl.back_mut() {
817    ///     None => {},
818    ///     Some(x) => *x = 5,
819    /// }
820    /// assert_eq!(dl.back(), Some(&5));
821    /// ```
822    #[inline]
823    #[stable(feature = "rust1", since = "1.0.0")]
824    pub fn back_mut(&mut self) -> Option<&mut T> {
825        unsafe { self.tail.as_mut().map(|node| &mut node.as_mut().element) }
826    }
827
828    /// Adds an element first in the list.
829    ///
830    /// This operation should compute in *O*(1) time.
831    ///
832    /// # Examples
833    ///
834    /// ```
835    /// use std::collections::LinkedList;
836    ///
837    /// let mut dl = LinkedList::new();
838    ///
839    /// dl.push_front(2);
840    /// assert_eq!(dl.front().unwrap(), &2);
841    ///
842    /// dl.push_front(1);
843    /// assert_eq!(dl.front().unwrap(), &1);
844    /// ```
845    #[stable(feature = "rust1", since = "1.0.0")]
846    pub fn push_front(&mut self, elt: T) {
847        let node = Box::new_in(Node::new(elt), &self.alloc);
848        let node_ptr = NonNull::from(Box::leak(node));
849        // SAFETY: node_ptr is a unique pointer to a node we boxed with self.alloc and leaked
850        unsafe {
851            self.push_front_node(node_ptr);
852        }
853    }
854
855    /// Removes the first element and returns it, or `None` if the list is
856    /// empty.
857    ///
858    /// This operation should compute in *O*(1) time.
859    ///
860    /// # Examples
861    ///
862    /// ```
863    /// use std::collections::LinkedList;
864    ///
865    /// let mut d = LinkedList::new();
866    /// assert_eq!(d.pop_front(), None);
867    ///
868    /// d.push_front(1);
869    /// d.push_front(3);
870    /// assert_eq!(d.pop_front(), Some(3));
871    /// assert_eq!(d.pop_front(), Some(1));
872    /// assert_eq!(d.pop_front(), None);
873    /// ```
874    #[stable(feature = "rust1", since = "1.0.0")]
875    pub fn pop_front(&mut self) -> Option<T> {
876        self.pop_front_node().map(Node::into_element)
877    }
878
879    /// Appends an element to the back of a list.
880    ///
881    /// This operation should compute in *O*(1) time.
882    ///
883    /// # Examples
884    ///
885    /// ```
886    /// use std::collections::LinkedList;
887    ///
888    /// let mut d = LinkedList::new();
889    /// d.push_back(1);
890    /// d.push_back(3);
891    /// assert_eq!(3, *d.back().unwrap());
892    /// ```
893    #[stable(feature = "rust1", since = "1.0.0")]
894    #[rustc_confusables("push", "append")]
895    pub fn push_back(&mut self, elt: T) {
896        let node = Box::new_in(Node::new(elt), &self.alloc);
897        let node_ptr = NonNull::from(Box::leak(node));
898        // SAFETY: node_ptr is a unique pointer to a node we boxed with self.alloc and leaked
899        unsafe {
900            self.push_back_node(node_ptr);
901        }
902    }
903
904    /// Removes the last element from a list and returns it, or `None` if
905    /// it is empty.
906    ///
907    /// This operation should compute in *O*(1) time.
908    ///
909    /// # Examples
910    ///
911    /// ```
912    /// use std::collections::LinkedList;
913    ///
914    /// let mut d = LinkedList::new();
915    /// assert_eq!(d.pop_back(), None);
916    /// d.push_back(1);
917    /// d.push_back(3);
918    /// assert_eq!(d.pop_back(), Some(3));
919    /// ```
920    #[stable(feature = "rust1", since = "1.0.0")]
921    pub fn pop_back(&mut self) -> Option<T> {
922        self.pop_back_node().map(Node::into_element)
923    }
924
925    /// Splits the list into two at the given index. Returns everything after the given index,
926    /// including the index.
927    ///
928    /// This operation should compute in *O*(*n*) time.
929    ///
930    /// # Panics
931    ///
932    /// Panics if `at > len`.
933    ///
934    /// # Examples
935    ///
936    /// ```
937    /// use std::collections::LinkedList;
938    ///
939    /// let mut d = LinkedList::new();
940    ///
941    /// d.push_front(1);
942    /// d.push_front(2);
943    /// d.push_front(3);
944    ///
945    /// let mut split = d.split_off(2);
946    ///
947    /// assert_eq!(split.pop_front(), Some(1));
948    /// assert_eq!(split.pop_front(), None);
949    /// ```
950    #[stable(feature = "rust1", since = "1.0.0")]
951    pub fn split_off(&mut self, at: usize) -> LinkedList<T, A>
952    where
953        A: Clone,
954    {
955        let len = self.len();
956        assert!(at <= len, "Cannot split off at a nonexistent index");
957        if at == 0 {
958            return mem::replace(self, Self::new_in(self.alloc.clone()));
959        } else if at == len {
960            return Self::new_in(self.alloc.clone());
961        }
962
963        // Below, we iterate towards the `i-1`th node, either from the start or the end,
964        // depending on which would be faster.
965        let split_node = if at - 1 <= len - 1 - (at - 1) {
966            let mut iter = self.iter_mut();
967            // instead of skipping using .skip() (which creates a new struct),
968            // we skip manually so we can access the head field without
969            // depending on implementation details of Skip
970            for _ in 0..at - 1 {
971                iter.next();
972            }
973            iter.head
974        } else {
975            // better off starting from the end
976            let mut iter = self.iter_mut();
977            for _ in 0..len - 1 - (at - 1) {
978                iter.next_back();
979            }
980            iter.tail
981        };
982        unsafe { self.split_off_after_node(split_node, at) }
983    }
984
985    /// Removes the element at the given index and returns it.
986    ///
987    /// This operation should compute in *O*(*n*) time.
988    ///
989    /// # Panics
990    /// Panics if at >= len
991    ///
992    /// # Examples
993    ///
994    /// ```
995    /// #![feature(linked_list_remove)]
996    /// use std::collections::LinkedList;
997    ///
998    /// let mut d = LinkedList::new();
999    ///
1000    /// d.push_front(1);
1001    /// d.push_front(2);
1002    /// d.push_front(3);
1003    ///
1004    /// assert_eq!(d.remove(1), 2);
1005    /// assert_eq!(d.remove(0), 3);
1006    /// assert_eq!(d.remove(0), 1);
1007    /// ```
1008    #[unstable(feature = "linked_list_remove", issue = "69210")]
1009    #[rustc_confusables("delete", "take")]
1010    pub fn remove(&mut self, at: usize) -> T {
1011        let len = self.len();
1012        assert!(at < len, "Cannot remove at an index outside of the list bounds");
1013
1014        // Below, we iterate towards the node at the given index, either from
1015        // the start or the end, depending on which would be faster.
1016        let offset_from_end = len - at - 1;
1017        if at <= offset_from_end {
1018            let mut cursor = self.cursor_front_mut();
1019            for _ in 0..at {
1020                cursor.move_next();
1021            }
1022            cursor.remove_current().unwrap()
1023        } else {
1024            let mut cursor = self.cursor_back_mut();
1025            for _ in 0..offset_from_end {
1026                cursor.move_prev();
1027            }
1028            cursor.remove_current().unwrap()
1029        }
1030    }
1031
1032    /// Retains only the elements specified by the predicate.
1033    ///
1034    /// In other words, remove all elements `e` for which `f(&mut e)` returns false.
1035    /// This method operates in place, visiting each element exactly once in the
1036    /// original order, and preserves the order of the retained elements.
1037    ///
1038    /// # Examples
1039    ///
1040    /// ```
1041    /// #![feature(linked_list_retain)]
1042    /// use std::collections::LinkedList;
1043    ///
1044    /// let mut d = LinkedList::new();
1045    ///
1046    /// d.push_front(1);
1047    /// d.push_front(2);
1048    /// d.push_front(3);
1049    ///
1050    /// d.retain(|&mut x| x % 2 == 0);
1051    ///
1052    /// assert_eq!(d.pop_front(), Some(2));
1053    /// assert_eq!(d.pop_front(), None);
1054    /// ```
1055    ///
1056    /// Because the elements are visited exactly once in the original order,
1057    /// external state may be used to decide which elements to keep.
1058    ///
1059    /// ```
1060    /// #![feature(linked_list_retain)]
1061    /// use std::collections::LinkedList;
1062    ///
1063    /// let mut d = LinkedList::new();
1064    ///
1065    /// d.push_front(1);
1066    /// d.push_front(2);
1067    /// d.push_front(3);
1068    ///
1069    /// let keep = [false, true, false];
1070    /// let mut iter = keep.iter();
1071    /// d.retain(|_| *iter.next().unwrap());
1072    /// assert_eq!(d.pop_front(), Some(2));
1073    /// assert_eq!(d.pop_front(), None);
1074    /// ```
1075    #[unstable(feature = "linked_list_retain", issue = "114135")]
1076    pub fn retain<F>(&mut self, mut f: F)
1077    where
1078        F: FnMut(&mut T) -> bool,
1079    {
1080        let mut cursor = self.cursor_front_mut();
1081        while let Some(node) = cursor.current() {
1082            if !f(node) {
1083                cursor.remove_current().unwrap();
1084            } else {
1085                cursor.move_next();
1086            }
1087        }
1088    }
1089
1090    /// Creates an iterator which uses a closure to determine if an element should be removed.
1091    ///
1092    /// If the closure returns `true`, the element is removed from the list and
1093    /// yielded. If the closure returns `false`, or panics, the element remains
1094    /// in the list and will not be yielded.
1095    ///
1096    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
1097    /// or the iteration short-circuits, then the remaining elements will be retained.
1098    /// Use `extract_if().for_each(drop)` if you do not need the returned iterator.
1099    ///
1100    /// The iterator also lets you mutate the value of each element in the
1101    /// closure, regardless of whether you choose to keep or remove it.
1102    ///
1103    /// # Examples
1104    ///
1105    /// Splitting a list into even and odd values, reusing the original list:
1106    ///
1107    /// ```
1108    /// use std::collections::LinkedList;
1109    ///
1110    /// let mut numbers: LinkedList<u32> = LinkedList::new();
1111    /// numbers.extend(&[1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15]);
1112    ///
1113    /// let evens = numbers.extract_if(|x| *x % 2 == 0).collect::<LinkedList<_>>();
1114    /// let odds = numbers;
1115    ///
1116    /// assert_eq!(evens.into_iter().collect::<Vec<_>>(), vec![2, 4, 6, 8, 14]);
1117    /// assert_eq!(odds.into_iter().collect::<Vec<_>>(), vec![1, 3, 5, 9, 11, 13, 15]);
1118    /// ```
1119    #[stable(feature = "extract_if", since = "1.87.0")]
1120    pub fn extract_if<F>(&mut self, filter: F) -> ExtractIf<'_, T, F, A>
1121    where
1122        F: FnMut(&mut T) -> bool,
1123    {
1124        // avoid borrow issues.
1125        let it = self.head;
1126        let old_len = self.len;
1127
1128        ExtractIf { list: self, it, pred: filter, idx: 0, old_len }
1129    }
1130}
1131
1132#[stable(feature = "rust1", since = "1.0.0")]
1133unsafe impl<#[may_dangle] T, A: Allocator> Drop for LinkedList<T, A> {
1134    fn drop(&mut self) {
1135        struct DropGuard<'a, T, A: Allocator>(&'a mut LinkedList<T, A>);
1136
1137        impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> {
1138            fn drop(&mut self) {
1139                // Continue the same loop we do below. This only runs when a destructor has
1140                // panicked. If another one panics this will abort.
1141                while self.0.pop_front_node().is_some() {}
1142            }
1143        }
1144
1145        // Wrap self so that if a destructor panics, we can try to keep looping
1146        let guard = DropGuard(self);
1147        while guard.0.pop_front_node().is_some() {}
1148        mem::forget(guard);
1149    }
1150}
1151
1152#[stable(feature = "rust1", since = "1.0.0")]
1153impl<'a, T> Iterator for Iter<'a, T> {
1154    type Item = &'a T;
1155
1156    #[inline]
1157    fn next(&mut self) -> Option<&'a T> {
1158        if self.len == 0 {
1159            None
1160        } else {
1161            self.head.map(|node| unsafe {
1162                // Need an unbound lifetime to get 'a
1163                let node = &*node.as_ptr();
1164                self.len -= 1;
1165                self.head = node.next;
1166                &node.element
1167            })
1168        }
1169    }
1170
1171    #[inline]
1172    fn size_hint(&self) -> (usize, Option<usize>) {
1173        (self.len, Some(self.len))
1174    }
1175
1176    #[inline]
1177    fn last(mut self) -> Option<&'a T> {
1178        self.next_back()
1179    }
1180}
1181
1182#[stable(feature = "rust1", since = "1.0.0")]
1183impl<'a, T> DoubleEndedIterator for Iter<'a, T> {
1184    #[inline]
1185    fn next_back(&mut self) -> Option<&'a T> {
1186        if self.len == 0 {
1187            None
1188        } else {
1189            self.tail.map(|node| unsafe {
1190                // Need an unbound lifetime to get 'a
1191                let node = &*node.as_ptr();
1192                self.len -= 1;
1193                self.tail = node.prev;
1194                &node.element
1195            })
1196        }
1197    }
1198}
1199
1200#[stable(feature = "rust1", since = "1.0.0")]
1201impl<T> ExactSizeIterator for Iter<'_, T> {}
1202
1203#[stable(feature = "fused", since = "1.26.0")]
1204impl<T> FusedIterator for Iter<'_, T> {}
1205
1206#[stable(feature = "default_iters", since = "1.70.0")]
1207impl<T> Default for Iter<'_, T> {
1208    /// Creates an empty `linked_list::Iter`.
1209    ///
1210    /// ```
1211    /// # use std::collections::linked_list;
1212    /// let iter: linked_list::Iter<'_, u8> = Default::default();
1213    /// assert_eq!(iter.len(), 0);
1214    /// ```
1215    fn default() -> Self {
1216        Iter { head: None, tail: None, len: 0, marker: Default::default() }
1217    }
1218}
1219
1220#[stable(feature = "rust1", since = "1.0.0")]
1221impl<'a, T> Iterator for IterMut<'a, T> {
1222    type Item = &'a mut T;
1223
1224    #[inline]
1225    fn next(&mut self) -> Option<&'a mut T> {
1226        if self.len == 0 {
1227            None
1228        } else {
1229            self.head.map(|node| unsafe {
1230                // Need an unbound lifetime to get 'a
1231                let node = &mut *node.as_ptr();
1232                self.len -= 1;
1233                self.head = node.next;
1234                &mut node.element
1235            })
1236        }
1237    }
1238
1239    #[inline]
1240    fn size_hint(&self) -> (usize, Option<usize>) {
1241        (self.len, Some(self.len))
1242    }
1243
1244    #[inline]
1245    fn last(mut self) -> Option<&'a mut T> {
1246        self.next_back()
1247    }
1248}
1249
1250#[stable(feature = "rust1", since = "1.0.0")]
1251impl<'a, T> DoubleEndedIterator for IterMut<'a, T> {
1252    #[inline]
1253    fn next_back(&mut self) -> Option<&'a mut T> {
1254        if self.len == 0 {
1255            None
1256        } else {
1257            self.tail.map(|node| unsafe {
1258                // Need an unbound lifetime to get 'a
1259                let node = &mut *node.as_ptr();
1260                self.len -= 1;
1261                self.tail = node.prev;
1262                &mut node.element
1263            })
1264        }
1265    }
1266}
1267
1268#[stable(feature = "rust1", since = "1.0.0")]
1269impl<T> ExactSizeIterator for IterMut<'_, T> {}
1270
1271#[stable(feature = "fused", since = "1.26.0")]
1272impl<T> FusedIterator for IterMut<'_, T> {}
1273
1274#[stable(feature = "default_iters", since = "1.70.0")]
1275impl<T> Default for IterMut<'_, T> {
1276    fn default() -> Self {
1277        IterMut { head: None, tail: None, len: 0, marker: Default::default() }
1278    }
1279}
1280
1281/// A cursor over a `LinkedList`.
1282///
1283/// A `Cursor` is like an iterator, except that it can freely seek back-and-forth.
1284///
1285/// Cursors always rest between two elements in the list, and index in a logically circular way.
1286/// To accommodate this, there is a "ghost" non-element that yields `None` between the head and
1287/// tail of the list.
1288///
1289/// When created, cursors start at the front of the list, or the "ghost" non-element if the list is empty.
1290#[unstable(feature = "linked_list_cursors", issue = "58533")]
1291pub struct Cursor<
1292    'a,
1293    T: 'a,
1294    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
1295> {
1296    index: usize,
1297    current: Option<NonNull<Node<T>>>,
1298    list: &'a LinkedList<T, A>,
1299}
1300
1301#[unstable(feature = "linked_list_cursors", issue = "58533")]
1302impl<T, A: Allocator> Clone for Cursor<'_, T, A> {
1303    fn clone(&self) -> Self {
1304        let Cursor { index, current, list } = *self;
1305        Cursor { index, current, list }
1306    }
1307}
1308
1309#[unstable(feature = "linked_list_cursors", issue = "58533")]
1310impl<T: fmt::Debug, A: Allocator> fmt::Debug for Cursor<'_, T, A> {
1311    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1312        f.debug_tuple("Cursor").field(&self.list).field(&self.index()).finish()
1313    }
1314}
1315
1316/// A cursor over a `LinkedList` with editing operations.
1317///
1318/// A `Cursor` is like an iterator, except that it can freely seek back-and-forth, and can
1319/// safely mutate the list during iteration. This is because the lifetime of its yielded
1320/// references is tied to its own lifetime, instead of just the underlying list. This means
1321/// cursors cannot yield multiple elements at once.
1322///
1323/// Cursors always rest between two elements in the list, and index in a logically circular way.
1324/// To accommodate this, there is a "ghost" non-element that yields `None` between the head and
1325/// tail of the list.
1326#[unstable(feature = "linked_list_cursors", issue = "58533")]
1327pub struct CursorMut<
1328    'a,
1329    T: 'a,
1330    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
1331> {
1332    index: usize,
1333    current: Option<NonNull<Node<T>>>,
1334    list: &'a mut LinkedList<T, A>,
1335}
1336
1337#[unstable(feature = "linked_list_cursors", issue = "58533")]
1338impl<T: fmt::Debug, A: Allocator> fmt::Debug for CursorMut<'_, T, A> {
1339    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1340        f.debug_tuple("CursorMut").field(&self.list).field(&self.index()).finish()
1341    }
1342}
1343
1344impl<'a, T, A: Allocator> Cursor<'a, T, A> {
1345    /// Returns the cursor position index within the `LinkedList`.
1346    ///
1347    /// This returns `None` if the cursor is currently pointing to the
1348    /// "ghost" non-element.
1349    #[must_use]
1350    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1351    pub fn index(&self) -> Option<usize> {
1352        let _ = self.current?;
1353        Some(self.index)
1354    }
1355
1356    /// Moves the cursor to the next element of the `LinkedList`.
1357    ///
1358    /// If the cursor is pointing to the "ghost" non-element then this will move it to
1359    /// the first element of the `LinkedList`. If it is pointing to the last
1360    /// element of the `LinkedList` then this will move it to the "ghost" non-element.
1361    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1362    pub fn move_next(&mut self) {
1363        match self.current.take() {
1364            // We had no current element; the cursor was sitting at the start position
1365            // Next element should be the head of the list
1366            None => {
1367                self.current = self.list.head;
1368                self.index = 0;
1369            }
1370            // We had a previous element, so let's go to its next
1371            Some(current) => unsafe {
1372                self.current = current.as_ref().next;
1373                self.index += 1;
1374            },
1375        }
1376    }
1377
1378    /// Moves the cursor to the previous element of the `LinkedList`.
1379    ///
1380    /// If the cursor is pointing to the "ghost" non-element then this will move it to
1381    /// the last element of the `LinkedList`. If it is pointing to the first
1382    /// element of the `LinkedList` then this will move it to the "ghost" non-element.
1383    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1384    pub fn move_prev(&mut self) {
1385        match self.current.take() {
1386            // No current. We're at the start of the list. Yield None and jump to the end.
1387            None => {
1388                self.current = self.list.tail;
1389                self.index = self.list.len().checked_sub(1).unwrap_or(0);
1390            }
1391            // Have a prev. Yield it and go to the previous element.
1392            Some(current) => unsafe {
1393                self.current = current.as_ref().prev;
1394                self.index = self.index.checked_sub(1).unwrap_or_else(|| self.list.len());
1395            },
1396        }
1397    }
1398
1399    /// Returns a reference to the element that the cursor is currently
1400    /// pointing to.
1401    ///
1402    /// This returns `None` if the cursor is currently pointing to the
1403    /// "ghost" non-element.
1404    #[must_use]
1405    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1406    pub fn current(&self) -> Option<&'a T> {
1407        unsafe { self.current.map(|current| &(*current.as_ptr()).element) }
1408    }
1409
1410    /// Returns a reference to the next element.
1411    ///
1412    /// If the cursor is pointing to the "ghost" non-element then this returns
1413    /// the first element of the `LinkedList`. If it is pointing to the last
1414    /// element of the `LinkedList` then this returns `None`.
1415    #[must_use]
1416    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1417    pub fn peek_next(&self) -> Option<&'a T> {
1418        unsafe {
1419            let next = match self.current {
1420                None => self.list.head,
1421                Some(current) => current.as_ref().next,
1422            };
1423            next.map(|next| &(*next.as_ptr()).element)
1424        }
1425    }
1426
1427    /// Returns a reference to the previous element.
1428    ///
1429    /// If the cursor is pointing to the "ghost" non-element then this returns
1430    /// the last element of the `LinkedList`. If it is pointing to the first
1431    /// element of the `LinkedList` then this returns `None`.
1432    #[must_use]
1433    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1434    pub fn peek_prev(&self) -> Option<&'a T> {
1435        unsafe {
1436            let prev = match self.current {
1437                None => self.list.tail,
1438                Some(current) => current.as_ref().prev,
1439            };
1440            prev.map(|prev| &(*prev.as_ptr()).element)
1441        }
1442    }
1443
1444    /// Provides a reference to the front element of the cursor's parent list,
1445    /// or None if the list is empty.
1446    #[must_use]
1447    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1448    #[rustc_confusables("first")]
1449    pub fn front(&self) -> Option<&'a T> {
1450        self.list.front()
1451    }
1452
1453    /// Provides a reference to the back element of the cursor's parent list,
1454    /// or None if the list is empty.
1455    #[must_use]
1456    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1457    #[rustc_confusables("last")]
1458    pub fn back(&self) -> Option<&'a T> {
1459        self.list.back()
1460    }
1461
1462    /// Provides a reference to the cursor's parent list.
1463    #[must_use]
1464    #[inline(always)]
1465    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1466    pub fn as_list(&self) -> &'a LinkedList<T, A> {
1467        self.list
1468    }
1469}
1470
1471impl<'a, T, A: Allocator> CursorMut<'a, T, A> {
1472    /// Returns the cursor position index within the `LinkedList`.
1473    ///
1474    /// This returns `None` if the cursor is currently pointing to the
1475    /// "ghost" non-element.
1476    #[must_use]
1477    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1478    pub fn index(&self) -> Option<usize> {
1479        let _ = self.current?;
1480        Some(self.index)
1481    }
1482
1483    /// Moves the cursor to the next element of the `LinkedList`.
1484    ///
1485    /// If the cursor is pointing to the "ghost" non-element then this will move it to
1486    /// the first element of the `LinkedList`. If it is pointing to the last
1487    /// element of the `LinkedList` then this will move it to the "ghost" non-element.
1488    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1489    pub fn move_next(&mut self) {
1490        match self.current.take() {
1491            // We had no current element; the cursor was sitting at the start position
1492            // Next element should be the head of the list
1493            None => {
1494                self.current = self.list.head;
1495                self.index = 0;
1496            }
1497            // We had a previous element, so let's go to its next
1498            Some(current) => unsafe {
1499                self.current = current.as_ref().next;
1500                self.index += 1;
1501            },
1502        }
1503    }
1504
1505    /// Moves the cursor to the previous element of the `LinkedList`.
1506    ///
1507    /// If the cursor is pointing to the "ghost" non-element then this will move it to
1508    /// the last element of the `LinkedList`. If it is pointing to the first
1509    /// element of the `LinkedList` then this will move it to the "ghost" non-element.
1510    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1511    pub fn move_prev(&mut self) {
1512        match self.current.take() {
1513            // No current. We're at the start of the list. Yield None and jump to the end.
1514            None => {
1515                self.current = self.list.tail;
1516                self.index = self.list.len().checked_sub(1).unwrap_or(0);
1517            }
1518            // Have a prev. Yield it and go to the previous element.
1519            Some(current) => unsafe {
1520                self.current = current.as_ref().prev;
1521                self.index = self.index.checked_sub(1).unwrap_or_else(|| self.list.len());
1522            },
1523        }
1524    }
1525
1526    /// Returns a reference to the element that the cursor is currently
1527    /// pointing to.
1528    ///
1529    /// This returns `None` if the cursor is currently pointing to the
1530    /// "ghost" non-element.
1531    #[must_use]
1532    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1533    pub fn current(&mut self) -> Option<&mut T> {
1534        unsafe { self.current.map(|current| &mut (*current.as_ptr()).element) }
1535    }
1536
1537    /// Returns a reference to the next element.
1538    ///
1539    /// If the cursor is pointing to the "ghost" non-element then this returns
1540    /// the first element of the `LinkedList`. If it is pointing to the last
1541    /// element of the `LinkedList` then this returns `None`.
1542    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1543    pub fn peek_next(&mut self) -> Option<&mut T> {
1544        unsafe {
1545            let next = match self.current {
1546                None => self.list.head,
1547                Some(current) => current.as_ref().next,
1548            };
1549            next.map(|next| &mut (*next.as_ptr()).element)
1550        }
1551    }
1552
1553    /// Returns a reference to the previous element.
1554    ///
1555    /// If the cursor is pointing to the "ghost" non-element then this returns
1556    /// the last element of the `LinkedList`. If it is pointing to the first
1557    /// element of the `LinkedList` then this returns `None`.
1558    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1559    pub fn peek_prev(&mut self) -> Option<&mut T> {
1560        unsafe {
1561            let prev = match self.current {
1562                None => self.list.tail,
1563                Some(current) => current.as_ref().prev,
1564            };
1565            prev.map(|prev| &mut (*prev.as_ptr()).element)
1566        }
1567    }
1568
1569    /// Returns a read-only cursor pointing to the current element.
1570    ///
1571    /// The lifetime of the returned `Cursor` is bound to that of the
1572    /// `CursorMut`, which means it cannot outlive the `CursorMut` and that the
1573    /// `CursorMut` is frozen for the lifetime of the `Cursor`.
1574    #[must_use]
1575    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1576    pub fn as_cursor(&self) -> Cursor<'_, T, A> {
1577        Cursor { list: self.list, current: self.current, index: self.index }
1578    }
1579
1580    /// Provides a read-only reference to the cursor's parent list.
1581    ///
1582    /// The lifetime of the returned reference is bound to that of the
1583    /// `CursorMut`, which means it cannot outlive the `CursorMut` and that the
1584    /// `CursorMut` is frozen for the lifetime of the reference.
1585    #[must_use]
1586    #[inline(always)]
1587    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1588    pub fn as_list(&self) -> &LinkedList<T, A> {
1589        self.list
1590    }
1591}
1592
1593// Now the list editing operations
1594
1595impl<'a, T> CursorMut<'a, T> {
1596    /// Inserts the elements from the given `LinkedList` after the current one.
1597    ///
1598    /// If the cursor is pointing at the "ghost" non-element then the new elements are
1599    /// inserted at the start of the `LinkedList`.
1600    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1601    pub fn splice_after(&mut self, list: LinkedList<T>) {
1602        unsafe {
1603            let (splice_head, splice_tail, splice_len) = match list.detach_all_nodes() {
1604                Some(parts) => parts,
1605                _ => return,
1606            };
1607            let node_next = match self.current {
1608                None => self.list.head,
1609                Some(node) => node.as_ref().next,
1610            };
1611            self.list.splice_nodes(self.current, node_next, splice_head, splice_tail, splice_len);
1612            if self.current.is_none() {
1613                // The "ghost" non-element's index has changed.
1614                self.index = self.list.len;
1615            }
1616        }
1617    }
1618
1619    /// Inserts the elements from the given `LinkedList` before the current one.
1620    ///
1621    /// If the cursor is pointing at the "ghost" non-element then the new elements are
1622    /// inserted at the end of the `LinkedList`.
1623    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1624    pub fn splice_before(&mut self, list: LinkedList<T>) {
1625        unsafe {
1626            let (splice_head, splice_tail, splice_len) = match list.detach_all_nodes() {
1627                Some(parts) => parts,
1628                _ => return,
1629            };
1630            let node_prev = match self.current {
1631                None => self.list.tail,
1632                Some(node) => node.as_ref().prev,
1633            };
1634            self.list.splice_nodes(node_prev, self.current, splice_head, splice_tail, splice_len);
1635            self.index += splice_len;
1636        }
1637    }
1638}
1639
1640impl<'a, T, A: Allocator> CursorMut<'a, T, A> {
1641    /// Inserts a new element into the `LinkedList` after the current one.
1642    ///
1643    /// If the cursor is pointing at the "ghost" non-element then the new element is
1644    /// inserted at the front of the `LinkedList`.
1645    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1646    pub fn insert_after(&mut self, item: T) {
1647        unsafe {
1648            let spliced_node = Box::leak(Box::new_in(Node::new(item), &self.list.alloc)).into();
1649            let node_next = match self.current {
1650                None => self.list.head,
1651                Some(node) => node.as_ref().next,
1652            };
1653            self.list.splice_nodes(self.current, node_next, spliced_node, spliced_node, 1);
1654            if self.current.is_none() {
1655                // The "ghost" non-element's index has changed.
1656                self.index = self.list.len;
1657            }
1658        }
1659    }
1660
1661    /// Inserts a new element into the `LinkedList` before the current one.
1662    ///
1663    /// If the cursor is pointing at the "ghost" non-element then the new element is
1664    /// inserted at the end of the `LinkedList`.
1665    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1666    pub fn insert_before(&mut self, item: T) {
1667        unsafe {
1668            let spliced_node = Box::leak(Box::new_in(Node::new(item), &self.list.alloc)).into();
1669            let node_prev = match self.current {
1670                None => self.list.tail,
1671                Some(node) => node.as_ref().prev,
1672            };
1673            self.list.splice_nodes(node_prev, self.current, spliced_node, spliced_node, 1);
1674            self.index += 1;
1675        }
1676    }
1677
1678    /// Removes the current element from the `LinkedList`.
1679    ///
1680    /// The element that was removed is returned, and the cursor is
1681    /// moved to point to the next element in the `LinkedList`.
1682    ///
1683    /// If the cursor is currently pointing to the "ghost" non-element then no element
1684    /// is removed and `None` is returned.
1685    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1686    pub fn remove_current(&mut self) -> Option<T> {
1687        let unlinked_node = self.current?;
1688        unsafe {
1689            self.current = unlinked_node.as_ref().next;
1690            self.list.unlink_node(unlinked_node);
1691            let unlinked_node = Box::from_raw_in(unlinked_node.as_ptr(), &self.list.alloc);
1692            Some(unlinked_node.element)
1693        }
1694    }
1695
1696    /// Removes the current element from the `LinkedList` without deallocating the list node.
1697    ///
1698    /// The node that was removed is returned as a new `LinkedList` containing only this node.
1699    /// The cursor is moved to point to the next element in the current `LinkedList`.
1700    ///
1701    /// If the cursor is currently pointing to the "ghost" non-element then no element
1702    /// is removed and `None` is returned.
1703    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1704    pub fn remove_current_as_list(&mut self) -> Option<LinkedList<T, A>>
1705    where
1706        A: Clone,
1707    {
1708        let mut unlinked_node = self.current?;
1709        unsafe {
1710            self.current = unlinked_node.as_ref().next;
1711            self.list.unlink_node(unlinked_node);
1712
1713            unlinked_node.as_mut().prev = None;
1714            unlinked_node.as_mut().next = None;
1715            Some(LinkedList {
1716                head: Some(unlinked_node),
1717                tail: Some(unlinked_node),
1718                len: 1,
1719                alloc: self.list.alloc.clone(),
1720                marker: PhantomData,
1721            })
1722        }
1723    }
1724
1725    /// Splits the list into two after the current element. This will return a
1726    /// new list consisting of everything after the cursor, with the original
1727    /// list retaining everything before.
1728    ///
1729    /// If the cursor is pointing at the "ghost" non-element then the entire contents
1730    /// of the `LinkedList` are moved.
1731    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1732    pub fn split_after(&mut self) -> LinkedList<T, A>
1733    where
1734        A: Clone,
1735    {
1736        let split_off_idx = if self.index == self.list.len { 0 } else { self.index + 1 };
1737        if self.index == self.list.len {
1738            // The "ghost" non-element's index has changed to 0.
1739            self.index = 0;
1740        }
1741        unsafe { self.list.split_off_after_node(self.current, split_off_idx) }
1742    }
1743
1744    /// Splits the list into two before the current element. This will return a
1745    /// new list consisting of everything before the cursor, with the original
1746    /// list retaining everything after.
1747    ///
1748    /// If the cursor is pointing at the "ghost" non-element then the entire contents
1749    /// of the `LinkedList` are moved.
1750    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1751    pub fn split_before(&mut self) -> LinkedList<T, A>
1752    where
1753        A: Clone,
1754    {
1755        let split_off_idx = self.index;
1756        self.index = 0;
1757        unsafe { self.list.split_off_before_node(self.current, split_off_idx) }
1758    }
1759
1760    /// Appends an element to the front of the cursor's parent list. The node
1761    /// that the cursor points to is unchanged, even if it is the "ghost" node.
1762    ///
1763    /// This operation should compute in *O*(1) time.
1764    // `push_front` continues to point to "ghost" when it adds a node to mimic
1765    // the behavior of `insert_before` on an empty list.
1766    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1767    pub fn push_front(&mut self, elt: T) {
1768        // Safety: We know that `push_front` does not change the position in
1769        // memory of other nodes. This ensures that `self.current` remains
1770        // valid.
1771        self.list.push_front(elt);
1772        self.index += 1;
1773    }
1774
1775    /// Appends an element to the back of the cursor's parent list. The node
1776    /// that the cursor points to is unchanged, even if it is the "ghost" node.
1777    ///
1778    /// This operation should compute in *O*(1) time.
1779    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1780    #[rustc_confusables("push", "append")]
1781    pub fn push_back(&mut self, elt: T) {
1782        // Safety: We know that `push_back` does not change the position in
1783        // memory of other nodes. This ensures that `self.current` remains
1784        // valid.
1785        self.list.push_back(elt);
1786        if self.current().is_none() {
1787            // The index of "ghost" is the length of the list, so we just need
1788            // to increment self.index to reflect the new length of the list.
1789            self.index += 1;
1790        }
1791    }
1792
1793    /// Removes the first element from the cursor's parent list and returns it,
1794    /// or None if the list is empty. The element the cursor points to remains
1795    /// unchanged, unless it was pointing to the front element. In that case, it
1796    /// points to the new front element.
1797    ///
1798    /// This operation should compute in *O*(1) time.
1799    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1800    pub fn pop_front(&mut self) -> Option<T> {
1801        // We can't check if current is empty, we must check the list directly.
1802        // It is possible for `self.current == None` and the list to be
1803        // non-empty.
1804        if self.list.is_empty() {
1805            None
1806        } else {
1807            // We can't point to the node that we pop. Copying the behavior of
1808            // `remove_current`, we move on to the next node in the sequence.
1809            // If the list is of length 1 then we end pointing to the "ghost"
1810            // node at index 0, which is expected.
1811            if self.list.head == self.current {
1812                self.move_next();
1813            } else {
1814                self.index -= 1;
1815            }
1816            self.list.pop_front()
1817        }
1818    }
1819
1820    /// Removes the last element from the cursor's parent list and returns it,
1821    /// or None if the list is empty. The element the cursor points to remains
1822    /// unchanged, unless it was pointing to the back element. In that case, it
1823    /// points to the "ghost" element.
1824    ///
1825    /// This operation should compute in *O*(1) time.
1826    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1827    #[rustc_confusables("pop")]
1828    pub fn pop_back(&mut self) -> Option<T> {
1829        if self.list.is_empty() {
1830            None
1831        } else {
1832            if self.list.tail == self.current {
1833                // The index now reflects the length of the list. It was the
1834                // length of the list minus 1, but now the list is 1 smaller. No
1835                // change is needed for `index`.
1836                self.current = None;
1837            } else if self.current.is_none() {
1838                self.index = self.list.len - 1;
1839            }
1840            self.list.pop_back()
1841        }
1842    }
1843
1844    /// Provides a reference to the front element of the cursor's parent list,
1845    /// or None if the list is empty.
1846    #[must_use]
1847    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1848    #[rustc_confusables("first")]
1849    pub fn front(&self) -> Option<&T> {
1850        self.list.front()
1851    }
1852
1853    /// Provides a mutable reference to the front element of the cursor's
1854    /// parent list, or None if the list is empty.
1855    #[must_use]
1856    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1857    pub fn front_mut(&mut self) -> Option<&mut T> {
1858        self.list.front_mut()
1859    }
1860
1861    /// Provides a reference to the back element of the cursor's parent list,
1862    /// or None if the list is empty.
1863    #[must_use]
1864    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1865    #[rustc_confusables("last")]
1866    pub fn back(&self) -> Option<&T> {
1867        self.list.back()
1868    }
1869
1870    /// Provides a mutable reference to back element of the cursor's parent
1871    /// list, or `None` if the list is empty.
1872    ///
1873    /// # Examples
1874    /// Building and mutating a list with a cursor, then getting the back element:
1875    /// ```
1876    /// #![feature(linked_list_cursors)]
1877    /// use std::collections::LinkedList;
1878    /// let mut dl = LinkedList::new();
1879    /// dl.push_front(3);
1880    /// dl.push_front(2);
1881    /// dl.push_front(1);
1882    /// let mut cursor = dl.cursor_front_mut();
1883    /// *cursor.current().unwrap() = 99;
1884    /// *cursor.back_mut().unwrap() = 0;
1885    /// let mut contents = dl.into_iter();
1886    /// assert_eq!(contents.next(), Some(99));
1887    /// assert_eq!(contents.next(), Some(2));
1888    /// assert_eq!(contents.next(), Some(0));
1889    /// assert_eq!(contents.next(), None);
1890    /// ```
1891    #[must_use]
1892    #[unstable(feature = "linked_list_cursors", issue = "58533")]
1893    pub fn back_mut(&mut self) -> Option<&mut T> {
1894        self.list.back_mut()
1895    }
1896}
1897
1898/// An iterator produced by calling `extract_if` on LinkedList.
1899#[stable(feature = "extract_if", since = "1.87.0")]
1900#[must_use = "iterators are lazy and do nothing unless consumed"]
1901pub struct ExtractIf<
1902    'a,
1903    T: 'a,
1904    F: 'a,
1905    #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global,
1906> {
1907    list: &'a mut LinkedList<T, A>,
1908    it: Option<NonNull<Node<T>>>,
1909    pred: F,
1910    idx: usize,
1911    old_len: usize,
1912}
1913
1914#[stable(feature = "extract_if", since = "1.87.0")]
1915impl<T, F, A: Allocator> Iterator for ExtractIf<'_, T, F, A>
1916where
1917    F: FnMut(&mut T) -> bool,
1918{
1919    type Item = T;
1920
1921    fn next(&mut self) -> Option<T> {
1922        while let Some(mut node) = self.it {
1923            unsafe {
1924                self.it = node.as_ref().next;
1925                self.idx += 1;
1926
1927                if (self.pred)(&mut node.as_mut().element) {
1928                    // `unlink_node` is okay with aliasing `element` references.
1929                    self.list.unlink_node(node);
1930                    return Some(Box::from_raw_in(node.as_ptr(), &self.list.alloc).element);
1931                }
1932            }
1933        }
1934
1935        None
1936    }
1937
1938    fn size_hint(&self) -> (usize, Option<usize>) {
1939        (0, Some(self.old_len - self.idx))
1940    }
1941}
1942
1943#[stable(feature = "extract_if", since = "1.87.0")]
1944impl<T, F, A> fmt::Debug for ExtractIf<'_, T, F, A>
1945where
1946    T: fmt::Debug,
1947    A: Allocator,
1948{
1949    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
1950        let peek = self.it.map(|node| unsafe { &node.as_ref().element });
1951        f.debug_struct("ExtractIf").field("peek", &peek).finish_non_exhaustive()
1952    }
1953}
1954
1955#[stable(feature = "rust1", since = "1.0.0")]
1956impl<T, A: Allocator> Iterator for IntoIter<T, A> {
1957    type Item = T;
1958
1959    #[inline]
1960    fn next(&mut self) -> Option<T> {
1961        self.list.pop_front()
1962    }
1963
1964    #[inline]
1965    fn size_hint(&self) -> (usize, Option<usize>) {
1966        (self.list.len, Some(self.list.len))
1967    }
1968}
1969
1970#[stable(feature = "rust1", since = "1.0.0")]
1971impl<T, A: Allocator> DoubleEndedIterator for IntoIter<T, A> {
1972    #[inline]
1973    fn next_back(&mut self) -> Option<T> {
1974        self.list.pop_back()
1975    }
1976}
1977
1978#[stable(feature = "rust1", since = "1.0.0")]
1979impl<T, A: Allocator> ExactSizeIterator for IntoIter<T, A> {}
1980
1981#[stable(feature = "fused", since = "1.26.0")]
1982impl<T, A: Allocator> FusedIterator for IntoIter<T, A> {}
1983
1984#[stable(feature = "default_iters", since = "1.70.0")]
1985impl<T> Default for IntoIter<T> {
1986    /// Creates an empty `linked_list::IntoIter`.
1987    ///
1988    /// ```
1989    /// # use std::collections::linked_list;
1990    /// let iter: linked_list::IntoIter<u8> = Default::default();
1991    /// assert_eq!(iter.len(), 0);
1992    /// ```
1993    fn default() -> Self {
1994        LinkedList::new().into_iter()
1995    }
1996}
1997
1998#[stable(feature = "rust1", since = "1.0.0")]
1999impl<T> FromIterator<T> for LinkedList<T> {
2000    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Self {
2001        let mut list = Self::new();
2002        list.extend(iter);
2003        list
2004    }
2005}
2006
2007#[stable(feature = "rust1", since = "1.0.0")]
2008impl<T, A: Allocator> IntoIterator for LinkedList<T, A> {
2009    type Item = T;
2010    type IntoIter = IntoIter<T, A>;
2011
2012    /// Consumes the list into an iterator yielding elements by value.
2013    #[inline]
2014    fn into_iter(self) -> IntoIter<T, A> {
2015        IntoIter { list: self }
2016    }
2017}
2018
2019#[stable(feature = "rust1", since = "1.0.0")]
2020impl<'a, T, A: Allocator> IntoIterator for &'a LinkedList<T, A> {
2021    type Item = &'a T;
2022    type IntoIter = Iter<'a, T>;
2023
2024    fn into_iter(self) -> Iter<'a, T> {
2025        self.iter()
2026    }
2027}
2028
2029#[stable(feature = "rust1", since = "1.0.0")]
2030impl<'a, T, A: Allocator> IntoIterator for &'a mut LinkedList<T, A> {
2031    type Item = &'a mut T;
2032    type IntoIter = IterMut<'a, T>;
2033
2034    fn into_iter(self) -> IterMut<'a, T> {
2035        self.iter_mut()
2036    }
2037}
2038
2039#[stable(feature = "rust1", since = "1.0.0")]
2040impl<T, A: Allocator> Extend<T> for LinkedList<T, A> {
2041    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
2042        <Self as SpecExtend<I>>::spec_extend(self, iter);
2043    }
2044
2045    #[inline]
2046    fn extend_one(&mut self, elem: T) {
2047        self.push_back(elem);
2048    }
2049}
2050
2051impl<I: IntoIterator, A: Allocator> SpecExtend<I> for LinkedList<I::Item, A> {
2052    default fn spec_extend(&mut self, iter: I) {
2053        iter.into_iter().for_each(move |elt| self.push_back(elt));
2054    }
2055}
2056
2057impl<T> SpecExtend<LinkedList<T>> for LinkedList<T> {
2058    fn spec_extend(&mut self, ref mut other: LinkedList<T>) {
2059        self.append(other);
2060    }
2061}
2062
2063#[stable(feature = "extend_ref", since = "1.2.0")]
2064impl<'a, T: 'a + Copy, A: Allocator> Extend<&'a T> for LinkedList<T, A> {
2065    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
2066        self.extend(iter.into_iter().cloned());
2067    }
2068
2069    #[inline]
2070    fn extend_one(&mut self, &elem: &'a T) {
2071        self.push_back(elem);
2072    }
2073}
2074
2075#[stable(feature = "rust1", since = "1.0.0")]
2076impl<T: PartialEq, A: Allocator> PartialEq for LinkedList<T, A> {
2077    fn eq(&self, other: &Self) -> bool {
2078        self.len() == other.len() && self.iter().eq(other)
2079    }
2080
2081    fn ne(&self, other: &Self) -> bool {
2082        self.len() != other.len() || self.iter().ne(other)
2083    }
2084}
2085
2086#[stable(feature = "rust1", since = "1.0.0")]
2087impl<T: Eq, A: Allocator> Eq for LinkedList<T, A> {}
2088
2089#[stable(feature = "rust1", since = "1.0.0")]
2090impl<T: PartialOrd, A: Allocator> PartialOrd for LinkedList<T, A> {
2091    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
2092        self.iter().partial_cmp(other)
2093    }
2094}
2095
2096#[stable(feature = "rust1", since = "1.0.0")]
2097impl<T: Ord, A: Allocator> Ord for LinkedList<T, A> {
2098    #[inline]
2099    fn cmp(&self, other: &Self) -> Ordering {
2100        self.iter().cmp(other)
2101    }
2102}
2103
2104#[stable(feature = "rust1", since = "1.0.0")]
2105impl<T: Clone, A: Allocator + Clone> Clone for LinkedList<T, A> {
2106    fn clone(&self) -> Self {
2107        let mut list = Self::new_in(self.alloc.clone());
2108        list.extend(self.iter().cloned());
2109        list
2110    }
2111
2112    /// Overwrites the contents of `self` with a clone of the contents of `source`.
2113    ///
2114    /// This method is preferred over simply assigning `source.clone()` to `self`,
2115    /// as it avoids reallocation of the nodes of the linked list. Additionally,
2116    /// if the element type `T` overrides `clone_from()`, this will reuse the
2117    /// resources of `self`'s elements as well.
2118    fn clone_from(&mut self, source: &Self) {
2119        let mut source_iter = source.iter();
2120        if self.len() > source.len() {
2121            self.split_off(source.len());
2122        }
2123        for (elem, source_elem) in self.iter_mut().zip(&mut source_iter) {
2124            elem.clone_from(source_elem);
2125        }
2126        if !source_iter.is_empty() {
2127            self.extend(source_iter.cloned());
2128        }
2129    }
2130}
2131
2132#[stable(feature = "rust1", since = "1.0.0")]
2133impl<T: fmt::Debug, A: Allocator> fmt::Debug for LinkedList<T, A> {
2134    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2135        f.debug_list().entries(self).finish()
2136    }
2137}
2138
2139#[stable(feature = "rust1", since = "1.0.0")]
2140impl<T: Hash, A: Allocator> Hash for LinkedList<T, A> {
2141    fn hash<H: Hasher>(&self, state: &mut H) {
2142        state.write_length_prefix(self.len());
2143        for elt in self {
2144            elt.hash(state);
2145        }
2146    }
2147}
2148
2149#[stable(feature = "std_collections_from_array", since = "1.56.0")]
2150impl<T, const N: usize> From<[T; N]> for LinkedList<T> {
2151    /// Converts a `[T; N]` into a `LinkedList<T>`.
2152    ///
2153    /// ```
2154    /// use std::collections::LinkedList;
2155    ///
2156    /// let list1 = LinkedList::from([1, 2, 3, 4]);
2157    /// let list2: LinkedList<_> = [1, 2, 3, 4].into();
2158    /// assert_eq!(list1, list2);
2159    /// ```
2160    fn from(arr: [T; N]) -> Self {
2161        Self::from_iter(arr)
2162    }
2163}
2164
2165// Ensure that `LinkedList` and its read-only iterators are covariant in their type parameters.
2166#[allow(dead_code)]
2167fn assert_covariance() {
2168    fn a<'a>(x: LinkedList<&'static str>) -> LinkedList<&'a str> {
2169        x
2170    }
2171    fn b<'i, 'a>(x: Iter<'i, &'static str>) -> Iter<'i, &'a str> {
2172        x
2173    }
2174    fn c<'a>(x: IntoIter<&'static str>) -> IntoIter<&'a str> {
2175        x
2176    }
2177}
2178
2179#[stable(feature = "rust1", since = "1.0.0")]
2180unsafe impl<T: Send, A: Allocator + Send> Send for LinkedList<T, A> {}
2181
2182#[stable(feature = "rust1", since = "1.0.0")]
2183unsafe impl<T: Sync, A: Allocator + Sync> Sync for LinkedList<T, A> {}
2184
2185#[stable(feature = "rust1", since = "1.0.0")]
2186unsafe impl<T: Sync> Send for Iter<'_, T> {}
2187
2188#[stable(feature = "rust1", since = "1.0.0")]
2189unsafe impl<T: Sync> Sync for Iter<'_, T> {}
2190
2191#[stable(feature = "rust1", since = "1.0.0")]
2192unsafe impl<T: Send> Send for IterMut<'_, T> {}
2193
2194#[stable(feature = "rust1", since = "1.0.0")]
2195unsafe impl<T: Sync> Sync for IterMut<'_, T> {}
2196
2197#[unstable(feature = "linked_list_cursors", issue = "58533")]
2198unsafe impl<T: Sync, A: Allocator + Sync> Send for Cursor<'_, T, A> {}
2199
2200#[unstable(feature = "linked_list_cursors", issue = "58533")]
2201unsafe impl<T: Sync, A: Allocator + Sync> Sync for Cursor<'_, T, A> {}
2202
2203#[unstable(feature = "linked_list_cursors", issue = "58533")]
2204unsafe impl<T: Send, A: Allocator + Send> Send for CursorMut<'_, T, A> {}
2205
2206#[unstable(feature = "linked_list_cursors", issue = "58533")]
2207unsafe impl<T: Sync, A: Allocator + Sync> Sync for CursorMut<'_, T, A> {}